Skip to main content

ACTH-Independent Cushing’s Syndrome: Primary Pigmented Nodular Adrenal Disease in the Context of Carney’s Complex

  • Chapter
  • First Online:
Cushing's Syndrome

Part of the book series: Contemporary Endocrinology ((COE))

  • 2022 Accesses

Summary

In this chapter, we discuss clinical and molecular findings of micronodular adrenal hyperplasias (MAHs) that lead to ACTH-independent Cushing syndrome. We focus on the role of genetic defects in cyclic AMP (cAMP) signaling-related molecules, namely PRKAR1A, GNAS, PDE11A, and PDE8B; molecular defects in the phosphodiesterases (PDE) family are the most recently discovered genetic defects predisposing to adrenocortical tumor formation. The prototype of these disorders was Carney complex (CNC) in the context of which the first MAH was described: primary pigmented nodular adrenocortical disease or PPNAD. PPNAD is due to defects in PRKAR1A, the gene that functions as a receptor for the cAMP. In contrast to GNAS and PRKAR1A, defects in PDE genes are associated more frequently with incomplete penetrance. Identifying low-penetrance mutations in more than one PDE in patients with MAHs is suggestive for a complementary role of the different PDEs in the adrenal gland, and possible involvement of other members of this gene family in adrenocortical tumors and ACTH-independent Cushing syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stratakis CA. Adrenocortical tumors, primary pigmented adrenocortical disease (PPNAD)/Carney complex, and other bilateral hyperplasias: the NIH studies. Horm Metab Res 2007;39:467–473.

    Article  PubMed  CAS  Google Scholar 

  2. Beuschlein F, Reincke M, Karl M, et al. Clonal composition of human adrenocortical neoplasms. Cancer Res 1994;54:4927–4932.

    PubMed  CAS  Google Scholar 

  3. Gicquel C, Leblond-Francillard M, Bertagna X, et al. Clonal analysis of human adrenocortical carcinomas and secreting adenomas. Clin Endocrinol (Oxf) 1994;40:465–477.

    Article  CAS  Google Scholar 

  4. Stratakis CA, Boikos SA. Genetics of adrenal tumors associated with Cushing’s syndrome: a new classification for bilateral adrenocortical hyperplasias. Nat Clin Pract Endocrinol Metab 2007;3:748–757.

    Article  PubMed  CAS  Google Scholar 

  5. Gunther DF, Bourdeau I, Matyakhina L, et al. Cushing syndrome presenting in infancy: an early form of primary pigmented nodular adrenocortical disease, or a new entity? J Clin Endocrinol Metab 2004;89:3173–3182.

    Article  PubMed  CAS  Google Scholar 

  6. Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab 2001;86:4041–4046.

    Article  PubMed  CAS  Google Scholar 

  7. Mochizuki Y, Park MK, Mori T, Kawashima S. The difference in autofluorescence features of lipofuscin between brain and adrenal. Zoolog Sci 1995;12:283–288.

    Article  PubMed  CAS  Google Scholar 

  8. Lack EE. Tumors of the adrenal gland and extra-adrenal paraganglia. In: Saenger W, et al., eds. Atlas of Tumor Pathology. 3rd series, fascicle 19. Washington, DC: Armed Forces Institute of Pathology, 1997:184–187.

    Google Scholar 

  9. Horvath A, Boikos S, Giatzakis C, et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet 2006;38:794–800.

    Article  PubMed  CAS  Google Scholar 

  10. Mellinger RC, Smith RW Jr. Studies of the adrenal hyperfunction in 2 patients with atypical Cushing’s syndrome. J Clin Endocrinol Metab 1956;16:350–366.

    Article  PubMed  CAS  Google Scholar 

  11. Sarlis NJ, Chrousos GP, Doppman JL, et al. Primary pigmented nodular adrenocortical disease: reevaluation of a patient with Carney complex 27 years after unilateral adrenalectomy. J Clin Endocrinol Metab 1997;82:1274–1278.

    Article  PubMed  CAS  Google Scholar 

  12. Gomez Muguruza MT, Chrousos GP. Periodic Cushing syndrome in a short boy: usefulness of the ovine corticotropin releasing hormone test. J Pediatr 1989;115:270–273.

    Article  PubMed  CAS  Google Scholar 

  13. Sarlis NJ, Papanicolaou DA, Chrousos GP, Stratakis CA. Paradoxical increase of urinary free cortisol and 17-hydroxysteroids to dexamethasone during Liddle’s test: a diagnostic test for primary pigmented adrenocortical disease. [Abstract P2–76]. In: Proceedings of the 79th Annual Meeting of the Endocrine Society in Minneapolis, MN, Endocrine Society Press, 1997;303.

    Google Scholar 

  14. Caticha O, Odell WD, Wilson DE, et al. Estradiol stimulates cortisol production by adrenal cells in estrogen-dependent primary adrenocortical nodular dysplasia. J Clin Endocrinol Metab 1993;77:494–497.

