Skip to main content

Genetic Manipulation of Human Embryonic Stem Cells

  • Chapter
Regulatory Networks in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1317 Accesses

Abstract

The ability to genetically manipulate stem cells is central in our effort to harness their potential. Various genetic approaches are now being implemented in human embryonic stem cells with the goal of understanding basic regulatory mechanisms, as well as modifying them toward potential therapeutic applications. This chapter will review genetic strategies available for the modification of human embryonic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  2. Yates F, Daley GQ. Progress and prospects: gene transfer into embryonic stem cells. Gene Ther. 2006;13:1431–9.

    Article  PubMed  CAS  Google Scholar 

  3. Strulovici Y, Leopold PL, O’Connor TP, Pergolizzi RG, Crystal RG. Human embryonic stem cells and gene therapy. Mol Ther. 2007;15:850–66.

    PubMed  CAS  Google Scholar 

  4. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, et al.. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–6.

    Article  PubMed  CAS  Google Scholar 

  5. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227:271–8.

    Article  PubMed  CAS  Google Scholar 

  6. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19:971–4.

    Article  PubMed  CAS  Google Scholar 

  7. Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells. 2005;23:315–23.

    Article  PubMed  CAS  Google Scholar 

  8. Levenstein ME, Ludwig TE, Xu RH, Llanas RA, Van DenHeuvel-Kramer K, Manning D, et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells. 2006;24:568–74.

    Article  PubMed  CAS  Google Scholar 

  9. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51: 503–12.

    Article  PubMed  CAS  Google Scholar 

  10. Xian HQ, Werth K, Gottlieb DI. Promoter analysis in ES cell-derived neural cells. Biochem Biophys Res Commun. 2005;327:155–62.

    Article  PubMed  CAS  Google Scholar 

  11. Tomishima MJ, Hadjantonakis AK, Gong S, Studer L. Production of green fluorescent protein transgenic embryonic stem cells using the GENSAT bacterial artificial chromosome library. Stem Cells. 2007;25:39–45.

    Article  PubMed  CAS  Google Scholar 

  12. Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benvenisty N. Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol. 2001;11:514–8.

    Article  PubMed  CAS  Google Scholar 

  13. Liew CG, Draper JS, Walsh J, Moore H, Andrews PW. Transient and stable transgene expression in human embryonic stem cells. Stem Cells. 2007;25:1521–8.

    Article  PubMed  CAS  Google Scholar 

  14. Siemen H, Nix M, Endl E, Koch P, Itskovitz-Eldor J, Brüstle O. Nucleofection of human embryonic stem cells. Stem Cells Dev. 2005;14:378–83.

    Article  PubMed  CAS  Google Scholar 

  15. Nolden L, Edenhofer F, Haupt S, Koch P, Wunderlich FT, Siemen H, et al. Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nat Methods. 2006;3:461–7.

    Article  PubMed  CAS  Google Scholar 

  16. Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol. 2003;21:319–21.

    Article  PubMed  CAS  Google Scholar 

  17. Vallier L, Rugg-Gunn PJ, Bouhon IA, Andersson FK, Sadler AJ, Pedersen RA. Enhancing and diminishing gene function in human embryonic stem cells. Stem Cells. 2004;22:2–11.

    Article  PubMed  CAS  Google Scholar 

  18. Singh Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman SA. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol. 2005;196:224–34.

    Article  PubMed  CAS  Google Scholar 

  19. Gerrard L, Zhao D, Clark AJ, Cui W. Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells. 2005;23:124–33.

    Article  PubMed  CAS  Google Scholar 

  20. Thyagarajan B, Liu Y, Shin S, Lakshmipathy U, Scheyhing K, Xue H, et al. Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. 2008;26:119–26.

    Article  PubMed  CAS  Google Scholar 

  21. Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science. 2003;300:1749–51.

    Article  PubMed  CAS  Google Scholar 

  22. Ellis J, Yao S. Retrovirus silencing and vector design: relevance to normal and cancer stem cells? Curr Gene Ther. 2005;5: 367–73.

    Article  PubMed  CAS  Google Scholar 

  23. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.

    Article  PubMed  CAS  Google Scholar 

  24. Pike-Overzet K, de Ridder D, Weerkamp F, Baert MR, Verstegen MM, Brugman MH, et al. Ectopic retroviral expression of LMO2, but not IL2Rgamma, blocks human T-cell development from CD34+ cells: implications for leukemogenesis in gene therapy. Leukemia. 2007;21:754–63.

    PubMed  CAS  Google Scholar 

  25. Lebkowski JS, Gold J, Xu C, Funk W, Chiu CP, Carpenter MK. Human embryonic stem cells: culture, differentiation, and genetic modification for regenerative medicine applications. Cancer J. 2001;7 Suppl 2:S83–93.

    PubMed  Google Scholar 

  26. Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R, et al. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci U S A. 2006;103:1498–503.

    Article  PubMed  CAS  Google Scholar 

  27. Gharwan H, Hirata RK, Wang P, Richard RE, Wang L, Olson E, et al. Transduction of human embryonic stem cells by foamy virus vectors. Mol Ther. 2007;15:1827–33.

    Article  PubMed  CAS  Google Scholar 

  28. Holland EC, Varmus HE. Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci U S A. 1998;95:1218–23.

    Article  PubMed  CAS  Google Scholar 

  29. Lewis BC, Chinnasamy N, Morgan RA, Varmus HE. Development of an avian leukosis-sarcoma virus subgroup A pseudotyped lentiviral vector. J Virol. 2001;75:339–44.

    Article  Google Scholar 

  30. Naldini L, Blümer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272:263–7.

    Article  PubMed  CAS  Google Scholar 

  31. Blümer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol. 1997;71:6641–9.

    Google Scholar 

  32. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell. 2000;101:173–85.

    Article  PubMed  CAS  Google Scholar 

  33. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol. 1997;15:871–5.

    Article  PubMed  CAS  Google Scholar 

  34. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72:8463–71.

    PubMed  CAS  Google Scholar 

  35. Mochizuki H, Schwartz JP, Tanaka K, Brady RO, Reiser J. High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol. 1988;72: 8873–83.

    Google Scholar 

  36. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72:9873–80.

    PubMed  CAS  Google Scholar 

  37. Zufferey R, Donello JE, Trono D, Hope TJ. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. 1999;73:2886–92.

    PubMed  CAS  Google Scholar 

  38. Dang Q, Auten J, Plavec I. Human beta interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy number-dependent expression to a retroviral vector. J Virol. 2001;74:2671–8.

    Article  Google Scholar 

  39. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G. A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci U S A. 2000;97:9150–5.

    Article  PubMed  CAS  Google Scholar 

  40. Fredericksen BL, Whitt MA. Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity. J Virol. 1995;69:1435–43.

    PubMed  CAS  Google Scholar 

  41. Aiken C. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J Virol. 1997;71:5871–7.

    PubMed  CAS  Google Scholar 

  42. Jang JE, Shaw K, Yu XJ, Petersen D, Pepper K, Lutzko C, et al. Specific and stable gene transfer to human embryonic stem cells using pseudotyped lentiviral vectors. Stem Cells Dev. 2006;15:109–17.

    Article  PubMed  CAS  Google Scholar 

  43. Gropp M, Reubinoff B. Lentiviral vector-mediated gene delivery into human embryonic stem cells. Methods Enzymol. 2006;420:64–81.

    Article  PubMed  CAS  Google Scholar 

  44. Gropp M, Itsykson P, Singer O, Ben-Hur T, Reinhartz E, Galun E, et al. Stable genetic modification of human embryonic stem cells by lentiviral vectors. Mol Ther. 2003;7:281–7.

    Article  PubMed  CAS  Google Scholar 

  45. Ma Y, Ramezani A, Lewis R, Hawley RG, Thomson JA. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells. 2003;21:111–7.

    Article  PubMed  CAS  Google Scholar 

  46. Xiong C, Tang DQ, Xie CQ, Zhang L, Xu KF, Thompson WE, et al. Genetic engineering of human embryonic stem cells with lentiviral vectors. Stem Cells Dev. 2005;14:367–77.

    Article  PubMed  Google Scholar 

  47. Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marbán E, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation. 2005;111:11–20.

    Article  PubMed  Google Scholar 

  48. James D, Noggle SA, Swigut T, Brivanlou AH. Contribution of human embryonic stem cells to mouse blastocysts. Dev Biol. 2006;295:90–102.

    Article  PubMed  CAS  Google Scholar 

  49. Xia X, Zhang Y, Zieth CR, Zhang SC. Transgenes delivered by lentiviral vector are suppressed in human embryonic stem cells in a promoter-dependent manner. Stem Cells Dev. 2007;16: 167–76.

    Article  PubMed  CAS  Google Scholar 

  50. Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther. 2005;16:1241–6.

    Article  PubMed  CAS  Google Scholar 

  51. Guenechea G, Gan OI, Dorrell C, Dick JE. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol. 2001;2:75–82.

    Article  PubMed  CAS  Google Scholar 

  52. Pannell D, Ellis J. Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol. 2001;11:205–17.

    Article  PubMed  CAS  Google Scholar 

  53. Pfeifer A, Ikawa M, Dayn Y, Verma IM. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci U S A. 2002;99:2140–5.

    Article  PubMed  CAS  Google Scholar 

  54. Schröder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002;110:521–9.

    Article  PubMed  Google Scholar 

  55. Niwa O, Yokota Y, Ishida H, Sugahara T. Independent mechanisms involved in suppression of the Moloney leukemia virus genome during differentiation of murine teratocarcinoma cells. Cell. 1983;32:1105–13.

    Article  PubMed  CAS  Google Scholar 

  56. Loh TP, Sievert LL, Scott RW. Evidence for a stem cell-specific repressor of Moloney murine leukemia virus expression in embryonal carcinoma cells. Mol Cell Biol. 1990;10:4045–57.

    PubMed  CAS  Google Scholar 

  57. Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007;131:46–57.

    Article  PubMed  CAS  Google Scholar 

  58. Buller RML, Janik JE, Sebring ED, Rose JA. Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol. 1981;40:241–247.

    PubMed  CAS  Google Scholar 

  59. Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet. 2003;34:297–302.

    Article  PubMed  CAS  Google Scholar 

  60. Kotin RM, Linden RM, Berns KI. Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. 1992;11:5071–8.

    PubMed  CAS  Google Scholar 

  61. Smith-Arica JR, Thomson AJ, Ansell R, Chiorini J, Davidson B, McWhir J. Infection efficiency of human and mouse embryonic stem cells using adenoviral and adeno-associated viral vectors. Cloning Stem Cells. 2003;5:51–62.

    Article  PubMed  CAS  Google Scholar 

  62. Zeng J, Du J, Zhao Y, Palanisamy N, Wang S. Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells. Stem Cells. 2007;25:1055–61.

    Article  PubMed  CAS  Google Scholar 

  63. Doetschman T, Maeda N, Smithies O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 1988;85:8583–7.

    Article  PubMed  CAS  Google Scholar 

  64. Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G. Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. 2007;25:1477–82.

    Article  PubMed  CAS  Google Scholar 

  65. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–3.

    Article  PubMed  CAS  Google Scholar 

  66. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  67. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.

    Article  PubMed  CAS  Google Scholar 

  68. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  69. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  PubMed  CAS  Google Scholar 

  70. Wadia JS, Dowdy SF. Protein transduction technology. Curr Opin Biotechnol. 2002;13:52–6.

    Article  PubMed  CAS  Google Scholar 

  71. Chauhan A, Tikoo A, Kapur AK, Singh M. The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release. 2007;117:148–62.

    Article  PubMed  CAS  Google Scholar 

  72. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;23:1189–93.

    Article  Google Scholar 

  73. Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988;55:1179–88.

    Article  PubMed  CAS  Google Scholar 

  74. Perez F, Joliot A, Bloch-Gallego E, Zahraoui A, Triller A, Prochiantz A. Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J Cell Sci. 1992;102:717–22.

    PubMed  CAS  Google Scholar 

  75. Bolton SJ, Jones DN, Darker JG, Eggleston DS, Hunter AJ, Walsh FS. Cellular uptake and spread of the cell-permeable peptide penetratin in adult rat brain. Eur J Neurosci. 2000;12:2847–55.

    Article  PubMed  CAS  Google Scholar 

  76. Chatelin L, Volovitch M, Joliot AH, Perez F, Prochiantz A. Transcription factor hoxa-5 is taken up by cells in culture and conveyed to their nuclei. Mech Dev. 1996;55:111–7.

