Skip to main content

Waste Stabilization Ponds and Lagoons

  • Chapter
Biological Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 8))

Abstract

One of the simplest forms of biological treatment processes is the stabilization pond or stabilization lagoon. It is also the most common industrial wastewater treatment facility. This versatile installation serves many basic purposes, including: (a) storage or impoundment of wastewater; (b) settling and removal of suspended solids; (c) storage or impoundment of settled solids; (d) equalization; (e) aeration; (f) biological treatment; and (g) evaporation. The relative simplicity and low operating costs of a stabilization pond make it the preferred technology for handling, treatment and disposal of industrial wastewater as well as municipal wastewater for small communities. Besides the description of ponds complex ecological system and the complicated reactions that take place, the chapter covers the system variables, design criteria, process control, capital and operating costs, applications and examples of process design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oklahoma Department of Environmental Quality,Lagoons Oxidation Ponds, Oklahoma City OK,Web Locationhttp://www.deq.state.ok.us/factsheets/local/Lagoon.pdf(2005)

  2. Federal Water Quality AdministrationMunicipal Waste Facilities in the United States, No.CWT — 6. FWQA, Washington, DC (1970).

    Google Scholar 

  3. J. W. Day,Proceedings, Second International Symposium for Waste Treatment Lagoons, KansasCity, MO, pp. 23–250 (1970).

    Google Scholar 

  4. L. G. Rich, Water, and Sew,Wo r k s 119, No. 5, 126 (1972).

    Google Scholar 

  5. J. C. Goldman, The Effect or Cadxrn on Algal Growth — Its Reiationship to Eutrophication.”Occasional Paper 6. Utah Water Research Lab., Logan, Utah (1971).

    Google Scholar 

  6. P. C. Kerr, “The Interrelation of Carbon and Phosphorus in Regulating Heterotrophic and Autotrophic Populations in Aquatic Ecosystems”, FWQA Research Series 16050 FGS 07/70 (1970).

    Google Scholar 

  7. D. L. King, J. Water Poll,Control Fed.42, 12, 2035 (1970).

    CAS  Google Scholar 

  8. P. C. C. Poon, L. K.Wang, and M. H. S. Wang, Waste Stabilization Ponds and Lagoons,Chapter 7, in the Handbook of Environmental Engineering, Volume 3. (Wang, L. K. and Pereria, N. C. editors). Humana Press, Clifton, NJ, USA (1986).

    Google Scholar 

  9. G. M. Fair,Water and Wastewater Engineering. Vo l . 2 ,Water Purification and Wastewater Treatment and Disposal.. 33”16, pp. 23”30 (1968).

    Google Scholar 

  10. R. B. Banks,J. Environ. Engr.101, No. EE5 (1975).

    Google Scholar 

  11. W. L. Aleshina,Microbiology(Moscow)7, No. 850 (1938).

    Google Scholar 

  12. E. F. Gloyna,J. San. Engr. Div., ASCE,95No. SA3. 607 (1969).

    CAS  Google Scholar 

  13. C. Rohwer, “Evaporation from Free Water Surfaces,” US Dept. of Agr. Tech. Bull. p. 271 (1931).

    Google Scholar 

  14. S. A. Hart,J. Water Poll. Control Fed.37, 578 (1965).

    Google Scholar 

  15. S. Davis, “Dairy Waste Ponds Effectively Self-Scaling.” Paper No. 72–222, Annual Meeting of the Amer. Soc. Agr. Eng. (1972).

    Google Scholar 

  16. A. C. Chang,J. Water Poll. Control Fed.46, 1715 (1974).

    CAS  Google Scholar 

  17. F. L. Matthew,J. Water Poll. Control Fed.41, 11, R383 (1969).

    CAS  Google Scholar 

  18. J. D. Gann,J. Water Poll Control Fed.40, 2, 185 (1968).

    CAS  Google Scholar 

  19. C. D. Parker,J. Water Poll. Control Fed.40, 2, 192 (1968).

    CAS  Google Scholar 

  20. R. Pratt,Amer. J. Botany,27, 431 (1940).

    Article  CAS  Google Scholar 

  21. M. G. Vladimirava,Microbiology(Moscow, USSR)30, 374 (1960).

    Google Scholar 

  22. E. M. Davids,J. San. Engr. Div. ASCE 98, No. SAl, 59 (1972).

    Google Scholar 

  23. G. E. Hutchinson,A Treatise on Limnology Geography, Physics and Chemistry, John Wiley and Sons, Inc., NY, I, p. 1015 (1957).

    Google Scholar 

  24. E. I. Rabinowitch,The Photochemical Storage of Energy, Transactions of the Conference on the Use of Solar Energy, Tucson, Arizona,4(19), pp. 182–187 (1955).

    Google Scholar 

  25. O. Sletten,J. Water Poll. Control Fed.43, 2118 (1971).

    CAS  Google Scholar 

  26. R. Y. Stainer,Bacterial Rev.25, 1 (1961).

    Google Scholar 

  27. R. L. Raschke,J. Water Poll. Control Fed.42, p. 518 (1970).

    CAS  Google Scholar 

  28. R. L. Usinger,Hilgardia 23, 263 (1955).

    Google Scholar 

  29. R. A. Kimerle,J. Water Poll. Control Fed.40, No. 2, Part 2. R31–41 (1968).

    CAS  Google Scholar 

  30. L. D. Beadel,Sewage Lagoons and Mosquito Problems, Proceedings Symposium on Waste Stabilization Lagoons. Kansas City, MO. US Depi HEW, p. 41 (1960).

    Google Scholar 

  31. MAF General Description of Oxidation Pond Functions, Processes, and Performance, Ministry of Agriculture and Forestry, Wellington, New Zealandhttp://www.maf.govt.nz/mafnet/rural-nz/sustainable-resource-use/resource-management/dairy-shed-wastewater/dairyef4.htm(2005)

  32. H. R. Fleckseder, “Design Guides for Biological Wastewater Treatment Processes, Performance of the Aerated Lagoon Process,” Tech Report GHE-70-22, CRWR-71, Univ. of Texas, Austin, TX (1970).

    Google Scholar 

  33. N. K. Shammas and L. K. Wang, Principles and kinetics of biological processes In:Advanced Biological Treatment Processes, Wang, L. K., Shammas, N. K., and Hung, Y. T. (eds.), The Humana Press, Totowa (2009).

    Google Scholar 

  34. Metcalf and Eddy,Wastewater Engineering Treatment and Reuse, 4thEdition, McGraw Hill, New York (2003).

    Google Scholar 

  35. J. F. Wehner,Chemical Engr. Science NY 6, 89 (1958).

    Article  Google Scholar 

  36. D. Thirumurthi,J. San, Engr. Div., ASCE 95, No, SA2, Proc. Paper 6515. 311 (1969).

    Google Scholar 

  37. D. Thinimurthi,J. Water Poll. Control Fed 46, No, 9, 2094 (1974).

    Google Scholar 

  38. O. Levenspiel,Chemical Engr. Science, NY,6, 227 (1957).

    Article  CAS  Google Scholar 

  39. W. J. Oswald,ASCE Proceedings,81, Separate No. 686 (1955).

    Google Scholar 

  40. W. J. Oswald,Sew, and Ind Wastes(Washington. DC)29, 437 (1958).

    Google Scholar 

  41. H. A. Spoehr,Plant Physiology 24, 20 (1949).

    Article  Google Scholar 

  42. P. H. McGauhey,Engineering Management of Water Quality. McGraw-Hill. NY (1968).

    Google Scholar 

  43. J. L. Mancini,Advances in Water Quality Improvement, The Univ. of Texas. Austin (1966).

    Google Scholar 

  44. E. L. Barnhart,The Treatment of Chemical Wastes in Aerated Lagoons, Chemical Engr. Progress Symp, Series, Water. No. 90. Vol. 64 (1968).

    Google Scholar 

  45. L. W. Center,J. Water Poll. Control Fed.42, 1840 (1970).

    Google Scholar 

  46. R. N. Dawson,J. Water Poll. Control Fed.41, No. 2, 237 (1969).

    Google Scholar 

  47. D. H. Caldwell,Upgrading Lagoons, US EPA Technology Transfer Seminar. Publication (1973).

    Google Scholar 

  48. L. K. Wang and D. C. Elmore,Computer-Aided Modeling of Water Vapor Pressure, Gas Adsorption Coefficient, and Oxygen Solubility, U.S. Dept. of Commerce, Natl., Tech., Info. Service Springfield, VA, Tech. Report No. PB82–118787. October, p. 137 (1981).

    Google Scholar 

  49. G. V. Levin,Appl. Micro,10, No. 2, 169 (1962).

    CAS  Google Scholar 

  50. G. V. Levin, “Froth Flotation for Harvesting Algae and Its Possible Application to Sewage Treatment,” 9th Ind Waste Conf., Purdue Univ., Part 1, pp. 421–434 (1964).

    Google Scholar 

  51. C. G. Golueke, J.Water Poll. Control Fed.37, 471 (1965).

    Google Scholar 

  52. G. J. Stander,J. Water Poll, Control Fed.41, 355 (1969).

    Google Scholar 

  53. M. G. McGaray,Water Reclamation and Algae Harvesting, J. Water Poll. Control Fed.43, 824 (1971).

    Google Scholar 

  54. W, J. O'Brien,Two Methods for Algae Removal from Oxidation Pond Effluents. US EPA Technology Transfer Seminar Publication (1973).

    Google Scholar 

  55. R. E. Mickinney, “Waste Treatment Lagoons-State of the Art,” Missouri Basin Engineering Health Council, US EPA WPCRS, 17090 EHX (1971).

    Google Scholar 

  56. W. J. Oswald, “Designing Waste Ponds to Meet Water Quality Criteria,” 2nd Intl. Symp. for Waste Treatment Lagoons, Missouri Basin Engr. Health Council and FWQA, pp. 186–194 (1970).

    Google Scholar 

  57. M. Krofta and L. K Wang,Tertiary Treatment of Secondar Effluent by Dissolved Air Flotation and Filtration. US Dept. of Commerce, NatI. Tech, Info. Service, Springfield, VA, Technical ReportNo. PB83–171, 65, Feb. p. 22 (1982).

    Google Scholar 

  58. M. Krofta, L. K. Wang, R. U. Spencer, and J. Weher,Algae Separation by Dissolved Air Flotation.US Dept. of Commerce, NatI. Tech. Info. Service Springfield, VA. Technical Report No. PB83–219550 April, p. 18 (1983).

    Google Scholar 

  59. C. G. Golueke,J. Water Poll. Control Fed. 42, R304 (1970).

    CAS  Google Scholar 

  60. C. L. Parker,Pollution Engr. 32 (November 1975).

    Google Scholar 

  61. US ACE,Civil Works Construction Cost Index System Manual, 110-2-1304, U.S. Army Corps of Engineers, 2000-Tables Revised 31 March, Washington, DC, p. 44 (2003).

    Google Scholar 

  62. R. L. Michel,J. Water Poll, Control Fed. 42, 1883 (1970).

    Google Scholar 

  63. R. J. Craggs, J. P. Sukias, C. T. Tanner, and R. J. Davies-colley, Advanced pond system for dairy- farm effluent treatment, New Zealand Journal of Agricultural Research,47, 449–460 (2004).

    Article  Google Scholar 

  64. J. García, M. Hernández-Mariné, and R. Mujeriego, Analysis of key variables controlling phosphorus removal in high rate oxidation ponds provided with clarifiers,African Journals OnLine(AJOL) 28, 1, Web Sitehttp://www.ajolinfo (2002).

  65. J. K. Assenzo,Waterland Sew, Works,113, No. 8, 294 (1966).

    CAS  Google Scholar 

  66. A. Bush,J. San. Engr. Div., Proc. ASCE 84, 39 (1961).

    Google Scholar 

  67. C, G., Golueke,J. Water Poll, Control Fed.39, No. 5, 823 (1967).

    CAS  Google Scholar 

  68. J. H. Ruther,BioScience,22, 144 (1972).

    Article  Google Scholar 

  69. J. GoldmanWater Research(Great Britain)8, No. 1, 45 (1974).

    Article  CAS  Google Scholar 

  70. M. McShan,J. Water Poll. Control Fed.46, No. 7, 1742 (1974).

    Google Scholar 

  71. G. E. Prather,Proc. 14th Amer. Conf. S. E. Assoc, Game and Fish Comm.14, 143 (1960).

    Google Scholar 

  72. K. Kuronuma,Proc. World Symp Warm Water Pond Fish Culture(FAO Fish. Report)44, 123 (1966).

    Google Scholar 

  73. C. L. Cher,Proc. 20th Amer. Conf. SE Assoc. Game and Fish Comm.20, 446 (1967).

    Google Scholar 

  74. J. C. Goldman,J. Environ. Engr. Div., Proc. ASCE 101, No. EE3, 351 (1975).

    CAS  Google Scholar 

  75. W. J. Oswald,J. Water Poll. Control Fed.39, No. 8, 1289 (1967).

    Google Scholar 

  76. J. C. Merrel,J. Water Poll. Control Fed.38, No. 8, 1310 (1966).

    Google Scholar 

  77. O. V. Shipin, P. G. J. Meiring, R. Phaswana, and H. Kluever, Integrating ponds and activated sludge process in the PETRO concept.Wa t . R e s.33(8), 1767–1774 (1999).

    CAS  Google Scholar 

  78. O. V. Shipin, P. G. J. Meiring, and P. D. Rose, PETRO system: a low tech approach to the removal of wastewater organics (incorporating an effective removal of microalgae by the trickling filter).Wa t e r S A.24(2), 46–52 (1998).

    Google Scholar 

  79. P. Van der Steen, A. Brenner, J. Van Buuren, and G. Oron, Post-treatment of UASB reactor effluent in an integrated duckweed and stabilization pond system.Wa t . R e s. Vol.33(3), 615–620(1999).

    Google Scholar 

  80. P. Van der Steen, A. Brenner, and G. Oron, An integrated duckweed and algae pond system for nitrogen removal and renovation.Wat. Sci. Tech.38(1), 335–343 (1998).

    Article  Google Scholar 

  81. G. J. Alaerts, M. D. Rahaman Mahbubar, and P. Kelderman, Performance analysis of a full-scale duckweed-covered sewage lagoon,Wa t . R e s.30(4), 843–852 (1996).

    CAS  Google Scholar 

  82. A., Rakkoed, S. Danteravanich, and Puetpaiboon U., Nitrogen removal in attached growth waste stabilization ponds of wastewater from a rubber factory.Wat. Sci. Tech.40(1), 45–52 (1999).

    Article  CAS  Google Scholar 

  83. N. N. Bich, M. I. Yaziz, and N. A. K. Bakti, Combination ofChlorella VulgarisandEichhornia Crassipesfor wastewater nitrogen removal.Wa t . R e s.33(10), 2357–2362 (1999).

    CAS  Google Scholar 

  84. M, Arauzo M. F., E. Colmenarejo Martinez, and M. G. Garcia, The role of algae in a deep wastewater self-regeneration pond.Wa t . R e s. Vol.34(14), 3666–3674 (2000).

    CAS  Google Scholar 

  85. L. K. Wang, Removal of Algae from Lagoon Effluent.Technical Report#LIR/01-88-167,Lenox Institute of Water Technology, Lenox; MA Jan. (1988).

    Google Scholar 

  86. US EPA,Process Design Manual for Upgrading Existing Wastewater Treatment Plants. U.S.Environmental Protection Agency, US EPA-625/1-71-004a, Office of Technology Transfer,Cincinnati, OH (1974).

    Google Scholar 

  87. L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.),Physicochemical Treatment Processes, The Humana Press, Totowa, NJ (2005).

    Google Scholar 

  88. L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.),Advanced Physicochemical Treatment Processes, The Humana Press, Totowa, NJ (2006).

    Book  Google Scholar 

  89. M. H. Al-Malack, G. K. Anderson, and A. Almasi, Treatment of anoxic pond effluent using cross- flow microfiltration.Wa t . R e s.32(12), 3738–3746 (1998).

    CAS  Google Scholar 

  90. G. J. Jameson, Hydrophobicity and floc density in induced-air flotation for water treatment,Colloids and Surfaces A: Physicochemical and Engineering Aspects.151, 269–281 (1999).

    Article  CAS  Google Scholar 

  91. L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.),Advanced Biological Treatment Processes, The Humana Press, Totowa, NJ (2009).

    Book  Google Scholar 

  92. L. K. Wang, Using Constructed Wetlands and Other Alternatives for Nitrate Management in Surface Water.OCEESA Journal.13(September), 25–29 (1996).

    CAS  Google Scholar 

  93. M. M. Karpiscak, R. J. Freitas, C. P. Gerba, L. R. Sanchez, and E. Shamir, Management of dairy waste in the Sonoran desert using constructed wetland technology.Wat. Sci. Tech.40(3), 57–65 (1999).

    Article  CAS  Google Scholar 

  94. D.T. Hill, V.W.E. Payne, J.W. Rogers, and S.R. Kown, Ammonia effects on the biomass production of five constructed wetland plant species.Bioresource Technlology,62, 109–113 (1997).

    Article  CAS  Google Scholar 

  95. B. A. Costa-Pierce, Preliminary investigation of an integrated aquaculture—wetland ecosystem using tertiary-treated municipal wastewater in Los Angeles County, California.Ecological Engineering,10, 341–354 (1998).

    Article  Google Scholar 

  96. T.P. Simon, R. Jankowski, and C. Morris, Modification of an index of biotic integrity for assessing vernal ponds and small palustrine wetlands using fish, crayfish, and amphibian assemblages along southern Lake Michigan.Aquatic Ecosystem Health and Management,3, 407–418 (2000).

    Article  Google Scholar 

  97. T. P. Simon and P. M. Stewart, Application of an index of biotic integrity for dunal, palustrine wetlands-emphasis on assessment of nonpoint source landfill effects on the Grand CalumetLagoons,Aquatic Ecosystem Health and Management,1, 63–74 (1998).

    Article  Google Scholar 

  98. R. G. Cerezo, M. L. Suarez, and M. R. Vidal-Abarca, The performance of a multi-stage system of constructed wetlands for urban wastewater treatment in a semiarid region of SE Spain,Ecological Engineering,16, 501–517 (2001).

    Article  Google Scholar 

  99. H. Bouwer, J. Ludke, and R. C. Rice, Sealing pond bottoms with muddy water,Ecological Engineering,18, 233–238 (2001).

    Article  Google Scholar 

  100. Juanico-Environmental Consultants Ltd,Advanced Waste Stabilization Pond-New Concepts for the Design of Advanced Waste Stabilization Ponds(Lagoons),http://www.juanico.co.il(2005)

  101. Google, Lagoons and Oxidation Ponds, List of Products and Manufacturers, Web Site Location:http://directory.google.com/Top/Science/Environment/Water_Resources/Wastewater/Products_and_Services/Lagoons_and_Oxidation_Ponds/ (2004).

    Google Scholar 

  102. M. Juanico and E. Friedler, Hydraulic age distribution in perfectly mixed non steady-state reactors,ASCE J. of Environ. Eng.120, 6, 1427–1445 (1994).

    Article  CAS  Google Scholar 

  103. M. Juanico, Should waste stabilization ponds be designed for perfect-mixing or plug-flow?Wa t .Sci. Tech.23, 1495–1502 (1991).

    CAS  Google Scholar 

Download references

Acknowledgments

This chapter is updated based on the first edition, which was originally written by Drs. Mu Hao Sung Wang, Lawrence K. Wang and Calvin P. C. Poon. Dr. Mu Hao Sung Wang will coauthor the chapter again in next edition.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shammas, N.K., Wang, L.K., Wu, Z. (2009). Waste Stabilization Ponds and Lagoons. In: Wang, L.K., Pereira, N.C., Hung, YT. (eds) Biological Treatment Processes. Handbook of Environmental Engineering, vol 8. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-156-1_8

Download citation

Publish with us

Policies and ethics