    Article  PubMed  CAS  Google Scholar 

  15. Carney JA, Gordon H, Carpenter PC, et al. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 1985;64:270–283.

    CAS  Google Scholar 

  16. Kirschner LS, Taymans SE, Stratakis CA. Characterization of the adrenal gland pathology of Carney complex, and molecular genetics of the disease. Endocr Res 1998;24:863–864.

    Article  PubMed  CAS  Google Scholar 

  17. Stratakis CA, Courcoutsakis NA, Abati A, et al. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). J Clin Endocrinol Metab 1997;82:2037–2043.

    Article  PubMed  CAS  Google Scholar 

  18. Carney JA, Hruska LS, Beauchamp GD, Gordon H. Dominant inheritance of the complex of myxomas, spotty pigmentation, and endocrine overactivity. Mayo Clin Proc 1986;61:165–172.

    Article  PubMed  CAS  Google Scholar 

  19. Stratakis CA, Carney JA, Lin JP, et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome: analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest 1996;97:699–705.

    Article  PubMed  CAS  Google Scholar 

  20. Casey M, Mah C, Merliss AD, et al. Identification of novel genetic locus for familial cardiac myxomas and Carney complex. Circulation 1998;98:2560–2566.

    Article  PubMed  CAS  Google Scholar 

  21. Kirschner LS, Carney JA, Pack SD, et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nat Genet 2000;26:89–92.

    Article  PubMed  CAS  Google Scholar 

  22. Kirschner LS, Sandrini F, Monbo J, et al. Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the Carney complex. Hum Mol Genet 2000;9:3037–3046.

    Article  PubMed  CAS  Google Scholar 

  23. Casey M, Vaughan CJ, He J, et al. Mutations in the protein kinase A R1α regulatory subunit cause familial cardiac myxomas and Carney complex. J Clin Invest 2000;106:R31–R38.

    Article  PubMed  CAS  Google Scholar 

  24. Horvath A, Bertherat J, Groussin L, Grillaud-Bataille M, Tsang K, Cazabat L, Libé R, Remmers E, René-Corail F, Faucz FR, Clauser E, Calender A, Bertagna X, Carney JA, Stratakis CA. Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A(PRKAR1A): an update Hum Mutat. 2010;31:369–79.

    Google Scholar 

  25. Zawadski KM, Taylor S. cAMP-dependent protein kinase regulatory subunit type IIβ. J Biol Chem 2004;279:7029–7036.

    Article  Google Scholar 

  26. Shabb, JB. Physiological substrates of cAMP-dependent protein kinase. Chem Rev 2001;101:2381–2411.

    Article  PubMed  CAS  Google Scholar 

  27. Robinson-White A, Meoli E, Stergiopoulos S, et al. PRKAR1A mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J Clin Endocrinol Metab 2006;91:2380–2388.

    Article  PubMed  CAS  Google Scholar 

  28. Bossis I, Stratakis CA. Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 2004;145:5452–5258.

    Article  PubMed  CAS  Google Scholar 

  29. Groussin L, Horvath A, Jullian E, et al. PRKAR1A mutation associated with primary pigmented nodular adrenocortical disease in 12 kindreds. J Clin Endocrinol Metab 2006;91:1943–1949.

    Article  PubMed  CAS  Google Scholar 

  30. Horvath A, Bossis I, Giatzakis C, et al. Large deletions of the PRKAR1A gene in Carney complex. Clin Cancer Res 2008;14:388–395.

    Article  PubMed  CAS  Google Scholar 

  31. Boikos SA, Stratakis CA. Carney complex: the first 20 years. Curr Opin Oncol 2007;19:24–29.

    Article  PubMed  CAS  Google Scholar 

  32. Greene EL, Horvath AD, Nesterova M, et al. In vitro functional studies of naturally occurring pathogenic PRKAR1A mutations that are not subject to nonsense mRNA decay. Hum Mutat 2008;29(5):633–639.

    Article  PubMed  CAS  Google Scholar 

  33. Hamuro Y, Anand GS, Kim JS, et al. Mapping intersubunit interactions of the Regulatory Subunit (RIα) in the type I holoenzyme of protein kinase A by amide hydrogen/Deuterium Exchange Mass Spectrometry (DXMS). J Mol Biol 2004;340:1185–1196.

    Article  PubMed  CAS  Google Scholar 

  34. Veugelers M, Wilkes D, Burton K, et al. Comparative PRKAR1A genotype-phenotype analyses in humans with Carney complex and prkar1a haploinsufficient mice. Proc Natl Acad Sci U S A 2004;101:14222–14227.

    Article  PubMed  CAS  Google Scholar 

  35. Armstrong DK, Irvine AD, Handley JM, et al. Carney complex: report of a kindred with predominantly cutaneous manifestations. Br J Dermatol 1997;136:578–582.