    Article  PubMed  CAS  Google Scholar 

  77. Joliot A, Maizel A, Rosenberg D, Trembleau A, Dupas S, Volovitch M, et al. Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Curr Biol. 1998;8:856–63.

    Article  PubMed  CAS  Google Scholar 

  78. Balayssac S, Burlina F, Convert O, Bolbach G, Chassaing G, Lequin O. Comparison of penetratin and other homeodomain-derived cell-penetrating peptides: interaction in a membrane-mimicking environment and cellular uptake efficiency. Biochemistry. 2006;45:1408–20.

    Article  PubMed  CAS  Google Scholar 

  79. Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 1997;88:223–33.

    Article  PubMed  CAS  Google Scholar 

  80. Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 2004;10:310–5.

    Article  PubMed  CAS  Google Scholar 

  81. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999;285:1569–72.

    Article  PubMed  CAS  Google Scholar 

  82. Kwon YD, Oh SK, Kim HS, Ku SY, Kim SH, Choi YM, et al. Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction. Mol Ther. 2005;12:28–32.

    Article  PubMed  CAS  Google Scholar 

  83. Kelley JM, Field CE, Craven MB, Bocskai D, Kim UJ, Rounsley SD, et al. High throughput direct end sequencing of BAC clones. Nucleic Acids Res. 1999;27:1539–46.

    Article  PubMed  CAS  Google Scholar 

  84. Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, et al. Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell. 1997;89:655–67.

    Article  PubMed  CAS  Google Scholar 

  85. Jessen JR, Meng A, McFarlane RJ, Paw BH, Zon LI, Smith GR, et al. Modification of bacterial artificial chromosomes through chi-stimulated homologous recombination and its application in zebrafish transgenesis. Proc Natl Acad Sci U S A. 1998;95: 5121–6.

    Article  PubMed  CAS  Google Scholar 

  86. Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics. 2001;73: 56–65.

    Article  PubMed  CAS  Google Scholar 

  87. Reizis B, Leder P. The upstream enhancer is necessary and sufficient for the expression of the pre-T cell receptor alpha gene in immature T lymphocytes. J Exp Med. 2001;194:979–90.

    Article  PubMed  CAS  Google Scholar 

  88. Yang XW, Model P, Heintz N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol. 1997;15:859–65.

    Article  PubMed  CAS  Google Scholar 

  89. Zhang XM, Ng AH, Tanner JA, Wu WT, Copeland NG, Jenkins NA, et al. Highly restricted expression of Cre recombinase in cerebellar Purkinje cells. Genesis. 2004;40:45–51.

    Article  PubMed  CAS  Google Scholar 

  90. Gong S, Yang XW, Li C, Heintz N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res. 2002;12:1992–8.

    Article  PubMed  CAS  Google Scholar 

  91. Copeland NG, Jenkins NA, Court DL. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet. 2001;2:769–79.

    Article  PubMed  CAS  Google Scholar 

  92. Court DL, Sawitzke JA, Thomason LC. Genetic engineering using homologous recombination. Annu Rev Genet. 2002;36:361–88.

    Article  PubMed  CAS  Google Scholar 

  93. Heintz N. Gene expression nervous system atlas (GENSAT). Nat Neurosci. 2004;7:483.

    Article  PubMed  CAS  Google Scholar 

  94. Palmiter RD, Brinster RL. Germ-line transformation of mice. Annu Rev Genet. 1986;20:465–99.

    Article  PubMed  CAS  Google Scholar 

  95. Wang Z, Engler P, Longacre A, Storb U. An efficient method for high-fidelity BAC/PAC retrofitting with a selectable marker for mammalian cell transfection. Genome Res. 2001;11:137–42.

    Article  PubMed  CAS  Google Scholar 

  96. Wurtele H, Little KC, Chartrand P. Illegitimate DNA integration in mammalian cells. Gene Ther. 2003;10:1791–9.

    Article  PubMed  CAS  Google Scholar 

  97. Gassmann M, Donoho G, Berg P. Maintenance of an extrachromosomal plasmid vector in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 1995;92:1292–6.

    Article  PubMed  CAS  Google Scholar 

  98. Abe M, Sato Y. Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) is required for the development of vascular as well as hematopoietic system in embryoid bodies. Genes Cells. 2006;11:719–29.

    Article  PubMed  CAS  Google Scholar 

  99. Adachi K, Soeta-Saneyoshi C, Sagara H, Iwakura Y. Crucial role of Bysl in mammalian preimplantation development as an integral factor for 40S ribosome biogenesis. Mol Cell Biol. 2007;27: 2202–14.

    Article  PubMed  CAS  Google Scholar 

  100. Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K, et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 2002;16:784–9.

    Article  PubMed  CAS  Google Scholar 

  101. Jackson M, Baird JW, Cambray N, Ansell JD, Forrester LM, Graham GJ. Cloning and characterization of Ehox, a novel homeo-box gene essential for embryonic stem cell differentiation. J Biol Chem. 2002;277:38683–92.

    Article  PubMed  CAS  Google Scholar 

  102. Nakagawa T, Abe M, Yamazaki T, Miyashita H, Niwa H, Kokubun S, et al. HEX acts as a negative regulator of angiogenesis by modulating the expression of angiogenesis-related gene in endothelial cells in vitro. Arterioscler Thromb Vasc Biol. 2003;23:231–7.

    Article  PubMed  CAS  Google Scholar 

  103. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12:2048–60.

    Article  PubMed  CAS  Google Scholar 

  104. Niwa H, Masui S, Chambers I, Smith AG, Miyazaki J. Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol Cell Biol. 2002;22:1526–36.

    Article  PubMed  CAS  Google Scholar 

  105. Pritsker M, Ford NR, Jenq HT, Lemischka IR. Genomewide gain-of-function genetic screen identifies functionally active genes in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103:6946–51.

    Article  PubMed  CAS  Google Scholar 

  106. Shimoda M, Kanai-Azuma M, Hara K, Miyazaki S, Kanai Y, Monden M, et al. Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro. J Cell Sci. 2007;120:3859–69.

    Article  PubMed  CAS  Google Scholar 

  107. Suzuki H, Watabe T, Kato M, Miyazawa K, Miyazono K. Roles of vascular endothelial growth factor receptor 3 signaling in differentiation of mouse embryonic stem cell-derived vascular progenitor cells into endothelial cells. Blood. 2005;105:2372–9.

    Article  PubMed  CAS  Google Scholar 

  108. Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol. 2003;23:2699–708.

    Article  PubMed  CAS  Google Scholar 

  109. Kameda T, Smuga-Otto K, Thomson JA. A severe de novo methylation of episomal vectors by human ES cells. Biochem Biophys Res Commun. 2006;349:1269–77.

    Article  PubMed  CAS  Google Scholar 

  110. Ren C, Zhao M, Yang X, Li D, Jiang X, Wang L, et al. Establishment and applications of epstein-barr virus-based episomal vectors in human embryonic stem cells. Stem Cells. 2006;24:1338–47.

    Article  PubMed  CAS  Google Scholar 

  111. Magin-Lachmann C, Kotzamanis G, D’Aiuto L, Wagner E, Huxley C. Retrofitting BACs with G418 resistance, luciferase, and oriP and EBNA-1 – new vectors for in vitro and in vivo delivery. BMC Biotechnol. 2003;3:2–13.

    Article  PubMed  Google Scholar 

  112. Wade-Martins R, Frampton J, James MR. Long-term stability of large insert genomic DNA episomal shuttle vectors in human cells. Nucleic Acids Res. 1999;27:1674–82.

    Article  PubMed  CAS  Google Scholar 

  113. Monaco ZL, Moralli D. Progress in artificial chromosome technology. Biochem Soc Trans. 2006;34:324–7.

    Article  PubMed  CAS  Google Scholar 

  114. Gilbert DM. Making sense of eukaryotic DNA replication origins. Science. 2001;294:96–100.

    Article  PubMed  CAS  Google Scholar 

  115. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25:1298–306.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Studer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Placantonakis, D.G., Tomishima, M.J., Lafaille, F.G., Studer, L. (2009). Genetic Manipulation of Human Embryonic Stem Cells. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_7

Download citation

Publish with us

Policies and ethics