Skip to main content

The Niche Regulation of Hematopoietic Stem Cells

  • Chapter
Regulatory Networks in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Stem cells’ major capabilities, that is, pluripotency and self-renewal, are key to sustaining the lifelong functionality of organs. Stem cells reside in the special microenvironment called the niche. The niche and stem cells adhere to each other via adhesion molecules and exchange the molecular signals that maintain stem cell features. It has been suggested that tumor tissue also contains such type of cells.

In this chapter, the hematopoietic system is used as an example to show the interaction between the stem cell and its niche. Different kinds of niches and regulatory mechanisms are explained. Furthermore, the niche’s involvement in cancer stem regulation, tumor invasion, and metastasis, and novel therapeutic approaches used in association with the cancer stem cell niche are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This article was published in Blood Cells, 4, Schofield R, The relationship between the spleen colony-forming cell and the haematopoietic stem cell, 7–25, Copyright (1978).

References

  1. Schofield R. The relationship between the spleen colony-forming cell and the haematopoietic stem cell. Blood Cells. 1978;4:7–25.

    PubMed  CAS  Google Scholar 

  2. Deng W, Lin H. Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev Biol. 1997;189:79–94.

    Article  PubMed  CAS  Google Scholar 

  3. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000;290:328–330.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–841.

    Article  PubMed  CAS  Google Scholar 

  5. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425: 841–846.

    Article  PubMed  CAS  Google Scholar 

  6. Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–161.

    Article  PubMed  CAS  Google Scholar 

  7. Nilsson SK, Johnston HM, Whitty GA, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood. 2005;15: 1232–1239.

    Article  Google Scholar 

  8. Wilson A, Murphy MJ, Oskarsson T, et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004;18:2747–2763.

    Article  PubMed  CAS  Google Scholar 

  9. Matrosova VY, Orlovskaya IA, Serobyan N, Khaldoyanidi SK. Hyaluronic acid facilitates the recovery of hematopoiesis following 5-Fluorouracil administration. Stem Cells. 2004;22:544–555.

    Article  PubMed  CAS  Google Scholar 

  10. Avigdor A, Goichberg P, Shivtiel S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34\(^{+}\) stem/progenitor cells to bone marrow. Blood. 2004;15:2981–2989.

    Article  Google Scholar 

  11. Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439:599–603.

    Article  PubMed  CAS  Google Scholar 

  12. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–1121.

    Article  PubMed  CAS  Google Scholar 

  13. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–988.

    Article  PubMed  CAS  Google Scholar 

  14. Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS. The VLA\(_{4}\)/VCAM-1 adhesion pathway defines contrasting mechanism of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci U S A. 2007;92:9647–9651.

    Article  Google Scholar 

  15. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104:5431–5436.

    Article  PubMed  CAS  Google Scholar 

  16. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109:625–637.

    Article  PubMed  CAS  Google Scholar 

  17. Walkley CR, Olsen GH, Dworkin S, et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor \(\gamma\) deficiency. Cell. 2007;129:1097–1110.

    Article  PubMed  CAS  Google Scholar 

  18. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell. 2007;129:1081–1095.

    Article  PubMed  CAS  Google Scholar 

  19. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12:1167–1174.

    Article  PubMed  Google Scholar 

  20. Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med. 2006;12:1175–1180.

    Article  PubMed  CAS  Google Scholar 

  21. Barabe F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316:600–604.

    Article  PubMed  CAS  Google Scholar 

  22. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6:93–106.

    Article  PubMed  CAS  Google Scholar 

  24. Li L, Neaves WB. Normal stem cells and cancer stem cells: The Niche matters. Cancer Res. 2006;66:4553–4557.

    Article  PubMed  CAS  Google Scholar 

  25. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–667.

    Article  PubMed  CAS  Google Scholar 

  26. Hiratsuka S, Nakamura K, Iwai S, et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell. 2002;2:289–300.

    Article  PubMed  CAS  Google Scholar 

  27. Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005;5:21–28.

    Article  PubMed  CAS  Google Scholar 

  28. Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;426:518–524.

    Article  Google Scholar 

  29. Boccaccio C, Sabatino G, Medico E, et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature. 2005;434:396–400.

    Article  PubMed  CAS  Google Scholar 

  30. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–827.

    Article  PubMed  CAS  Google Scholar 

  31. Graham SM, Jørgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99: 319–325.

    Article  PubMed  CAS  Google Scholar 

  32. Guzman ML, Rossi RM, Karnischky L, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105: 4163–4169.

    Article  PubMed  CAS  Google Scholar 

  33. Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444:761–765.

    Article  PubMed  CAS  Google Scholar 

  34. Iwama A, Oguro H, Negishi M, Kato Y, Nakauchia H. Epigenetic regulation of hematopoietic stem cell self-renewal by polycomb group genes. Int J Hematol. 2005;81:294–300.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Iwasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Iwasaki, H., Suda, T. (2009). The Niche Regulation of Hematopoietic Stem Cells. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_15

Download citation

Publish with us

Policies and ethics