Skip to main content

Changes Within the GH/IGF-I/IGFBP Axis in Critical Illness

  • Chapter
Acute Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998; 19:717–797.

    Article  CAS  PubMed  Google Scholar 

  2. Bowers CY, Momany FA, Reynolds GA, Hong A. On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. Endocrinology 1984; 114:1537–45.

    Article  CAS  PubMed  Google Scholar 

  3. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996; 273:974–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402:656–60.

    Article  CAS  PubMed  Google Scholar 

  5. Kojima M, Kangawa K. Drug insight: The functions of ghrelin and its potential as a multitherapeutic hormone. Nat Clin Pract Endocrinol Metab 2006; 2:80–8.

    Article  CAS  PubMed  Google Scholar 

  6. Veldhuis JD. A tripeptidyl ensemble perspective of interactive control of growth hormone secretion. Horm Res 2003; 60:86–101.

    Article  CAS  PubMed  Google Scholar 

  7. Berneis K, Keller U. Metabolic actions of growth hormone: direct and indirect. Baillieres Clin Endocrinol Metab 1996; 10:337–52.

    CAS  Google Scholar 

  8. Baxter RC. Insulin-like growth factor binding proteins as glucoregulators. Metabolism: Clin Exp 1995; 44:12–7.

    CAS  Google Scholar 

  9. Baxter RC. Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab 2000; 278:E967–76.

    CAS  PubMed  Google Scholar 

  10. Twigg SM, Baxter RC. Insulin-like growth factor (IGF)-binding protein 5 forms an alternative ternary complex with IGFs and the acid-labile subunit. J Biol Chem 1998; 273:6074–9.

    Article  CAS  PubMed  Google Scholar 

  11. Yakar S, Liu JL, Stannard B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 1999; 96:7324–9.

    Article  CAS  PubMed  Google Scholar 

  12. Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol 2001; 170:63–70.

    Article  CAS  PubMed  Google Scholar 

  13. Ooi GT, Cohen FJ, Tseng LY, Rechler MM, Boisclair YR. Growth hormone stimulates transcription of the gene encoding the acid-labile subunit (ALS) of the circulating insulin-like growth factor-binding protein complex and ALS promoter activity in rat liver. Mol Endocrinol 1997; 11:997–1007.

    Article  CAS  PubMed  Google Scholar 

  14. Brabant G. Insulin-like growth factor-I: marker for diagnosis of acromegaly and monitoring the efficacy of treatment. Eur J Endocrinol 2003; 148:S15–20.

    Article  CAS  PubMed  Google Scholar 

  15. Baxter RC. The binding protein's binding protein – clinical applications of acid-labile subunit (ALS) measurement. J Clin Endocrinol Metab 1997; 82:3941–3.

    Article  CAS  PubMed  Google Scholar 

  16. Wetterau LA, Moore MG, Lee KW, Shim ML, Cohen P. Novel aspects of the insulin-like growth factor binding proteins. Mol Genet Metab 1999; 68:161–81.

    Article  CAS  PubMed  Google Scholar 

  17. Baxter RC. The insulin-like growth factor (IGF)-IGF-binding protein axis in critical illness. Growth Horm IGF Res 1999; 9:67–9.

    Article  PubMed  Google Scholar 

  18. Lassarre C, Binoux M. Insulin-like growth factor binding protein-3 is functionally altered in pregnancy plasma. Endocrinology 1994; 134:1254–62.

    Article  CAS  PubMed  Google Scholar 

  19. Bang P, Brismar K, Rosenfeld RG. Increased proteolysis of insulin-like growth factor-binding protein-3 (IGFBP-3) in noninsulin-dependent diabetes mellitus serum, with elevation of a 29-kilodalton (kDa) glycosylated IGFBP-3 fragment contained in the approximately 130- to 150-kDa ternary complex. J Clin Endocrinol Metab 1994; 78:1119–27.

    Article  CAS  PubMed  Google Scholar 

  20. Wolfe RR, Martini WZ. Changes in intermediary metabolism in severe surgical illness. World J Surg 2000; 24:639–47.

    Article  CAS  PubMed  Google Scholar 

  21. Streat SJ, Beddoe AH, Hill GL. Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma-Injury Infect Critic Care 1987; 27:262–6.

    Article  CAS  Google Scholar 

  22. Haymond MW, Sunehag AL, Ellis KJ. Body composition as a clinical endpoint in the treatment of growth hormone deficiency. Horm Res 1999; 51:132–40.

    Article  CAS  PubMed  Google Scholar 

  23. Hadley JS, Hinds CJ. Anabolic strategies in critical illness. Curr Opin Pharmacol 2002; 2:700–7.

    Article  CAS  PubMed  Google Scholar 

  24. Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR. Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg 1980; 192:570–80.

    Article  CAS  PubMed  Google Scholar 

  25. Ross R, Miell J, Freeman E, et al. Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor-I. Clin Endocrinol (Oxf) 1991; 35:47–54.

    Article  CAS  Google Scholar 

  26. Voerman HJ, Strack van Schijndel RJ, Groeneveld AB, de Boer H, Nauta JP, Thijs LG. Pulsatile hormone secretion during severe sepsis: accuracy of different blood sampling regimens. Metabolism 1992; 41:934–40.

    Article  CAS  PubMed  Google Scholar 

  27. Van den Berghe G, de Zegher F, Lauwers P, Veldhuis JD. Growth hormone secretion in critical illness: effect of dopamine. J Clin Endocrinol Metab 1994; 79:1141–6.

    Article  PubMed  Google Scholar 

  28. Hartman ML, Veldhuis JD, Johnson ML, et al. Augmented growth hormone (GH) secretory burst frequency and amplitude mediate enhanced GH secretion during a two-day fast in normal men. J Clin Endocrinol Metab 1992; 74:757–65.

    Article  CAS  PubMed  Google Scholar 

  29. Hataya Y, Akamizu T, Hosoda H, et al. Alterations of plasma ghrelin levels in rats with lipopolysaccharide-induced wasting syndrome and effects of ghrelin treatment on the syndrome. Endocrinology 2003; 144:5365–71. Epub 2003 Aug 28.

    Article  CAS  PubMed  Google Scholar 

  30. Van den Berghe G, de Zegher F, Bouillon R. Clinical review 95: Acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab 1998; 83:1827–34.

    Article  PubMed  Google Scholar 

  31. Van den Berghe G. Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol 2000; 143:1–13.

    Article  PubMed  Google Scholar 

  32. Weekers F, Van Herck E, Coopmans W, et al. A novel in vivo rabbit model of hypercatabolic critical illness reveals a biphasic neuroendocrine stress response. Endocrinology 2002; 143:764–74.

    Article  CAS  PubMed  Google Scholar 

  33. Van den Berghe G, de Zegher F, Veldhuis JD, et al. The somatotropic axis in critical illness: effect of continuous growth hormone (GH)-releasing hormone and GH-releasing peptide-2 infusion. J Clin Endocrinol Metab 1997; 82:590–9.

    Article  PubMed  Google Scholar 

  34. Van den Berghe G, de Zegher F, Baxter RC, et al. Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab 1998; 83:309–19.

    Article  PubMed  Google Scholar 

  35. Van den Berghe G, Wouters P, Weekers F, et al. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab 1999; 84:1311–23.

    Article  PubMed  Google Scholar 

  36. Baxter RC, Hawker FH, To C, Stewart PM, Holman SR. Thirty-day monitoring of insulin-like growth factors and their binding proteins in intensive care unit patients. Growth Horm IGF Res 1998; 8:455–63.

    Article  CAS  PubMed  Google Scholar 

  37. Lang CH, Pollard V, Fan J, et al. Acute alterations in growth hormone-insulin-like growth factor axis in humans injected with endotoxin. Am J Physiol 1997; 273:R371–8.

