Skip to main content

Positive Drug–Nutrient Interactions

  • Chapter
  • First Online:
Handbook of Drug-Nutrient Interactions

Part of the book series: Nutrition and Health ((NH))

  • 3044 Accesses

Objectives

• Identify the drug–food and drug–nutrient interactions that result in enhanced positive drug effects

• Discuss the mechanisms of positive drug–food and drug–nutrient interactions

• Identify patient-specific clinical conditions that may benefit from positive drug–food and drug–nutrient interactions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fleisher D, Li C, Zhou Y, et al. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin Pharmacokinet 1999;36:233–254.

    Article  CAS  Google Scholar 

  2. Schmidt LE, Dalhoff K. Food-drug interactions. Drugs 2002;62:1481–1502.

    Article  CAS  Google Scholar 

  3. Edwards G, Breckenridge AM. Clinical pharmacokinetics of anthelmintic drugs. Clin Pharmacokinet 1988;15:67–93.

    CAS  Google Scholar 

  4. SmithKline Beecham Pharmaceuticals. Albenza® package insert. Philadelphia, PA, 1999 April.

    Google Scholar 

  5. Lange H, Eggers R, Bircher J. Increased systemic availability of albendazole when taken with fatty meal. Eur J Clin Pharmacol 1988;34:315–317.

    Article  CAS  Google Scholar 

  6. Awadzi K, Hero M, Opoku NO, et al. The chemotherapy of onchocerciasis XVII. A clinical evaluation of albendazole in patients with onchocerciasis; effects of food and pretreatment with ivermectin on drug response and pharmacokinetics. Trop Med Parasitol 1994; 45:203–208.

    CAS  Google Scholar 

  7. Marriner SE, Morris DL, Dickson B, et al. Pharmacokinetics of albendazole in man. Eur J Clin Pharmacol 1986;30:705–708.

    Article  CAS  Google Scholar 

  8. Munst GJ, Karlaganis G, Bircher J. Plasma concentrations of mebendazole during treatment echinococcosis: preliminary results. Eur J Clin Pharmacol 1980;17:375–378.

    Article  CAS  Google Scholar 

  9. Dawson M, Watson TR. The effect of dose form on the bioavailability of mebendazole in man. Br J Clin Pharmacol 1985;19:87–90.

    CAS  Google Scholar 

  10. Bekhti A. Serum concentrations of mebendazole in patients with hydatid disease. Int J Clin Pharmacol Ther Toxicol 1985;23:633–641.

    CAS  Google Scholar 

  11. Jan Pharmaceutica. Vermox package® insert. Titusville, NJ, 1999 February.

    Google Scholar 

  12. Scott LJ, Ormrod D, Goa KL. Cefuroxime axetil: an updated review of its use in the management of bacterial infections. Drugs 2001;61:1455–1500.

    Article  CAS  Google Scholar 

  13. GlaxoSmithKline. Ceftin® package insert. Research Triangle Park, NC, 2007 January.

    Google Scholar 

  14. Emmerson AM. Cefuroxime axetil. J Antimicrob Chemother 1988;22:101–104.

    Article  CAS  Google Scholar 

  15. Williams PE, Harding SM. The absolute bioavailability of oral cefuroxime axetil in male and female volunteers after fasting and after food. J Antimicrob Chemother 1984;13:191–196.

    Article  CAS  Google Scholar 

  16. Finn A, Straughn A, Meyer M, et al. Effect of dose and food on the bioavailability of cefuroxime axetil. Biopharm Drug Disp 1987;8:519–526.

    Article  CAS  Google Scholar 

  17. James NC, Donn KH, Collins JJ, et al. Pharmacokinetics of cefuroxime axetil and cefaclor: relationship of concentrations in serum to MICs for common respiratory pathogens. Antimicrob Agents Chemother 1991;35:1860–1863.

    CAS  Google Scholar 

  18. Ginsburg CM, McCracken Jr GH, Petruska M, et al. Pharmacokinetics and bactericidal activity of cefuroxime axetil. Antimicrob Agents Chemother 1985;28: 504–507.

    CAS  Google Scholar 

  19. Sommers DK, Van Wyk M, Moncrieff J. Influence of food and reduced gastric acidity on the bioavailability of bacampicillin and cefuroxime axetil. Br J Clin Pharmacol 1984;18:535–539.