    Article  PubMed  CAS  Google Scholar 

  36. Liebler GA, Magovern GJ, Park SB, et al. Familial myxomas in four siblings. J Thorac Cardiovasc Surg 1976;71:605–608.

    PubMed  CAS  Google Scholar 

  37. Horvath A, Boikos S, Giatzakis C, et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet 2006;38:794–800.

    Article  PubMed  CAS  Google Scholar 

  38. Horvath A, Giatzakis C, Robinson-White A, et al. Adrenal hyperplasia and adenomas are associated with inhibition of phosphodiesterase 11A in carriers of PDE11A sequence variants that are frequent in the population. Cancer Res 2006;66:11571–11575.

    Article  PubMed  CAS  Google Scholar 

  39. Fawcett L, Baxendale R, Stacey P, et al. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc Natl Acad Sci U S A 2000;97:3702–3707.

    Article  PubMed  CAS  Google Scholar 

  40. Omori K, Kotera J. Overview of PDEs and their regulation. Circ Res 2007;100:309–327.

    Article  PubMed  CAS  Google Scholar 

  41. Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007;76:481–511.

    Article  PubMed  CAS  Google Scholar 

  42. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 2006;58:488–520.

    Article  PubMed  CAS  Google Scholar 

  43. Horvath A, Mericq V, Stratakis CA. Mutation in PDE8B, a cyclic AMP-specific phosphodiesterase in adrenal hyperplasia. N Engl J Med 2008;358:750–752.

    Article  PubMed  CAS  Google Scholar 

  44. Weinstein LS, Shenker A, Gejman PV, et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med 1991;325:1688–1695.

    Article  PubMed  CAS  Google Scholar 

  45. Gejman PV, Weinstein LS, Martinez M, et al. Genetic mapping of the Gs-alpha subunit gene (GNAS1) to the distal long arm of chromosome 20 using a polymorphism detected by denaturing gradient gel electrophoresis. Genomics 1991;9:782–783.

    Article  PubMed  CAS  Google Scholar 

  46. Bourdeau I, Antonini SR, Lacroix A, et al. Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 2004;23:1575–1585.

    Article  PubMed  CAS  Google Scholar 

  47. Horvath A, Mathyakina L, Vong Q, et al. Serial analysis of gene expression in adrenocortical hyperplasia caused by a germline PRKAR1A mutation. J Clin Endocrinol Metab 2006;91:584–596.

    Article  PubMed  CAS  Google Scholar 

  48. Tissier F, Cavard C, Groussin L, et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 2005;65:7622–7627.

    PubMed  CAS  Google Scholar 

  49. Stratakis, C. Genetics of adrenocortical tumors: gatekeepers, landscapers and conductors in symphony. Trends Endocrinol Metab 2003;14:404–410.

    Article  PubMed  CAS  Google Scholar 

  50. Kirschner L, Kusewitt D, Matyakhina L, et al. A mouse model for the Carney complex tumor syndrome develops neoplasias in cyclic AMP-responsive tissues. Cancer Res 2005;65:4506–4514.

    Article  PubMed  CAS  Google Scholar 

  51. Griffin K, Kirschner L, Matyakhina L, et al. A transgenic mouse bearing an antisense construct of regulatory subunit type 1A of protein kinase A develops endocrine and other tumours: comparison with Carney complex and other PRKAR1A induced lesions. J Med Genet 2004;41:923–931.

    Article  PubMed  CAS  Google Scholar 

  52. Griffin K, Kirschner L, Matyakhina L, et al. Down-regulation of regulatory subunit type 1A of protein kinase A leads to endocrine and other tumors. Cancer Res 2004;64:8811–8815.

    Article  PubMed  CAS  Google Scholar 

  53. Bourdeau I, Stratakis, C. Cyclic AMP-dependent signaling aberrations in macronodular adrenal disease. Ann NY Acad Sci 2002;968:240–255.

    Article  PubMed  CAS  Google Scholar 

  54. Stratakis C, Kirschner L. Clinical and genetic analysis of primary bilateral adrenal diseases (micro- and macronodular disease) leading to Cushing syndrome. Horm Metab Res 1998;30:456–463.

    Article  PubMed  CAS  Google Scholar 

  55. Carney JA, Gaillard RC, Bertherat J, Stratakis CA. Familial micronodular adrenocortical disease, Cushing syndrome, and mutations of the gene encoding phosphodiesterase 11A4 (PDE11A). Am J Surg Pathol. 2010;34:547–55.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Program of the Eunice Kennedy Shriver National Institutes of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD; funds for this project are provided by the NICHD, NIH intramural project Z01-HD-000642-04 to Dr. C. A. Stratakis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stratakis, C. (2010). ACTH-Independent Cushing’s Syndrome: Primary Pigmented Nodular Adrenal Disease in the Context of Carney’s Complex. In: Bronstein, M. (eds) Cushing's Syndrome. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-449-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-449-4_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-448-7

  • Online ISBN: 978-1-60327-449-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics