Skip to main content

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 8))

Abstract

Trickling filter consists of a fixed biological bed of rock media or plastic media on which wastewater is applied for aerobic biological treatment. Biological slimes form on the media which assimilate and oxidize substances in the wastewater. This chapter introduces the historical development, recent advances, principles, applicability, microbiology, ecology, models, types, design criteria, and case studies of this attached-growth trickling filter process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. K. Shammas and L. K. Wang, Aerobic and anaerobic attached growth biotechnology, In: Environmental Biotechnology, L. K. Wang, J. H. Tay, V. Ivanov, and Y. T. Hung (Eds.), The Humana Press, Inc., Totowa, NJ (2009).

    Google Scholar 

  2. L. K. Wang, N. K Shammas, and Y. T Hung, Advanced Biological Treatment Processes, The Humana Press, Inc., Totowa, NJ (2009).

    Book  Google Scholar 

  3. US EPA, Trickling Filter-Wastewater Technology Fact Sheet, US Environmental Protection Agency, US EPA 832-F-00-014, Office of Water, Washington, DC, September (2000).

    Google Scholar 

  4. L. K., Wang, M. H. S. Wang, and C. P. C. Poon, Trickling FIlters, Chapter 8 in the Handbook of Environmental Engineering, Volume 3 (Wang, L. K. and Pereria, N. C. editors), Humana Press, Clifton NJ pp. 361–426 (1986).

    Google Scholar 

  5. W. W. Eckenfelder and D. J. O'Connor, Biological Waste Treatment, Pergamon Press, NY, pp. 221–247 (1964).

    Google Scholar 

  6. G. M. Fair, J. C. Geyer, and D. A. Okun, Water and Wastewater Engineering, Vol. 2, Water Purification and Wastewater Treatment and Disposal, Wiley, NY, pp. 35–44 to 35–14 (1968).

    Google Scholar 

  7. A. Vesilind, Wastewater Treatment Plant Design, Water Environment Federation and IWA Publishing, Alexandria, VA, USA (2003).

    Google Scholar 

  8. Metcalf and Eddy Wastewater Engineering Treatment and Reuse, 4th Edition, McGraw Hill, New York (2003).

    Google Scholar 

  9. L. K. Wang, Environmental Engineering Glossary, Calspan Corporation, Buffalo, NY, 1974, 439 pp (1974).

    Google Scholar 

  10. C. Beer, L K. Wang, and J. Bergenthal, Kinetics and Control Tests of Nilrification-Denitrification Process, Pall II: Respiration and Control Tests. Proceedings of the Institute of Environmental Sciences, 22, 501–508 (1976).

    CAS  Google Scholar 

  11. L. K. Wang, M. H. S. Wang, C. P. C. Poon, and J. Bergenthal, Chemistry of Nitrification-Denitrification Process. J. Envirn. Sci. 21, 23–28 (1978).

    CAS  Google Scholar 

  12. C. Beer and L. K. Wang, J. Water Poll. Control Fed. 50(9), 2120 (1978).

    Google Scholar 

  13. D. R. Christensen and P. L. McCarty, J. Water Poll. Control. Fed. 47, 2652 (1975).

    CAS  Google Scholar 

  14. L. K. Wang, P. Vielkind, and M. H. S. Wang, Ecol. Modeling. 5, 115 (1978).

    Article  CAS  Google Scholar 

  15. L. K. Wang, M. H. S. Wang, and C. P. C. Poon, Theoretical and Empirical Developments of Attached Growth Biological Systems, Part I. US Dept. of Commerce, National Technical Information Service, Tech. Report No. PB81-130577, 86 pp, March (1980).

    Google Scholar 

  16. L. K. Wang, J. Bergenthal, and M. H. Wang, J. Environ. Sci., 24, 1, 39 (1981).

    Google Scholar 

  17. M. Krofta, and L. K. Wang, Development of Innovative Sandfloat System for Water Purification and Pollution Control. ASPE J. Eng. Plumbing, 1, 1–16 (1984).

    Google Scholar 

  18. W. J. Whalen, H. R. Bungay III, and W. M. Sanders III (1969), Environ. Sci. Technol. 3, 1297, December.

    Google Scholar 

  19. H. R. Bungay, III and D. B. Harold, Jr., Biotechnol. Bioeng. 8, 569 (1971).

    Article  Google Scholar 

  20. D. M. Pierce, Upgrading Trickling Filters, US Environmental Protection Agency, Washington, DC, June 1978, 62 pp (1978).

    Google Scholar 

  21. K. Imboff and G. M. Fair, Sewage Treatment, 2nd Ed., Wiley, NY (1956).

    Google Scholar 

  22. R. L. Antonie, Application of the Bio-Disc Process to Treatment of Domestic Wastewater. Technical paper presented al the 43rd Annual Conference of the Water Pollution Control Federation, Boston, Mass., October 4–9 (1970).

    Google Scholar 

  23. R. L. Antonie, Factors affecting BOD removal and nitrification in the bio-disc process. Technical paper presented at the Central States Water Pollution Control Association Annual Meeting, Milwaukee, Wisconsin, June 14–16 (1972).

    Google Scholar 

  24. R. L. Antonie, Three-step biological treatment with the bio-disc process. Technical paper presented at the New York Water Pollution Control Association. Montank, New York. June 12–14 (1972).

    Google Scholar 

  25. W. N. Torpey, Biological Treatment of Wastewater. US Patent No. 3575849, Official Gazette, April 20, 1971, p. 594 (1971).

    Google Scholar 

  26. US National Research Council Sewage Works J. 18, 791 (1946).

    Google Scholar 

  27. T. S. Allen, The Design, Construction, and Operation of Plastic Media Fillers. Technical paper presented at the Missouri Water and Sewage Conference, Jefferson City, Mo., Sept. 29 (1971).

    Google Scholar 

  28. M. L. Hemming, Environ. Poll. Management 24, October (1971).

    Google Scholar 

  29. Public Works Journal Corp. Handbook of Trickling Filter Design, PWJC, Ridgewood, NJ (1970).

    Google Scholar 

  30. C. J. Velz, Sewage Works J. 20, 607 (1948).

    CAS  Google Scholar 

  31. W. E. Howland, Flow Over Porous Media as in a Trickling Filter. Engineering Bulletin Extension Series No. 94, Proceedings of the 12th Industrial Waste Conference, 1957, Purdue University, Lafayette, Ind. 42, 435–465 (1958).

    Google Scholar 

  32. W, W. Eckenfelder, Jr. J. Sanitary Eng. 87, No. SA4, Proc. Paper 2860, 33 (July 1961) (1961).

    Google Scholar 

  33. UMRGLB, Recommended Standards for Sewage Works, Great Lakes-Upper Mississippi River Board of State Sanitary Engineers, 1971.

    Google Scholar 

  34. W. S. Galler and H. B. Gotaas, Sanitary Eng. 90, No. SA6, Proc. Paper 4194, 59 (December 1964).

    CAS  Google Scholar 

  35. E. F. Gloyna and W. W. Eckenfelder, Advances in Water Quality Improvement, University of Texas Press, Autsin, Texas, 1968, pp. 204–214 (1968).

    Google Scholar 

  36. B. E. Jank and W. R. Drynan, J. Environ, Eng. 3, 187 (June 1973).

    Google Scholar 

  37. H. B. Gotaas and W. S. Caller, J. Environmental Eng. EE6, 831, December (1973).

    Google Scholar 

  38. R. E. McKinney, Microbiology for Sanitary Engineers, McGraw-Hill, NY, pp. 199–212 (1962).

    Google Scholar 

  39. T. I. Rogovskaya and M. F. Lazareva, Sb. Ved. Pr. Vvs. Sk. Chemickotechnolo Pardubice. 6(1), 43 (1962).

    Google Scholar 

  40. W. B. Cooke, Ecology. 40, 273 (1959).

    Article  Google Scholar 

  41. H. A. Hawkes, The Ecology of Waste Water Treatment, Pergamon Press, London, 203 pp (1963).

    Google Scholar 

  42. H. Kott, N. Buras, and Y. J. Kott, Prowzool. 13, Suppl. 33 (1966).

    Google Scholar 

  43. B. E. Jank, Substrate Removal Mechanism of Trickling Filters Operated at High Organic and Hydraulic Loadings. PhD Thesis, University of Waterloo, Ontario, Canada (1971).

    Google Scholar 

  44. M. H. S. Wang, L. K. Wang, and C. P. C. Poon, Theoretical and Empirical Developments of Attached Growth Biological Systems, Part II. US Dept. of Commerce, National Technical Information Service, Tech. Report No. PB82-216409, 38 pp, June (1982).

    Google Scholar 

  45. NSW Plastics (2005), SESSIL Trickling Filter Media-Vertical Plastic Strip Media, Roanoke, Virginia http://www.nswplastics.com/environmental/pdfs/sessil_flyer.pdf.

  46. Brentwood Industries (2005), Brentwood Trickling Filter Media Installation Guidelines, Reading, PA, http://www.brentwoodprocess.com/pdfs/tfig.pdf.

  47. H. Tsuno, T. Hidaka, and M. Nakamoto, Development of pre-coagulation and bio-filtration process for advanced treatment of sewage, Water Supply, 14, 1, pp. 13–22 (2004).

    Google Scholar 

  48. L. K. Wang, Investigation and Design of a Denitrification Filter, Civil Engineering for Practicing and Design Engineer, 3, pp. 347–362 (1984).

    Google Scholar 

  49. The Dow Chemical Co., A Literature Search and Cricital Analysis of Biological Trickling Filter Studies, Volumes 4 and II, Environmental Protection Agency, Washington, DC, 1972, 702 pp. (1972).

    Google Scholar 

  50. W. J. Maier, “Mass Transfer and Growth Kinetics on a Slime Layer, a Simulation of the Trickling Filter,” PhD Thesis, Cornell University, Ithaca, NY (1966).

    Google Scholar 

  51. K. Williamson and P. L. Mccarty, J. Water Poll. Control Fed. 48(1), 9 (1976).

    CAS  Google Scholar 

  52. K. Williamson and P. L. McCarty, J. Water Pull. Control Fed. 48(2), 281 (1976).

    Google Scholar 

  53. D. A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press, NJ (1955).

    Google Scholar 

  54. J. Monod, Recherches sur Ia Croissance des Cultures Bacteriennes, Herman, Paris (1942).

    Google Scholar 

  55. N. K. Shammas and L. K. Wang, Principles and kinetics of biological processes in Advanced Biological Treatment Processes, L. K, Wang, N. K. Shammas, and Y. T. Hung (eds.), The Humana Press, Totowa, NJ (2009).

    Google Scholar 

  56. Lakeside Equipment Corporation (2005) Biological Treatment Options with Trickling Filter, http://www.lakeside-equipment.com/Product_Pages/trickle.htm.

  57. H. G. Scott, Sanitation (Los Angeles, California), 24(1), 14 (1961).

    Google Scholar 

  58. H. A. Hawkes, Int. J. Air Water Poll. 9, 693 (1965).

    CAS  Google Scholar 

  59. ASCE (1959), Sewage Treatment Plant Design, American Society of Civil Engineers, NY.

    Google Scholar 

  60. C. R. Pearson, Inst. Sewage Purifica. (London), 519 (1965).

    Google Scholar 

  61. J. M. Baker and Q. B. Craves, J. Sanitary Eng. Div. ASCE, 94, No. Sal, 65 (1968).

    Google Scholar 

  62. E. C. Archer and L. R. Robinson, Public Works, 98(2), 98 (1967).

    CAS  Google Scholar 

  63. E. L. Thackston and W. W. Eckenfeider, Water Quality Engineering, New Concepts and Developments, Jenkins Publishing Co., NY, pp. 115–120 (1972).

    Google Scholar 

  64. W. W. Eckenfelder and D. L. Ford, Water Pollution Control Experimental Procedures for Process Design, Jenkins Publishing Co., NY, pp. 173–183 (1970).

    Google Scholar 

  65. J. W. Clark, W. Viessman, Jr., and M. J. Hammer, Water Supply and Pollution Control, International Textbook Co., NY, 1977, pp. 529–563 (1977).

    Google Scholar 

  66. The City of Austin and the University of Texas, Austin, Texas (1971), Design Guides for Biological Wastewater, US Government Printing Office, Washington, DC, 1971, pp. 145– 178.