    CAS  Google Scholar 

  20. Garraffo R, Drugeon HB, Chiche D. Pharmacokinetics and pharmacodynamics of two oral forms of cefuroxime axetil. Fundamen Clin Pharmacol 1997;11:90–95.

    Article  CAS  Google Scholar 

  21. Gleckman R, Alvarez S, Joubert D. Drug therapy reviews: nitrofurantoin. Am J Hosp Pharm 1979;36:342–351.

    CAS  Google Scholar 

  22. Dramer DL, Dodd MC. The mode of action of nitrofurantoin compounds. J Bacteriol 1946;51:293–303.

    Google Scholar 

  23. Lorian V, Popoola B. The effect of nitrofurantoin on the morphology of gram negative bacilli. J Infect Dis 1972;125:187–188.

    CAS  Google Scholar 

  24. Procter & Gamble Pharmaceuticals. Macrobid® package insert. Cincinnati, OH, 2002 June.

    Google Scholar 

  25. Procter & Gamble Pharmaceuticals. Macrodantin® package insert. Cincinnati, OH, 2002 June.

    Google Scholar 

  26. Procter & Gamble Pharmaceuticals. Furadantin® package insert. Cincinnati, OH, 1999 September.

    Google Scholar 

  27. Dunn BL, Stamey TA. Antibacterial concentrations in prostatic fluid. 1. Nitrofurantoin. J Urol 1967;97:505–507.

    CAS  Google Scholar 

  28. Conklin JD. Biopharmaceutics of nitrofurantoin. Pharmacology 1972;8:178–181.

    CAS  Google Scholar 

  29. Conklin JD. The pharmacokinetics of nitrofurantoin and its related bioavailability. Antibiot Chemother 1978;25:233–252.

    CAS  Google Scholar 

  30. Bates TR, Sequeira JA, Tembo AV. Effect of food on nitrofurantoin absorption. Clin Pharmacol Ther 1974;16:63–68.

    CAS  Google Scholar 

  31. Rosenberg HA, Bates TR. The influence of food on nitrofurantoin bioavailability. Clin Pharmacol Ther 1976;20:227–232.

    CAS  Google Scholar 

  32. Paul HE, Hayes KJ, Paul MF, et al. Laboratory studies with nitrofurantoin, relationship between crystal size, urinary excretion in the rat and man, and emesis in dogs. J Pharm Sci 1967;56:882–885.

    Article  CAS  Google Scholar 

  33. Hailey FJ, Glascock HW. Gastrointestinal tolerance to a new macrocrystalline form of nitrofurantoin: a collaborative study. Curr Ther Res Clin Exp 1967;9:600–605.

    CAS  Google Scholar 

  34. Shirley SW, Ozog LS. Improved gastrointestinal tolerance to nitrofurantoin in the macrocrystalline form. Urol Dig 1970;9:8–10.

    Google Scholar 

  35. Kaslowski S, Radford N, Kincaid-Smith P. Crystalline and macrocrystalline nitrofurantoin in the treatment of urinary tract infection. N Engl J Med 1974;280:385–387.

    Article  Google Scholar 

  36. Rowland M, Riegelman S, Epstein WL. Absorption kinetics of griseofulvin in man. J Pharm Sci 1968;57:984–989.

    Article  CAS  Google Scholar 

  37. Crounse RG. Human pharmacology of griseofulvin: the effect of fat intake on gastrointestinal absorption. J Invest Dermatol 1961;37:529.

    Article  CAS  Google Scholar 

  38. Aoyagi N, Ogata H, Kaniwa N, et al. Effect of food on the bioavailability of griseofulvin from microsize and PEG ultramicrosize (GIRS-PEG®) plain tablets. J Pharm Dyn 1982;4:120–124.

    Google Scholar 

  39. Ogunbona FA, Smith IF, Olawoye OS, et al. Fat contents of meals and bioavailability of griseofulvin in man. J Pharm Pharmacol 1985;37:283–284.

    CAS  Google Scholar 

  40. Kabasakalian P, Katz M, Rosenkrantz B, et al. Parameters affecting absorption of griseofulvin in a human subject using urinary metabolite excretion data. J Pharm Sci 1970;59:595–600.

    Article  CAS  Google Scholar 

  41. Janssen Pharmaceutica. Sporanox® package insert. Titusville, NJ, 2002 February.

    Google Scholar 

  42. van de Velde VJ, Van Peer AP, Heykants JJ, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy 1996;16:424–428.

    Google Scholar 

  43. De Beule K, Ven Gestel J. Pharmacology of itraconazole. Drugs 2001;61(suppl 1):27–37.

    Article  Google Scholar 

  44. van Peer A, Woestenborghs R, Heykants J, et al. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur J Clin Pharmacol 1989;36:423–426.

    Article  Google Scholar 

  45. Barone JA, Koh JG, Bierman RH, et al. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother 1993;37:778–784.

    CAS  Google Scholar 

  46. Barone JA, Moskovitz BL, Guarnieri J, et al. Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers. Pharmacotherapy 1998;18:295–301.

    CAS  Google Scholar 

  47. Lange D, Pavao JH, Wu J, et al. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J Clin Pharmacol 1997;37:535–540.

    CAS  Google Scholar 

  48. Jaruratanasirikul S, Kleepkaew A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol 1997;52:235–237.

    Article  CAS  Google Scholar 

  49. Cartledge JD, Midgely J, Gazzard BG. Itraconazole solution: higher serum drug concentrations and better clinical response rates than the capsule formulation in acquired immunodeficiency syndrome patients with candidosis. J Clin Pathol 1997;50:477–480.

    Article  CAS  Google Scholar 

  50. Schering Corporation. Noxafil® package insert. Kenilworth, NJ, 2006 September.

    Google Scholar 

  51. Courtney R, Pai S, Laughlin M, et al. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrob Agents Chemother 2003;47:2788–2795.

    Article  CAS  Google Scholar 

  52. Courtney R, Wexler D, Radwanski E, et al. Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br J Clin Pharmacol 2004;57:218–222.

    Article  Google Scholar 

  53. Courtney R, Radwanski E, Lim J, et al. Pharmacokinetics of posaconazole coadministered with antacid in fasting or nonfasting healthy men. Antimicrob Agents Chemother. 2004;48:804–808.

    Article  CAS  Google Scholar 

  54. Sansone-Parsons A, Krisha G, Calzetta A, et al. Effect of a nutritional supplement on posaconazole pharmacokinetics following oral administration to healthy volunteers. Antimicrob Agents Chemother 2006;50:1881–1883.

    Article  CAS  Google Scholar 

  55. GlaxoSmithKline. Mepron® package insert. Research triangle Park, NC, 1999 January.

    Google Scholar 

  56. Rolan PE, Mercer AJ, Weatherley BC, et al. Examination of some factors responsible for a food-induced increase in absorption of atovaquone. Br J Clin Pharmacol 1994;37:13–20.

    CAS  Google Scholar 

  57. Freeman CD, Klutman NE, Lamp KC, et al. Relative bioavailability of atovaquone suspension when administered with an enteral nutrition supplement. Ann Pharmacother 1998;32:1004–1007.

    Article  CAS  Google Scholar 

  58. Falloon J, Sargent S, Piscitelli SC, et al. Atovaquone suspension in HIV-infected volunteers: pharmacokinetics, pharmacodynamics, and TMP-SMX interaction study. Pharmacotherapy 1999;19:1050–1056.

    Article  CAS  Google Scholar 

  59. Dixon R, Pozniak AL, Watt HM, et al. Single-dose and steady-state pharmacokinetics of a novel microfluidized suspension of atovaquone in human immunodeficiency virus-seropositive patients. Antimicrob Agents Chemother 1996;40:556–560.

    CAS  Google Scholar 

  60. Romark Pharmaceuticals. Alinia® package insert. Tampa, FL, 2005 June.

    Google Scholar 

  61. Stockis A, Allemon AM, De Bruyn S, et al. Nitazoxanide pharmacokinetics and tolerability in man using single ascending oral doses. Int J Clin Pharmacol Ther 2002;40:213–220.

    CAS  Google Scholar 

  62. Bristol-Myers Squibb Company. Reyataz®package insert. Princeton, NJ, 2007 March.

    Google Scholar 

  63. Tibotec, Inc. Prezista® package insert. Raritan, NJ, 2006 June.

    Google Scholar 

  64. Sekar V, Kestens D, Spinoza-Guzman S, et al. The effect of different meal types on the pharmacokinetics of darunavir (TMC114)/ritonavir in HIV-negative healthy volunteers. J Clin Pharmacol 2007;47:479–484.