    CAS  PubMed  Google Scholar 

  38. Hermansson M, Wickelgren RB, Hammarqvist F, et al. Measurement of human growth hormone receptor messenger ribonucleic acid by a quantitative polymerase chain reaction-based assay: demonstration of reduced expression after elective surgery. J Clin Endocrinol Metab 1997; 82:421–8.

    Article  CAS  PubMed  Google Scholar 

  39. Defalque D, Brandt N, Ketelslegers JM, Thissen JP. GH insensitivity induced by endotoxin injection is associated with decreased liver GH receptors. Am J Physiol 1999; 276:E565–72.

    CAS  PubMed  Google Scholar 

  40. Mao Y, Ling PR, Fitzgibbons TP, et al. Endotoxin-induced inhibition of growth hormone receptor signaling in rat liver in vivo. Endocrinology 1999; 140:5505–5515.

    Article  CAS  PubMed  Google Scholar 

  41. Timmins AC, Cotterill AM, Hughes SC, et al. Critical illness is associated with low circulating concentrations of insulin-like growth factors-I and -II, alterations in insulin-like growth factor binding proteins, and induction of an insulin-like growth factor binding protein 3 protease. Crit Care Med 1996; 24:1460–6.

    Article  CAS  PubMed  Google Scholar 

  42. Gardelis JG, Hatzis TD, Stamogiannou LN, et al. Activity of the growth hormone/insulin-like growth factor-I axis in critically ill children. J Pediatr Endocrinol Metab 2005; 18:363–72.

    CAS  PubMed  Google Scholar 

  43. de Groof F, Joosten KF, Janssen JA, et al. Acute stress response in children with meningococcal sepsis: important differences in the growth hormone/insulin-like growth factor I axis between nonsurvivors and survivors. J Clin Endocrinol Metab 2002; 87:3118–24.

    Article  PubMed  Google Scholar 

  44. Mesotten D, Wouters PJ, Peeters RP, et al. Regulation of the somatotropic axis by intensive insulin therapy during protracted critical illness. J Clin Endocrinol Metab 2004; 89:3105–3113.

    Article  CAS  PubMed  Google Scholar 

  45. Van den Berghe G, Baxter RC, Weekers F, Wouters P, Bowers CY, Veldhuis JD. A paradoxical gender dissociation within the growth hormone/insulin-like growth factor I axis during protracted critical illness. J Clin Endocrinol Metab 2000; 85:183–92.

    Article  PubMed  Google Scholar 

  46. Van den Berghe G. Dynamic neuroendocrine responses to critical illness. Front Neuroendocrinol 2002; 23:370–91.

    Article  PubMed  Google Scholar 

  47. Van den Berghe G, Wouters P, Carlsson L, Baxter RC, Bouillon R, Bowers CY. Leptin levels in protracted critical illness: effects of growth hormone-secretagogues and thyrotropin-releasing hormone. J Clin Endocrinol Metab 1998; 83:3062–70.

    Article  PubMed  Google Scholar 

  48. Lang CH, Frost RA. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection. Curr Opin Clin Nutr Metab Care 2002; 5:271–9.

    Article  CAS  PubMed  Google Scholar 

  49. Davies SC, Wass JA, Ross RJ, et al. The induction of a specific protease for insulin-like growth factor binding protein-3 in the circulation during severe illness. J Endocrinol 1991; 130:469–73.

    Article  CAS  PubMed  Google Scholar 

  50. Davenport ML, Isley WL, Pucilowska JB, et al. Insulin-like growth factor-binding protein-3 proteolysis is induced after elective surgery. J Clin Endocrinol Metab 1992; 75:590–5.

    Article  CAS  PubMed  Google Scholar 

  51. Cotterill AM, Mendel P, Holly JM, et al. The differential regulation of the circulating levels of the insulin-like growth factors and their binding proteins (IGFBP) 1, 2 and 3 after elective abdominal surgery. Clin Endocrinol (Oxf) 1996; 44:91–101.

    Article  CAS  Google Scholar 

  52. Clemmons DR. Clinical utility of measurements of insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab 2006; 2:436–46.

    Article  CAS  PubMed  Google Scholar 

  53. Raguso CA, Genton L, Kyle U, Pichard C. Management of catabolism in metabolically stressed patients: a literature survey about growth hormone application. Curr Opin Clin Nutr Metab Care 2001; 4:313–320.

    Article  CAS  PubMed  Google Scholar 

  54. Carroll PV. Protein metabolism and the use of growth hormone and insulin-like growth factor-I in the critically ill patient. Growth Horm IGF Res 1999; 9:400–413.

    Article  CAS  PubMed  Google Scholar 

  55. Gore DC, Honeycutt D, Jahoor F, Wolfe RR, Herndon DN. Effect of exogenous growth hormone on whole-body and isolated-limb protein kinetics in burned patients. Arch Surg 1991; 126:38–43.

    CAS  PubMed  Google Scholar 

  56. Voerman HJ, van Schijndel RJ, Groeneveld AB, et al. Effects of recombinant human growth hormone in patients with severe sepsis. Ann Surg 1992; 216:648–655.

    Article  CAS  PubMed  Google Scholar 

  57. Wilmore DW. The use of growth hormone in severely ill patients. Adv Surg 1999; 33:261–274.

    CAS  PubMed  Google Scholar 

  58. Takala J, Ruokonen E, Webster NR, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 1999; 341:785–792.

    Article  CAS  PubMed  Google Scholar 

  59. Van den Berghe G. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 2000; 342:135; author reply 135–6.

    PubMed  Google Scholar 

  60. Zarkesh-Esfahani SH, Kolstad O, Metcalfe RA, et al. High-dose growth hormone does not affect proinflammatory cytokine (tumor necrosis factor-a, interleukin-6, and interferon-g) release from activated peripheral blood mononuclear cells or after minimal to moderate surgical stress. J Clin Endocrinol Metab 2000; 85:3383–3390.

    Article  CAS  PubMed  Google Scholar 

  61. Hinds CJ. Administration of growth hormone to catabolic patients. Growth Horm IGF Res 1999; 9:71–5.

    Article  CAS  PubMed  Google Scholar 

  62. Liao W, Rudling M, Angelin B. Growth hormone potentiates the in vivo biological activities of endotoxin in the rat. Eur J Clin Invest 1996; 26:254–258.

    Article  CAS  PubMed  Google Scholar 

  63. Mesotten D, Van den Berghe G, Liddle C, et al. Growth hormone modulation of the rat hepatic bile transporter system in endotoxin-induced cholestasis. Endocrinology 2003; 144:4008–17.

    Article  CAS  PubMed  Google Scholar 

  64. Ruokonen E, Takala J. Dangers of growth hormone therapy in critically ill patients. Curr Opin Clin Nutr Metab Care 2002; 5:199–209.

    Article  CAS  PubMed  Google Scholar 

  65. Carroll PV, Van den Berghe G. Safety aspects of pharmacological GH therapy in adults. Growth Horm IGF Res 2001; 11:166–72.

    Article  CAS  PubMed  Google Scholar 

  66. Duska F, Fric M, Pazout J, Waldauf P, Tuma P, Pachl J. Frequent intravenous pulses of growth hormone together with alanylglutamine supplementation in prolonged critical illness after multiple trauma: Effects on glucose control, plasma IGF-I and glutamine. Growth Horm IGF Res 2007; 18:18.

    Google Scholar 

  67. Van den Berghe G, de Zegher F, Bowers CY, et al. Pituitary responsiveness to GH-releasing hormone, GH-releasing peptide-2 and thyrotrophin-releasing hormone in critical illness. Clin Endocrinol 1996; 45:341–51.

    Article  Google Scholar 

  68. Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 2000; 141:2608–13.

    Article  CAS  PubMed  Google Scholar 

  69. Chen NY, Chen WY, Bellush L, et al. Effects of streptozotocin treatment in growth hormone (GH) and GH antagonist transgenic mice. Endocrinology 1995; 136:660–7.

    Article  CAS  PubMed  Google Scholar 

  70. Flyvbjerg A, Bennett WF, Rasch R, Kopchick JJ, Scarlett JA. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. Diabetes 1999; 48:377–82.

    Article  CAS  PubMed  Google Scholar 

  71. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002; 23:824–54.

    Article  CAS  PubMed  Google Scholar 

  72. Van den Berghe G, Baxter RC, Weekers F, et al. The combined administration of GH-releasing peptide-2 (GHRP-2), TRH and GnRH to men with prolonged critical illness evokes superior endocrine and metabolic effects compared to treatment with GHRP-2 alone. Clin Endocrinol (Oxf) 2002; 56:655–69.

    Article  Google Scholar 

  73. Miell JP, Taylor AM, Zini M, Maheshwari HG, Ross RJ, Valcavi R. Effects of hypothyroidism and hyperthyroidism on insulin-like growth factors (IGFs) and growth hormone- and IGF-binding proteins. J Clin Endocrinol Metab 1993; 76:950–5.

    Article  CAS  PubMed  Google Scholar 

  74. Meinhardt UJ, Ho KK. Modulation of growth hormone action by sex steroids. Clin Endocrinol (Oxf). 2006; 65:413–22.

    Article  CAS  Google Scholar 

  75. Keenan BS, Richards GE, Ponder SW, Dallas JS, Nagamani M, Smith ER. Androgen-stimulated pubertal growth: the effects of testosterone and dihydrotestosterone on growth hormone and insulin-like growth factor-I in the treatment of short stature and delayed puberty. J Clin Endocrinol Metab 1993; 76:996–1001.

    Article  CAS  PubMed  Google Scholar 

  76. Spratt DI, Morton JR, Kramer RS, Mayo SW, Longcope C, Vary CP. Increases in serum estrogen levels during major illness are caused by increased peripheral aromatization. Am J Physiol Endocrinol Metab 2006; 291:E631-8. Epub 2006 May 2.

    Article  CAS  PubMed  Google Scholar 

  77. Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med 2001; 345:1359–1367.

    Article  PubMed  Google Scholar 

  78. Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med 2006; 354:449–61.

    Article  PubMed  Google Scholar 

  79. Van den Berghe G, Wilmer A, Milants I, et al. Intensive insulin therapy in mixed medical/surgical intensive care units: benefit versus harm. Diabetes 2006; 55:3151–9.

    Article  PubMed  Google Scholar 

  80. Holt RI, Simpson HL, Sonksen PH. The role of the growth hormone-insulin-like growth factor axis in glucose homeostasis. Diabet Med 2003; 20:3–15.

    Article  CAS  PubMed  Google Scholar 

  81. Mesotten D, Delhanty PJD, Vanderhoydonc F, et al. Regulation of Insulin-like Growth Factor Binding Protein-1 during Protracted Critical Illness. J Clin Endocrinol Metab 2002; 87:5516–23.

    Article  CAS  PubMed  Google Scholar 

  82. Yakar S, Liu JL, Fernandez AM, et al. Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 2001; 50:1110–8.

    Article  CAS  PubMed  Google Scholar 

  83. Haluzik M, Yakar S, Gavrilova O, Setser J, Boisclair Y, LeRoith D. Insulin resistance in the liver-specific IGF-1 gene-deleted mouse is abrogated by deletion of the acid-labile subunit of the IGF-binding protein-3 complex: relative roles of growth hormone and IGF-1 in insulin resistance. Diabetes 2003; 52:2483–9.

    Article  CAS  PubMed  Google Scholar 

  84. Hartman ML, Clayton PE, Johnson ML, et al. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans. J Clin Invest 1993; 91:2453–62.

    Article  CAS  PubMed  Google Scholar 

  85. Clemmons DR, Sleevi M, Allan G, Sommer A. Effects of combined recombinant insulin-like growth factor (IGF)-I and IGF binding protein-3 in type 2 diabetic patients on glycemic control and distribution of IGF-I and IGF-II among serum binding protein complexes. J Clin Endocrinol Metab 2007; 92:2652–8. Epub 2007 Apr 10.

    Article  CAS  PubMed  Google Scholar 

  86. Isley WL, Underwood LE, Clemmons DR. Dietary components that regulate serum somatomedin-C concentrations in humans. J Clin Invest 1983; 71:175–82.

    Article  CAS  PubMed  Google Scholar 

  87. Oster MH, Fielder PJ, Levin N, Cronin MJ. Adaptation of the growth hormone and insulin-like growth factor-I axis to chronic and severe calorie or protein malnutrition. J Clin Invest 1995; 95:2258–65.

    Article  CAS  PubMed  Google Scholar 

  88. Snyder DK, Clemmons DR, Underwood LE. Dietary carbohydrate content determines responsiveness to growth hormone in energy-restricted humans. J Clin Endocrinol Metab 1989; 69:745–52.

    Article  CAS  PubMed  Google Scholar 

  89. Hanaire-Broutin H, Sallerin-Caute B, Poncet MF, et al. Effect of intraperitoneal insulin delivery on growth hormone binding protein, insulin-like growth factor (IGF)-I, and IGF-binding protein-3 in IDDM. Diabetologia 1996; 39:1498–504.

    Article  CAS  PubMed  Google Scholar 

  90. Dominici FP, Turyn D. Growth hormone-induced alterations in the insulin-signaling system. Exp Biol Med (Maywood). 2002; 227:149–57.

    CAS  Google Scholar 

  91. Yuen KC, Dunger DB. Therapeutic aspects of growth hormone and insulin-like growth factor-I treatment on visceral fat and insulin sensitivity in adults. Diabet Obes Metab 2007; 9:11–22.

    Article  CAS  Google Scholar 

  92. Kee AJ, Baxter RC, Carlsson AR, Smith RC. Parenteral amino acid intake alters the anabolic actions of insulin-like growth factor I in rats. Am J Physiol 1999; 277:E63–72.

    CAS  PubMed  Google Scholar 

  93. Pao CI, Farmer PK, Begovic S, et al. Regulation of insulin-like growth factor-I (IGF-I) and IGF-binding protein 1 gene transcription by hormones and provision of amino acids in rat hepatocytes. Mol Endocrinol 1993; 7:1561–8.

    Article  CAS  PubMed  Google Scholar 

  94. Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. Jama 2001; 286:944–53.

    Article  CAS  PubMed  Google Scholar 

  95. Jackson NC, Carroll PV, Russell-Jones DL, Sonksen PH, Treacher DF, Umpleby AM. Effects of glutamine supplementation, GH, and IGF-I on glutamine metabolism in critically ill patients. Am J Physiol Endocrinol Metab 2000; 278:E226–33.

    CAS  PubMed  Google Scholar 

  96. Novak F, Heyland DK, Avenell A, Drover JW, Su X. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 2002; 30:2022–9.

    Article  CAS  PubMed  Google Scholar 

  97. Dechelotte P, Hasselmann M, Cynober L, et al. L-alanyl-L-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med 2006; 34:598–604.

    Article  CAS  PubMed  Google Scholar 

  98. Hagiwara S, Iwasaka H, Matsumoto S, Noguchi T. Effect of Enteral Versus Parenteral Nutrition on LPS-Induced Sepsis in a Rat Model. J Surg Res 2007; 25:25.

    Google Scholar 

  99. Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005; 120:449–60.

    Article  CAS  PubMed  Google Scholar 

  100. Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci USA 2006; 103:7901–5. Epub 2006 May 8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mesotten, D., Van den Berghe, G. (2008). Changes Within the GH/IGF-I/IGFBP Axis in Critical Illness. In: Acute Endocrinology. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-177-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-177-6_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-176-9

  • Online ISBN: 978-1-60327-177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics