Skip to main content

Converging into a Unified Model of Parkinson’s Disease Pathophysiology

  • Chapter
  • First Online:
Cortico-Subcortical Dynamics in Parkinson's Disease

Early models of basal ganglia functional organization pointed at changes in spontaneous activity as the underlying basis of akinesia, the main clinical manifestation of Parkinson’s disease. The “classical” model posits that an imbalance between the direct and indirect pathways results in an increase in the average firing rate of basal ganglia output neurons, tonic inhibition of motor thalamo-cortical circuits, and reduced motor output [1, 2]. However, after nearly 20 years most researchers in the field would probably agree in that there is little evidence to support this hypothesis [3, 4]. Current models posit that dopamine depletion impedes movement by promoting excessive oscillatory synchronization of basal ganglia neurons. According to this view, spontaneous oscillation and synchronization could induce resonance at certain frequencies, precluding the encoding of other frequencies more relevant to movement [5] and/or spatial segregation of information flow [6]. Nevertheless, the mechanism underlying abnormal oscillatory synchronization is a matter of debate. Current models point at intrinsic oscillations in the GP-STN network [7, 8] or at changes in the gain of pathways conveying and reinforcing cortical oscillations [9, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12(10):366–75.

    Article  PubMed  CAS  Google Scholar 

  2. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13(7):281–5.

    Article  PubMed  CAS  Google Scholar 

  3. Pessiglione M, Guehl D, Rolland AS, et al. Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci 2005;25(6):1523–31.

    Article  PubMed  CAS  Google Scholar 

  4. Hutchison WD, Dostrovsky JO, Walters JR, et al. Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci 2004;24(42):9240–3.

    Article  PubMed  CAS  Google Scholar 

  5. Brown P, Marsden CD. What do the basal ganglia do? Lancet 1998;351(9118):1801–4.

    Article  PubMed  CAS  Google Scholar 

  6. Bergman H, Feingold A, Nini A, et al. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 1998;21(1):32–8.

    Article  PubMed  CAS  Google Scholar 

  7. Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 2002;25(10): 525–31.

    Article  PubMed  CAS  Google Scholar 

  8. Plenz D, Kital ST. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 1999;400(6745):677–82.

    Article  PubMed  CAS  Google Scholar 

  9. Murer MG, Tseng KY, Kasanetz F, Belluscio M, Riquelme LA. Brain oscillations, medium spiny neurons, and dopamine. Cell Mol Neurobiol 2002;22(5–6):611–32.

    Article  PubMed  CAS  Google Scholar 

  10. Leblois A, Boraud T, Meissner W, Bergman H, Hansel D. Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 2006;26(13):3567–83.

    Article  PubMed  CAS  Google Scholar 

  11. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 1996;50(4):381–425.

    Article  PubMed  CAS  Google Scholar 

  12. Boraud T, Bezard E, Bioulac B, Gross CE. From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog Neurobiol 2002;66(4):265–83.

    Article  PubMed  Google Scholar 

  13. Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 2002;3(7):574–9.

    Article  PubMed  CAS  Google Scholar 

  14. Steriade M, Timofeev I, Grenier F. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 2001;85(5):1969–85.

    PubMed  CAS  Google Scholar 

  15. Wilson CJ. The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 1993;99:277–97.

    Article  PubMed  CAS  Google Scholar 

  16. O'Donnell P, Grace AA. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 1995;15(5 Pt 1):3622–39.

    PubMed  Google Scholar 

  17. Wilson CJ, Kawaguchi Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 1996;16(7):2397–410.

    PubMed  CAS  Google Scholar 

  18. Stern EA, Kincaid AE, Wilson CJ. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J Neurophysiol 1997;77(4):1697–715.

    PubMed  CAS  Google Scholar 

  19. Charpier S, Mahon S, Deniau JM. In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience 1999;91(4):1209–22.

    Article  PubMed  CAS  Google Scholar 

  20. Tseng KY, Kasanetz F, Kargieman L, Riquelme LA, Murer MG. Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J Neurosci 2001;21(16):6430–9.

    PubMed  CAS  Google Scholar 

  21. Kasanetz F, Riquelme LA, Murer MG. Disruption of the two-state membrane potential of striatal neurons during cortical desynchronisation in anaesthetised rats. J Physiol 2002;543(Pt 2):577–89.

    Article  PubMed  CAS  Google Scholar 

  22. Mahon S, Deniau JM, Charpier S. Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cereb Cortex 2001;11(4):360–73.

    Article  PubMed  CAS  Google Scholar 

  23. Kasanetz F, Riquelme LA, O'Donnell P, Murer MG. Turning off cortical ensembles stops striatal Up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo. J Physiol 2006;577(Pt 1):97–113.

    Article  PubMed  CAS  Google Scholar 

  24. Kasanetz F, Riquelme LA, Della-Maggiore V, O’Donnell P, Murer MG. Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum. Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):8124–9.

    Google Scholar 

  25. Destexhe A, Hughes SW, Rudolph M, Crunelli V. Are corticothalamic 'up' states fragments of wakefulness? Trends Neurosci 2007;30(7):334–42.

    Article  PubMed  CAS  Google Scholar 

  26. Magill PJ, Bolam JP, Bevan MD. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 2001;106(2):313–30.

    Article  PubMed  CAS  Google Scholar 

  27. Beurrier C, Congar P, Bioulac B, Hammond C. Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 1999;19(2):599–609.

    PubMed  CAS  Google Scholar 

  28. Mallet N, Ballion B, Le Moine C, Gonon F. Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 2006;26(14):3875–84.

    Article  PubMed  CAS  Google Scholar 

  29. Zold CL, Larramendy C, Riquelme LA, Murer MG. Distinct changes in evoked and resting globus pallidus activity in early and late Parkinson's disease experimental models. Eur J Neurosci 2007;26(5):1267–79.

    Article  PubMed  Google Scholar 

  30. Zold CL, Ballion B, Riquelme LA, Gonon F, Murer MG. Nigrostriatal lesion induces D2-modulated phase-locked activity in the basal ganglia of rats. Eur J Neurosci 2007;25(7):2131–44.

    Article  PubMed  Google Scholar 

  31. Goldberg JA, Kats SS, Jaeger D. Globus pallidus discharge is coincident with striatal activity during global slow wave activity in the rat. J Neurosci 2003;23(31):10058–63.

    PubMed  CAS  Google Scholar 

  32. Magill PJ, Bolam JP, Bevan MD. Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J Neurosci 2000;20(2):820–33.

    PubMed  CAS  Google Scholar 

  33. Walters JR, Hu D, Itoga CA, Parr-Brownlie LC, Bergstrom DA. Phase relationships support a role for coordinated activity in the indirect pathway in organizing slow oscillations in basal ganglia output after loss of dopamine. Neuroscience 2007;144(2):762–76.

    Article  PubMed  CAS  Google Scholar 

  34. Belluscio MA, Kasanetz F, Riquelme LA, Murer MG. Spreading of slow cortical rhythms to the basal ganglia output nuclei in rats with nigrostriatal lesions. Eur J Neurosci 2003;17(5):1046–52.

    Article  PubMed  Google Scholar 

  35. Ni Z, Bouali-Benazzouz R, Gao D, Benabid AL, Benazzouz A. Changes in the firing pattern of globus pallidus neurons after the degeneration of nigrostriatal pathway are mediated by the subthalamic nucleus in the rat. Eur J Neurosci 2000;12(12):4338–44.

    PubMed  CAS  Google Scholar 

  36. Le Van Quyen M, Bragin A. Analysis of dynamic brain oscillations: methodological advances. Trends Neurosci 2007;30(7):365–73.

    Article  PubMed  Google Scholar 

  37. Leblois A, Meissner W, Bioulac B, Gross CE, Hansel D, Boraud T. Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism. Eur J Neurosci 2007;26(6):1701–13.

    Article  PubMed  Google Scholar 

  38. Chevalier G, Deniau JM. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 1990;13(7):277–80.

    Article  PubMed  CAS  Google Scholar 

  39. Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 2000;80(3):953–78.

    PubMed  CAS  Google Scholar 

  40. Leblois A, Meissner W, Bezard E, Bioulac B, Gross CE, Boraud T. Temporal and spatial alterations in GPi neuronal encoding might contribute to slow down movement in Parkinsonian monkeys. Eur J Neurosci 2006;24(4):1201–8.

    Article  PubMed  Google Scholar 

  41. Filion M, Tremblay L, Bedard PJ. Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 1988;444(1):165–76.

    Article  PubMed  CAS  Google Scholar 

  42. Boraud T, Bezard E, Bioulac B, Gross CE. Ratio of inhibited-to-activated pallidal neurons decreases dramatically during passive limb movement in the MPTP-treated monkey. J Neurophysiol 2000;83(3):1760–3.

    PubMed  CAS  Google Scholar 

  43. Ryan LJ, Sanders DJ. Subthalamic nucleus and globus pallidus lesions alter activity in nigrothalamic neurons in rats. Brain Res Bull 1994;34(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  44. Ryan LJ, Clark KB. The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats. Exp Brain Res 1991;86(3):641–51.

    Article  PubMed  CAS  Google Scholar 

  45. Nambu A, Tokuno H, Hamada I, et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 2000;84(1):289–300.

    PubMed  CAS  Google Scholar 

  46. Maurice N, Deniau JM, Glowinski J, Thierry AM. Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the cortico-nigral circuits. J Neurosci 1999;19(11):4674–81.

    PubMed  CAS  Google Scholar 

  47. Kita H, Nambu A, Kaneda K, Tachibana Y, Takada M. Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J Neurophysiol 2004;92(5):3069–84.

    Article  PubMed  CAS  Google Scholar 

  48. Belluscio MA, Riquelme LA, Murer MG. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats. Eur J Neurosci 2007;25(9):2791–804.

    Article  PubMed  Google Scholar 

  49. Degos B, Deniau JM, Thierry AM, Glowinski J, Pezard L, Maurice N. Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. J Neurosci 2005;25(33):7687–96.

    Article  PubMed  CAS  Google Scholar 

  50. Smith Y, Bolam JP. Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res 1989;493(1):160–7.

    Article  PubMed  CAS  Google Scholar 

  51. Raichle ME. Neuroscience. The brain's dark energy. Science 2006;314(5803):1249–50.

    Article  PubMed  CAS  Google Scholar 

  52. Williams D, Tijssen M, Van Bruggen G, et al. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 2002;125(Pt 7):1558–69.

    Article  PubMed  Google Scholar 

  53. Goldberg JA, Rokni U, Boraud T, Vaadia E, Bergman H. Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. J Neurosci 2004;24(26):6003–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Kuei Tseng for his early contribution to this research project in Argentina and to the following agencies and institutions for funding, Secretaría de Ciencia, Tecnología e Innovación Productiva, Fondo para la Investigación Científica y Tecnológica (FONCYT, Argentina; PICT2004-05-26323; PME2003-29), Universidad de Buenos Aires (UBACYT M056), Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina; PIP5890), and International Cooperation Program SECyT-ECOS (A05S01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Gustavo Murer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zold, C.L. et al. (2009). Converging into a Unified Model of Parkinson’s Disease Pathophysiology. In: Tseng, KY. (eds) Cortico-Subcortical Dynamics in Parkinson's Disease. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-252-0_9

Download citation

Publish with us

Policies and ethics