    Google Scholar 

  67. D. Meltzer, Experimental Investigations into Biological Filtration of Sewage at Klipspruit Sewage Purification Works, Water Pollution Abstract, 31, 1230 pp (1958).

    Google Scholar 

  68. R. S. Rankin, Performance of Biofiltration Plants by Three Methods. Separate Proceedings, ASCE, No. 336, 1953 (1953).

    Google Scholar 

  69. W, W. Eckenfelder, Jr. Industrial Water Pollution Control. McGraw-Hill, New York (1966).

    Google Scholar 

  70. K. L. Shulze, Load and Efficiency of Trickling Filters. J. Water Poll. Control Fed. 32, 245 (1960).

    Google Scholar 

  71. US EPA Aerobic Biological Wastewater Treatment Facilities, US Government Printing Office, Washington, DC, March (1977).

    Google Scholar 

  72. WPCF Wastewater Treatment Plant Design, Water Pollution Control Federation, Washington, DC, 1977, 560 pp (1977).

    Google Scholar 

  73. G. L. Culp and N. F. Heim, Field Manual for Performance Evaluation and Troubleshooting at Municipal Wastewater Treatment Facilities, US Government Printing Office, Washington, DC, Jan. 1978, 397 pp (1978).

    Google Scholar 

  74. US Army, Design of Wastewater Treatment Facilities Major Systems, US Environmental Protection Agency, Washington, DC, Sept. (1978).

    Google Scholar 

  75. US EPA (1978) Innovative and Alternative Technology Assessment Manual. US Environmental Protection Agency.

    Google Scholar 

  76. H. H. Bonjes, J. A. Faisst, and T. S. Lineck (1979), Capital and O & M Cost Estimates for Biological Wastewater Treatment Processes, US Environmental Protection Agency, Cincinnati, Ohio, Aug.

    Google Scholar 

  77. S. Balakrishnan, W. W. Eckenfelder, and C. Brown, Water Wastes Eng. 6, No. 1 (1969).

    Google Scholar 

  78. W. E. Howlan, Sewage Ind. Wastes, 25(2), 161 (1953).

    Google Scholar 

  79. M. H. S. Wang and L. K. Wang, Mathematical Modeling of Electrical Energy Consumption and Heating Requirements by Municipal Wastewater Treatment Plants. J. Environ. Sci. 22(4), 23–26 (1979).

    Google Scholar 

  80. Dames & Moore, Construction Costs for Municipal Wastewater Treatment Plants. US Environmental Protection Agency, Washington, DC, 146 pp, January (1978).

    Google Scholar 

  81. Dames & Moore, Analysis of Operations and Maintenance Costs for Municipal Wastewater Treatment Systems. US Environmental Protection Agency, Washington, DC, May (1978).

    Google Scholar 

  82. J. P. van der Hoek, L. G. C. M. Urlings, and C. M. Grobben, Biological removal of polycyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, xylene and phenolic compounds from heavily contaminated ground water and soil. Environ. Technol. Lett. 10, 185–194 (1989).

    Article  Google Scholar 

  83. Z. C. Wu and M. H. Zhou, Partial degradation of phenol by advanced electrochemical oxidation process. Environ. Sci. Technol. 35, 2698–2703 (2001).

    Article  CAS  Google Scholar 

  84. L. Yang, C.-T. Lai, and W. K. Shieh, Biodegradation of dispersed diesel fuel under high salinity conditions. Wat . Res. 34(13), 3303–3314 (2000).

    Article  CAS  Google Scholar 

  85. C. Misra and S. K. Gupta, Hybrid reactor for priority pollutant -trichloroethylene removal. Wat. Res. 35(1), 160–166 (2001).

    Article  CAS  Google Scholar 

  86. M. S. Holt, K.K., Fox, M. Burford, M. Daniel, and H. Buckland, UK monitoring study on the removal of linear alkylbenzene sulphonate in trickling filter type sewage treatment plants. Contribution to GREAT-ER project # 2. The Sci. of the Total Environ. 210/211, 255–269 (1998).

    Article  CAS  Google Scholar 

  87. K. Fox, M. Holt, M. Daniel, H. Buckland, and I. Guymer, Removal of linear alkylbenzene sulfonate from a small Yorkshire stream: contribution to GREAT-ER project #7. The Science of the Total Environment. 251/252, 265–275 (2000).

    Article  CAS  Google Scholar 

  88. J. H. Langwaldt and J. A. Puhakka, On-site biological remediation of contaminated groundwater: a review. Environmental Pollution 107, 187–197 (2000).

    Article  CAS  Google Scholar 

  89. E. Park, R. Enander, S. M. Barnett, and C. Lee, Pollution prevention and biochemical oxygen demand reduction in a squid processing facility. Journal of Cleaner Production. 9, 341–349 (2001).

    Article  Google Scholar 

  90. T. Wik, Adsorption and denitrification in nitrifying trickling filters. Wat. Res. 33(6), 1500–1508 (1999).

    Article  CAS  Google Scholar 

  91. D. Schreff and P. A. Wilderer, Nitrogen removal in multi-stage wastewater treatment plants by using a modified post-denitrification system. Wat. Sci. Tech. 37(9), 151–158 (1998).

    Article  CAS  Google Scholar 

  92. O. Lahav, E. Artzi, S. Tarre, and M. Green, Ammonium removal using a novel unsaturated flow biological filter with passive aeration. Wat . Res. 35(2), 397–404 (2001).

    Article  CAS  Google Scholar 

  93. US EPA Trickling Filter Nitrification-Wastewater Technology Fact Sheet, US Environmental Protection Agency, US EPA 832-F-00-015, Office of Water, Washington, DC, September (2000).

    Google Scholar 

  94. G.TekerlekopoulouandD.V.VayenasOperationalanddesignconsiderationsofatricklingfilterforammoniaremovalfrompotablewater,EnvironmentalModelingandAssessment,8,2,55–62,June(2003).

    Google Scholar 

  95. G.Farabegoli,R.Gavasci,F.Lombardi,andF.Romani,Denitrificationintertiaryfiltration:applicationofanup-flowfilter,J.Environ.Sci.Health,38,10,2169–2177(2003).

    Article  CAS  Google Scholar 

  96. B.DoriasandP.Baumann,Denitrificationintricklingfilters,WaterScienceandTechnology,30,6,181–184(1994).

    CAS  Google Scholar 

  97. H.Furumai,H.Tagui,andK.Fujita,EffectsofpHandalkalinityonsulfur-denitrificationinabiologicalgranularfilter,WaterScienceandTechnology,34,1–2,355–362(1996).

    CAS  Google Scholar 

  98. S.Biesterfeld,G.Farmer,L.Figueroa,D.Parker,andP.Russell,Quantificationofdenitrificationpotentialincarbonaceoustricklingfilters,WaterRes.37,4011–7,September(2003).

    CAS  Google Scholar 

  99. A.Gouzinis,N.Kosmidis,D.V.Vayenas,andG.Lyberatos,RemovalofMnandsimultaneousremovalofNHsub>3/sub>,FeandMnfrompotablewaterusingatricklingfilter.Wat.Res.32(8),2442–2450(1998).

    Article  CAS  Google Scholar 

  100. A.P.JarvisandP.L.Younger,Passivetreatmentofferruginousminewatersusinghighsurfaceareamedia.Wat.Res.35(15),3643–3648(2001).

    Article  Google Scholar 

  101. R.Marquet,M.Mietton-Peuchot,andA.D.Wheatley,Characterisationoftricklingfiltereffluentbyparticlesizedistributionandhighperformancesizeexclusionchromatography.Wat.Res.33(6),1415–1424(1999).

    Article  CAS  Google Scholar 

  102. W.SchubertandW.Gunthert,Particlesizedistributionineffluentoftricklingfiltersandinhumustanks.Wat.Res.35(16),3993–3997(2001).

    Article  CAS  Google Scholar 

  103. F.Seguret,Y.Racault,andM.Sardin,Hydrodynamicbehaviouroffullscaletricklingfilters.Wat.Res.34,5,1551–1558(2000).

    Article  CAS  Google Scholar 

  104. E.MorgenrothandP.A.Wilderer,Influenceofdetachmentmechanismsoncompetitioninbiofilms.Wat.Res.34(2),417–426(2000).

    Article  CAS  Google Scholar 

  105. D.R.ConferandB.E.Logan,Locationofproteinandpolysaccharidehydrolyticactivityinsuspendedandbiofilmwastewatercultures.Wat.Res.32(1),31–38(1998).

    Article  CAS  Google Scholar 

  106. O.V.Shipin,P.D.Rose,andP.G.J.Meiring,MicrobialprocessesunderlyingthePETROconcept(tricklingfiltervariant).Wat.Res.33(7),1645–1651(1999).

    Article  CAS  Google Scholar 

  107. J.Wimpenny,W.Manz,andU.Szewzyk,Heterogeneityinbiofilms.FEMSMicrobiologyReviews.i24,661–671(2000).

    CAS  Google Scholar 

  108. F.Persson,T.Wik,F.Sorensson,andM.Hermansson,Distributionandactivityofammoniaoxidizingbacteriainalargefull-scaletricklingfilter.WaterResearch36,1439–1448(2002).

    CAS  Google Scholar 

  109. A.R.PedersenandE.Arvin,Thefunctionofatoluene-degradingbacterialcommunityinawastegastricklingfilter.Wat.Sci.Tech.39(7),131–137(1999).

    Article  CAS  Google Scholar 

  110. B.DeClercq,F.Coen,B.Vanderhaegen,andP.A.Vanrolleghen,Calibratingsimplemodelsformixingandflowpropagationinwastewatertreatmentplants.Wat.Sci.Tech.39(4),61–69(1999).

    Article  Google Scholar 

  111. K.Seggelke,F.Obenaus,andK.-H.Rosenwinkel,Dynamicsimulationofalowloadedtricklingfilterfornitrification.Wat.Sci.Tech.39(4),163–168(1999).

    Article  Google Scholar 

  112. T.Wik,Rationaltransferfunctionmodelsfornitrifyingtricklingfilters.Wat.Sci.Tech.39(4),121–128(1999).

    Article  Google Scholar 

  113. V.Krumins,M.Line,andF.Wheaton,Fluidvelocitydistributioninnitrifyingtricklingfilters:mathematicalmodelandNMRcalibration.Wat.Res.34(8),2337–2345(2000).

    Article  CAS  Google Scholar 

  114. M.H.S.WangandL.K.Wang,Computer-aidedanalysisofbiochemicaloxygendemandandreactionconstant,ISEMJ.1,3,61–67(1979).

    Google Scholar 

  115. E.DermouandD.V.Vayenas.BiologicalCr(VI)reductioninatricklingfilterundercontinuousoperationwithrecirculation.JournalofChemicalTechnologyandBiotechnology.Vol.83.No.6.pp.871–877.June(2008).

    Google Scholar 

  116. S.Morgan,R.Farley,andR.Pearson,RetrofittinganexistingtricklingfilterplanttoBNRstandard—SelfsPoint,Tasmania'sfirst.Wat.Sci.Tech.39(6),143–150(1999).

    Article  CAS  Google Scholar 

  117. P.Balmer,L.Ekfjorden,D.Lumley,andA.Mattsson,Upgradingfornitrogenremovalunderseveresiterestrictions.Wat.Sci.Tech.37(9),185–192(1998).

    Article  CAS  Google Scholar 

  118. L.A.Slezak,M.K.Fries,L.R.Pickard,andR.A.Palsenbarg,LiquidstreamsecondarytreatmentprocessdesignattheAnnacisIslandwastewatertreatmentplantoftheGreaterVancouversewerageanddrainagedistrict.Wat.Sci.Tech.38(3),51–50(1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter is updated based on the first edition (1), which was originally written by Drs. Mu Hao Sung Wang, Lawrence K. Wang and Calvin P. C. Poon. Dr. Mu Hao Sung Wang will coauthor the chapter again in next edition.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, L.K., Wu, Z., Shammas, N.K. (2009). Trickling Filters. In: Wang, L.K., Pereira, N.C., Hung, YT. (eds) Biological Treatment Processes. Handbook of Environmental Engineering, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-156-1_9

Download citation

Publish with us

Policies and ethics