    Article  CAS  Google Scholar 

  65. Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 2003;63:769–802.

    Article  CAS  Google Scholar 

  66. Abbott Laboratories. Kaletra® package insert. North Chicago, IL, 2007 January.

    Google Scholar 

  67. Klein CE, Chiu YL, Awni W, et al. The tablet formulation of lopinavir/ritonavir provides similar bioavailability to the soft-gelatin capsule formulation with less pharmacokinetic variability and diminished food effect. J Acquir Immune Defic Syndr 2007;44:401–410.

    Article  CAS  Google Scholar 

  68. Agouron Pharmaceuticals, Inc. Viracept® package insert. La Jolla, CA, 2007 January.

    Google Scholar 

  69. Kaeser B, Charoin JE, Gerber M, et al. Assessment of the bioequivalence of two nelfinavir tablet formulations under fed and fasted conditions in healthy subjects. Int J Clin Pharmacol Ther 2005;43:154–162.

    CAS  Google Scholar 

  70. Roche Pharmaceuticals. Invirase® package insert. Nutley, NJ, 2000 October.

    Google Scholar 

  71. Roche Pharmaceuticals. Fortovase® package insert. Nutley, NJ, 2000 October.

    Google Scholar 

  72. Muirhead GH, Shaw TJ, Williams PEO, et al. Pharmacokinetics of the HIV-proteinase inhibitor, Ro 318959, after single and multiple oral doses in healthy volunteers. Proceedings of the BPS, April 8–10, 1992;170P–171P.

    Google Scholar 

  73. Kenyon CJ, Brown F, McClelland GR, et al. The use of Pharmacoscintigraphy to elucidate food effects observed with a novel protease inhibitor (saquinavir). Pharm Res 1998;15:417–422.

    Article  CAS  Google Scholar 

  74. Keating GM, Croom KF. Fenofibrate: a review of its use in primary dyslipidaemia, the metabolic syndrome and type 2 diabetes mellitus. Drugs 2007;67:121–153.

    Article  CAS  Google Scholar 

  75. Keating GM, Ormrod D. Micronised fenofibrate: an updated review of its clinical efficacy in the management of dyslipidaemia. Drugs 2002;62:1909–1944.

    Article  CAS  Google Scholar 

  76. Abbott Laboratories. Tricor® package insert. North Chicago, IL, 2004 November.

    Google Scholar 

  77. Najib J. Fenofibrate in the treatment of dyslipidemia: a review of the data as they relate to the new suprabioavailable tablet formulation. Clin Ther 2002;24:2022–2050.

    Article  CAS  Google Scholar 

  78. Gate Pharmaceuticals. Lofibra® (fenofibrate capsules, micronized) package insert. Sellersville, PA, 2003 July.

    Google Scholar 

  79. Gate Pharmaceuticals. Lofibra® (fenofibrate tablets) package insert. Sellersville, PA, 2005 July.

    Google Scholar 

  80. Galephar Pharmaceutical Research, Inc. Lipofen® package insert. Juncos, PR, 2007 July.

    Google Scholar 

  81. Sciele Pharma, Inc. Triglide® package insert. Atlanta, GA, 2007 February.

    Google Scholar 

  82. Oscient Pharmaceuticals Corporation. Antara® package insert. Emeryville, CA, 2006 September.

    Google Scholar 

  83. Guivarc’h PH, Vachon MG, Fordyce D. A new fenofibrate formulation: results of six single-dose, clinical studies of bioavailability under fed and fasting conditions. Clin Ther 2004;26:1456–1469.

    Article  CAS  Google Scholar 

  84. Yun HY, Joo Lee E, Youn Chung S, et al. The effects of food on the bioavailability of fenofibrate administered orally in healthy volunteers via sustained-release capsule. Clin Pharmacokinet 2006;45:425–432.

    Article  CAS  Google Scholar 

  85. Roche Laboratories. Accutane® package insert. Nutley, NJ, 2002 June.

    Google Scholar 

  86. Colburn WA, Gibson DM, Wiens RE, et al. Food increases the bioavailability of isotretinoin. J Clin Pharmacol 1983;23:534–539.

    CAS  Google Scholar 

  87. Shire US, Inc. Lialda® package insert. Wayne, PA, 2007 January.

    Google Scholar 

  88. Pharmacia & Upjohn Company. Dipentum® package insert. Kalamazoo, MI, 2001 November.

    Google Scholar 

  89. Ryde EM, Ahnfelt NO. The pharmacokinetics of olsalazine sodium in healthy volunteers after a single i.v. dose and after oral doses with and without food. Eur J Clin Pharmacol 1988;34:481–488.

    Article  CAS  Google Scholar 

  90. Pharmacia. Cytotec® package insert. Morpeth, England, 2002 March.

    Google Scholar 

  91. Karim A, Rozek LF, Smith ME, et al. Effects of food and antacid on oral absorption of misoprostol, a synthetic prostaglandin E1 analog. J Clin Pharmacol 1989;29:439–443.

    CAS  Google Scholar 

  92. Rutgeerts P, Vantrappen G, Hiele M, et al. Effects on bowel motility of misoprostol administered before and after meals. Aliment Pharmacol Ther 1991;5:533–542.

    Article  CAS  Google Scholar 

  93. Hallberg L. Bioavailability of dietary iron in man. Ann Rev Nutr 1981;1:123–147.

    Article  CAS  Google Scholar 

  94. Harju E. Clinical pharmacokinetics of iron preparations. Clin Pharmacokinet 1989;17:69–89.

    Article  CAS  Google Scholar 

  95. Sayers MH, Lynch SR, Jacobs P, et al. The effect of ascorbic acid supplementation on the absorption of iron in maize, wheat and soy. Br J Hematol 1973;31:367–375.

    Google Scholar 

  96. Hallberg L, Brune M, Rossander L. Effect of ascorbic acid on iron absorption from different types of meals. Studies with ascorbic-acid-rich foods and synthetic ascorbic acid given in different amounts with different meals. Hum Nutr Appl Nutr 1986;40:97–113.

    CAS  Google Scholar 

  97. Hallberg L, Brune M, Rossander L. The role of vitamin C in iron absorption. Int J Vitam Nutr Res Suppl 1989;30:103–108.

    CAS  Google Scholar 

  98. Hallberg L, Brune M, Rossander L. Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytates. Am J Clin Nutr 1989;49:140–144.

    CAS  Google Scholar 

  99. Reddy NR. Occurrence, distribution, content, and dietary intake of phytate. In: Reddy NR, Sathe SK, eds. Food phytates. Boca Raton, Florida: CRC Press, 2002:25–51.

    Google Scholar 

  100. Sharma DC, Mathur R. Correction of anemia and iron deficiency in vegetarians by administration of ascorbic acid. Indian J Physiol Pharmacol 1995;39:403–406.

    CAS  Google Scholar 

  101. Cook JD, Monsen ER. Vitamin C, the common cold and iron absorption. Am JClin Nutr 1977; 30:235–241.

    CAS  Google Scholar 

  102. Hunt JR, Mullen LM, Lykken GI, et al. Ascorbic acid: effect on ongoing iron absorption and status in iron-depleted young women. Am J Clin Nutr 1990;51:649–655.

    CAS  Google Scholar 

  103. Seshadri S, Shah A, Bhade S. Haematologic response of anaemic preschool children to ascorbic acid supplementation. Hum Nutr Appl Nutr 1985;39A:151–154.

    Google Scholar 

  104. Xu M, Gushi Y. Effect of vitamin C supplementations on iron deficiency anemia in Chinese children. Biomed Environ Sci 1992;5:125–129.

    Google Scholar 

  105. Derman DP, Bothwell TH, Torrance JD, et al. Iron absorption from ferritin and ferric hydroxide. Scand J Haematol 1982;29:18–24.

    Article  CAS  Google Scholar 

  106. Ballot D, Baynes RD, Bothwell TH, et al. The effects of fruit juices and fruits on the absorption of iron from a rice meal. Br J Nutr 1987;57:331–343.

    Article  CAS  Google Scholar 

  107. Hurrell R. How to ensure adequate iron absorption from iron-fortified food. Nutr Rev 2002;60:S7–S15.

    Article  Google Scholar 

  108. Teucher B, Olivares M, Cori H. Enhancers of iron absorption: ascorbic acid and other organic acids. Int J Vitam Nutr Res 2004;74:403–419.

    Article  CAS  Google Scholar 

  109. Baird IM, Walters RL, Sutton DR. Absorption of slow release iron and effects of ascorbic acid in normal subjects and after partial gastrectomy. Br Med J 1974;4:505–508.

    Article  CAS  Google Scholar 

  110. Thomas DM, Zalcberg JR. 5-fluorouracil: a pharmacological paradigm in the use of cytotoxics. Clin Exp Pharmacol Physiol 1998;25:887–895.

    Article  CAS  Google Scholar 

  111. Grogan L, Sotos GA, Allegra CJ. Leucovorin modulation of fluorouracil. Oncology (Huntington) 1993;7:63–72.

    CAS  Google Scholar 

  112. Parchure M, Ambaye RY, Gokhale SV. Combination of anticancer agents with folic aid in the treatment of murine leukemia P388. Chemotherapy 1984;30:119–124.

    Article  CAS  Google Scholar 

  113. Schmitz JC, Stuart RK, Priest DG. Disposition of folic acid and its metabolites: a comparison with leucovorin. Clin Pharmacol Ther 1994;55:501–508.

    Article  CAS  Google Scholar 

  114. Asbury RF, Boros L, Brower M, et al. 5-Fluorouracil and high-dose folic acid treatment for metastatic colon cancer. Am J Clin Oncol 1987;10:47–49.

    Article  CAS  Google Scholar 

  115. Schwahn B, Rozen R. Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences. Am J Pharmacogenom 2001;1:189–201.

    Article  CAS  Google Scholar 

  116. Gensia Sicor Pharmaceuticals. Leucovorin Calcium package insert. Irvine, CA, 1998 June.

    Google Scholar 

  117. Bannwarth B, Labat L, Moride Y, et al. Methotrexate in rheumatoid arthritis. An update. Drugs 1994;47:25–50.

    Article  CAS  Google Scholar 

  118. Cutolo M, Sulli A, Pizzorni C, et al. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 2001;60:729–735.

    Article  CAS  Google Scholar 

  119. Lederle. Methotrexate package insert. Pearl River, NY, 2002 January.

    Google Scholar 

  120. Ortiz Z, Shea B, Suarez-Almazor ME, et al. The efficacy of folic acid and folinic acid in reducing methotrexate gastrointestinal toxicity in rheumatoid arthritis. A metaanalysis of randomized controlled trials. J Rheumatol 1998;25:36–43.

    CAS  Google Scholar 

  121. Morgan SL, Baggott JE, Vaughn WH, et al. Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis. A double-blind, placebo controlled trial. Ann Intern Med 1994;121:833–841.

    CAS  Google Scholar 

  122. Dijkmans BAC. Folate supplementation and methotrexate. Br J Rheumatol 1995;34:1172–1174.

    Article  CAS  Google Scholar 

  123. Shiroky JB, Neville C, Esdaile JM, et al. Low-dose methotrexate with leucovorin (folinic acid) in the management of rheumatoid arthritis. Results of a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum 1993;36:795–803.

    Article  CAS  Google Scholar 

  124. Tishler M, Caspi D, Fishel B, et al. The effects of leucovorin (folinic acid) on methotrexate therapy in rheumatoid arthritis patients. Arthritis Rheum 1988;31:906–908.

    Article  CAS  Google Scholar 

  125. Morgan SL, Baggott JE, Lee JY, et al. Folic acid supplementation prevents deficient blood folate levels and hyperhomocysteinemia during long term, low dose methotrexate therapy for rheumatoid arthritis: implications for cardiovascular disease prevention. J Rheumatol 1998;25:441–446.

    CAS  Google Scholar 

  126. van Ede AE, Laan RFJM, Blom HJ, et al. Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology 2002;41:658–665.

    Article  Google Scholar 

  127. Arnesen E, Refsum H, Bonaa KH, et al. Serum total homocysteine and coronary artery disease. Int J Epidemiol 1995;24:704–709.

    Article  CAS  Google Scholar 

  128. Morgan SL, Baggott JE, Vaughn WH, et al. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 1990;33:9–18.

    Article  CAS  Google Scholar 

  129. Jobanputra P, Hunter M, Clark D, et al. An audit of methotrexate and folic acid for rheumatoid arthritis, experience from a teaching center. Br J Rheumatol 1995;34:971–975.

    Article  CAS  Google Scholar 

  130. Bressolle F, Kinowski JM, Morel J, et al. Folic acid alters methotrexate availability in patients with rheumatoid arthritis. J Rheumatol 2000;27:2110–2114.

    CAS  Google Scholar 

  131. van Ede AE, Laan RF, Rood MJ, et al. Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2001;44:1515–1524.

    Article  Google Scholar 

  132. Doube A. Folic acid supplementation prevents deficient blood. Letter. J Rheumatol 1988;25:2473.

    Google Scholar 

  133. Lorenzi AR, Johnson AH, Gough A. Daily folate supplementation is adequate prophylaxis against methotrexate-induced nausea and vomiting and avoids the need for expensive ant-emetic prescription [Letter]. Rheumatol 2000;39:812–813.

    Article  CAS  Google Scholar 

  134. Strand V, Morgan SL, Baggott JE, et al. Folic acid supplementation and methotrexate efficacy: comment on articles by Schiff, Emery et al, and others. Arthritis Rheum 2000;43:2615–2616.

    Article  CAS  Google Scholar 

  135. Goldman AL, Braman SS. Isoniazid: a review with emphasis on adverse effects. Chest 1972;62:71–77.

    Article  CAS  Google Scholar 

  136. Biehl JP, Vilter RW. Effects of isoniazid on pyridoxine metabolism. JAMA 1954;156:1549–1552.

    CAS  Google Scholar 

  137. Snider DE. Pyridoxine supplementation during isoniazid therapy. Tubercle 1980;61:191–196.

    Article  Google Scholar 

  138. Pallone KA, Goldman MP, Fuller MA. Isoniazid-associated psychosis: case report and review of the literature. Ann Pharmacother 1993;27:167–170.

    CAS  Google Scholar 

  139. Figg WD. Peripheral neuropathy in HIV patients after isoniazid therapy initiated. Letter. DICP 1991;25:100–101.

    CAS  Google Scholar 

  140. Siskind MS, Thienemann D, Kirlin L. Isoniazid-induced neurotoxicity in chronic dialysis patients: report of three cases and review of the literature. Nephron 1993;64:303–306.

    Article  CAS  Google Scholar 

  141. Alao AO, Yolles JC. Isoniazid-induced psychosis. Ann Pharmacother 1998;32:889–891.

    Article  CAS  Google Scholar 

  142. Asnis DS, Bhat JG, Melchert AF. Reversible seizures and mental status changes in a dialysis patient on isoniazid preventive therapy. Ann Pharmacother 1993;27:444–446.

    CAS  Google Scholar 

  143. Gilhotra R, Malik K, Singh S, et al. Acute isoniazid toxicity: report of 2 cases and review of the literature. Int J Clin Pharmacol Ther Toxicol 1987;25:259–261.

    CAS  Google Scholar 

  144. Yarbrough BE, Wood JD. Isoniazid overdose treated with high-dose pyridoxine. Ann Emerg Med 1983;12:303–305.

    Article  CAS  Google Scholar 

  145. Anonymous. American Thoracic Society and the Centers for Disease Control. Treatment of tuberculosis and tuberculosis infection in adults and children. Am Rev Respir Dis 1986;134:355–363.

    Google Scholar 

  146. Girling DJ. Adverse effects of antituberculosis drugs. Drugs 1982;23:56–74.

    Article  CAS  Google Scholar 

  147. Nisar M, Watkin SW, Bucknall RC. Exacerbation of isoniazid-induced peripheral neuropathy by pyridoxine. Thorax 1990;45:419–420.

    Article  CAS  Google Scholar 

  148. Pellock JM, Howell J, Kending EL, et al. Pyridoxine deficiency in children treated with isoniazid. Chest 1985;87:658–661.

    Article  CAS  Google Scholar 

  149. Taketomo CK, Hodding JH, Kraus DM, eds. Pyridoxine. Pediatric Dosage Handook. 7th ed. Hudson, OH: Lexi-Comp Inc., 2000:857–859.

    Google Scholar 

  150. Beer TM, Myrthue A, Eilers KM. Rationale for the development and current status of calcitriol in androgen-independent prostate cancer. World J Urol 2005;23:28–32.

    Article  CAS  Google Scholar 

  151. Petrylak DP. New paradigms for advanced prostate cancer. Rev Urol 2007;9(Suppl 2):S3–S12.

    Google Scholar 

  152. Beer TM, Eilers KM, Garzotto M, et al. Quality of life and pain relief during treatment with calcitriol and docetaxel in symptomatic metastatic androgen-independent prostate carcinoma. Cancer 2004;100:758–763.

    Article  CAS  Google Scholar 

  153. Beer TM, Hough KM, Garzotto M, et al. Weekly high-dose calcitriol and docetaxel in advanced prostate cancer. Semin Oncol 2001;28(4 Suppl 15):49–55.

    Article  CAS  Google Scholar 

  154. Beer TM, Eilers KM, Garzotto M, et al. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J Clin Oncol 2003;21:123–128.

    Article  CAS  Google Scholar 

  155. Beer TM, Ryan CW, Venner PM, et al. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT Investigators. J Clin Oncol 2007;25:669–674.

    Google Scholar 

  156. Hallikainen MA, Sarkkinen ES, Gylling H, et al. Comparison of the effects of plant sterol ester and plant stanol ester-enriched margarines in lowering serum cholesterol concentrations in hypercholesterolaemic subjects on a low-fat diet. Eur J Clin Nutr 2000;54:715–725.

    Article  CAS  Google Scholar 

  157. Nestel P, Cehun M, Pomeroy S, et al. Cholesterol-lowering effects of plant sterol esters and non-esterified stanols in margarine, butter and low-fat foods. Eur J Clin Nutr 2001;55:1084–1090.

    Article  CAS  Google Scholar 

  158. Nguyen TT. The cholesterol lowering action of plant stanol esters. J Nutr 1999;129:2109–2112.

    CAS  Google Scholar 

  159. Stein EA. Managing dyslipidemia in the high risk patient. Am J Cardiol 2002;89(Suppl):50C–57C.

    Article  Google Scholar 

  160. Blair SN, Capuzzi DM, Gottlieb SO, et al. Incremental reduction of serum total cholesterol and low-density lipoprotein cholesterol with the addition of plant stanol ester-containing spread to statin therapy. Am J Cardiol 2000;86:46–52.

    Article  CAS  Google Scholar 

  161. Simons LA. Additive effect of plant sterol-ester margarine and cerivastatin in lowering low-density lipoprotein cholesterol in primary hypercholesterolemia. Am J Cardiol 2002;90:737–740.

    Article  CAS  Google Scholar 

  162. Neil HA, Meijer GW, Roe LS. Randomized controlled trial of use by hypercholesterolaemic patients of a vegetable oil sterol-enriched fat spread. Atherosclerosis 2001;156:329–337.

    Article  CAS  Google Scholar 

  163. Hedman M, Miettinen TA, Gylling H, et al. Serum noncholesterol sterols in children with heterozygous familial hypercholesterolemia undergoing pravastatin therapy. J Pediatr 2006;148:241–246.

    Article  CAS  Google Scholar 

  164. Cater NB, Garcia-Garcia AB, Vega GL, et al. Responsiveness of plasma lipids and lipoproteins to plant stanol esters. Am J Cardiol 2005;96(1A):23D–28D.

    Article  CAS  Google Scholar 

  165. Turley SD. State of the art in cholesterol management: targeting multiple pathways. Am J Manag Care 2002;8:S29–S32.

    Google Scholar 

  166. Goldberg AC, Ostlund RE Jr, Bateman JH, et al. Effect of plant stanol tablets on low-density lipoprotein cholesterol lowering in patients on statin drugs. Am J Cardiol 2006;97:376–379.

    Article  CAS  Google Scholar 

  167. Castro Cabezas M, de Vries JH, Van Oostrom AJ, et al. Effects of a stanol-enriched diet on plasma cholesterol and triglycerides in patients treated with statins. J Am Diet Assoc 2006;106:1564–1569.

    Article  CAS  Google Scholar 

  168. Martikainen JA, Ottelin AM, Kiviniemi V, et al. Plant stanol esters are potentially cost-effective in the prevention of coronary heart disease in men: Bayesian modeling approach. Eur J Cardiovasc Prev Rehabil 2007;14:265–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Btaiche, I.F., Sweet, B.V., Kraft, M.D. (2009). Positive Drug–Nutrient Interactions. In: Boullata, J., Armenti, V. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-362-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-362-6_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-363-3

  • Online ISBN: 978-1-60327-362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics