Skip to main content

Abstract

Molecular pathways that regulate cell growth and differentiation are now beginning to be understood. This is mainly due to the identification of molecules that orchestrate the cell cycle. Cyclins and the cyclin-dependent kinases (CDKs) are the major players in the control of cell cycle progression. Cyclins do not have enzymatic activity and CDKs are inactive without a partner cyclin. The CDKs regulate the function of multiple proteins involved in DNA replication and mitosis by phosphorylating them at specific regulatory sites, activating some and inhibiting others to coordinate their activities. In this way cyclin/CDK complexes coordinate an ordered passage from a cell cycle phase to the next one. Multiple levels of regulation of cyclin/CDK complexes are present in “cell machinery” to obtain a tight control of cell cycle progression. In this chapter we will address these items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pucci B, Kasten M, Giordano A (2000) Cell cycle and apoptosis. Neoplasia 2(4):291–299

    Article  PubMed  CAS  Google Scholar 

  2. Harper JV, Brooks G (2005) The mammalian cell cycle: an overview. Methods Mol Biol 296:113–153

    PubMed  CAS  Google Scholar 

  3. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130(2):223–233

    Article  PubMed  CAS  Google Scholar 

  4. Crews DE (2007) Senescence, aging, and disease. J Physiol Anthropol 26(3):365–372

    Article  PubMed  Google Scholar 

  5. Donjerkovic D, Scott DW (2000) Regulation of the G1 phase of the mammalian cell cycle. Cell Res 10(1):1–16

    Article  PubMed  CAS  Google Scholar 

  6. Chiariello M, Gomez E, Gutkind JS (2000) Regulation of cyclin-dependent kinase (Cdk) 2 Thr-160 phosphorylation and activity by mitogen-activated protein kinase in late G1 phase. Biochem J 349 Pt 3:869–876

    Google Scholar 

  7. Lolli G, Johnson LN (2005) CAK-cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4(4):572–577

    Article  PubMed  CAS  Google Scholar 

  8. Hu X et al (2002) Ubiquitin/proteasome-dependent degradation of D-type cyclins is linked to tumor necrosis factor-induced cell cycle arrest. J Biol Chem 277(19):16528–16537

    Article  PubMed  CAS  Google Scholar 

  9. Perkins ND (2002) Not just a CDK inhibitor: regulation of transcription by p21(WAF1/CIP1/SDI1). Cell Cycle 1(1):39–41

    Article  PubMed  CAS  Google Scholar 

  10. Slingerland J, Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183(1):10–17

    Article  PubMed  CAS  Google Scholar 

  11. Yang W et al (2007) Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. J Biol Chem 282(6):3799–3808

    Article  PubMed  CAS  Google Scholar 

  12. Minshull J (1993) Cyclin synthesis: who needs it? Bioessays 15(3):149–155

    Article  PubMed  CAS  Google Scholar 

  13. Hershko A (1999) Mechanisms and regulation of the degradation of cyclin B. Philos Trans R Soc Lond B Biol Sci 354(1389):1571–1575; discussion 1575–1576

    Article  PubMed  CAS  Google Scholar 

  14. Alao JP (2007) The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 6:24

    Article  PubMed  Google Scholar 

  15. De Clercq A, Inze D (2006) Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 41(5):293–313

    Article  PubMed  Google Scholar 

  16. Fischer PM, Endicott J, Meijer L (2003), Cyclin-dependent kinase inhibitors. Prog Cell Cycle Res 5:235–248

    PubMed  Google Scholar 

  17. Santamaria D, Ortega S (2006) Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Front Biosci 11:1164–1188

    Article  PubMed  CAS  Google Scholar 

  18. Sridhar J, Akula N, Pattabiraman N (2006) Selectivity and potency of cyclin-dependent kinase inhibitors. Aaps J 8(1):E204–221

    Article  PubMed  CAS  Google Scholar 

  19. Harbour JW et al (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98(6):859–869

    Article  PubMed  CAS  Google Scholar 

  20. Kasten MM, Giordano A (1998) pRb and the cdks in apoptosis and the cell cycle. Cell Death Differ 5(2):132–140

    Article  PubMed  CAS  Google Scholar 

  21. Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79(4):551–555

    Article  PubMed  CAS  Google Scholar 

  22. Stiegler P, Kasten M, Giordano A (1998) The RB family of cell cycle regulatory factors. J Cell Biochem Suppl 30–31:30–36

    Article  PubMed  Google Scholar 

  23. Watanabe Y et al (1999) pRb phosphorylation is regulated differentially by cyclin-dependent kinase (Cdk) 2 and Cdk4 in retinoic acid-induced neuronal differentiation of P19 cells. Brain Res 842(2):342–350

    Article  PubMed  CAS  Google Scholar 

  24. Ortega S, Malumbres M, Barbacid M (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602(1):73–87

    PubMed  CAS  Google Scholar 

  25. Motokura T, Arnold A (1993) Cyclin D and oncogenesis. Curr Opin Genet Dev 3(1):5–10

    Article  PubMed  CAS  Google Scholar 

  26. Bracken AP et al (2004) E2F target genes: unraveling the biology. Trends Biochem Sci 29(8):409–417

    Article  PubMed  CAS  Google Scholar 

  27. Lavia P, Jansen-Durr P (1999) E2F target genes and cell-cycle checkpoint control. Bioessays 21(3):221–230

    Article  PubMed  CAS  Google Scholar 

  28. Lundberg AS, Weinberg RA (1999) Control of the cell cycle and apoptosis. Eur J Cancer 35(14):1886–1894

    Article  PubMed  CAS  Google Scholar 

  29. Blagosklonny MV, Pardee AB (2002) The restriction point of the cell cycle. Cell Cycle 1(2):103–110

    PubMed  CAS  Google Scholar 

  30. DelSal G, Loda M, Pagano M (1996) Cell cycle and cancer: critical events at the G1 restriction point. Crit Rev Oncog 7(1–2):127–142

    Article  PubMed  CAS  Google Scholar 

  31. Claudio PP et al (1996) Functional analysis of pRb2/p130 interaction with cyclins. Cancer Res 56(9):2003–2008

    PubMed  CAS  Google Scholar 

  32. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  PubMed  CAS  Google Scholar 

  33. Harper JW et al (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6(4):387–400

    PubMed  CAS  Google Scholar 

  34. Li Y et al (1994) Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9(8):2261–2268

    PubMed  CAS  Google Scholar 

  35. Pavletich NP (1999) Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287(5):821–828

    Article  PubMed  CAS  Google Scholar 

  36. Kellogg DR (2003) Wee1-dependent mechanisms required for coordination of cell growth and cell division. J Cell Sci 116(Pt 24):4883–4890

    Article  PubMed  CAS  Google Scholar 

  37. Perry JA, Kornbluth S (2007) Cdc25 and Wee1: analogous opposites? Cell Div 2:12

    Article  PubMed  Google Scholar 

  38. Rudolph J (2007) Cdc25 phosphatases: structure, specificity, and mechanism. Biochemistry 46(12):3595–3604

    Article  PubMed  CAS  Google Scholar 

  39. Wells NJ et al (1999) The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression. J Cell Sci 112(Pt 19):3361–3371

    PubMed  CAS  Google Scholar 

  40. Strausfeld UP et al (1996) Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci 109(Pt 6):1555–1563

    PubMed  CAS  Google Scholar 

  41. Woo RA, Poon RY (2003) Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2(4):316–324

    Article  PubMed  CAS  Google Scholar 

  42. Hayashi S, Yamaguchi M (1999) Kinase-independent activity of Cdc2/cyclin A prevents the S phase in the Drosophila cell cycle. Genes Cells 4(2):111–122

    Article  PubMed  CAS  Google Scholar 

  43. Jacobs HW, Keidel E, Lehner CF (2001) A complex degradation signal in Cyclin A required for G1 arrest, and a C-terminal region for mitosis. Embo J 20(10):2376–2386

    Article  PubMed  CAS  Google Scholar 

  44. Girard F et al (1991) Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67(6):1169–1179

    Article  PubMed  CAS  Google Scholar 

  45. Kishimoto T, Okumura E (1997) In vivo regulation of the entry into M-phase: initial activation and nuclear translocation of cyclin B/Cdc2. Prog Cell Cycle Res 3:241–249

    Article  PubMed  CAS  Google Scholar 

  46. Nurse P (1994) Ordering S phase and M phase in the cell cycle. Cell 79(4):547–550

    Article  PubMed  CAS  Google Scholar 

  47. Tokumoto T et al (1997) Initiation of cyclin B degradation by the 26S proteasome upon egg activation. J Cell Biol 138(6):1313–1322

    Article  PubMed  CAS  Google Scholar 

  48. Tschop K et al (2006) Human cyclin B3. mRNA expression during the cell cycle and identification of three novel nonclassical nuclear localization signals. FEBS J 273(8):1681–1695

    Article  PubMed  Google Scholar 

  49. Bellanger S, de Gramont A, Sobczak-Thepot J (2007) Cyclin B2 suppresses mitotic failure and DNA re-replication in human somatic cells knocked down for both cyclins B1 and B2. Oncogene 26(51):7175–7184

    Google Scholar 

  50. Chesnel F et al (2006) Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos. Cell Cycle 5(15):1687–1698

    Article  PubMed  CAS  Google Scholar 

  51. Gong D et al (2007) Cyclin A2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin B1. Curr Biol 17(1):85–91

    Article  PubMed  CAS  Google Scholar 

  52. Walsh S, Margolis SS, Kornbluth S (2003) Phosphorylation of the cyclin b1 cytoplasmic retention sequence by mitogen-activated protein kinase and Plx. Mol Cancer Res 1(4):280–289

    PubMed  CAS  Google Scholar 

  53. Booher RN, Holman PS, Fattaey A (1997) Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem 272(35):22300–22306

    Article  PubMed  CAS  Google Scholar 

  54. Berry LD, Gould KL (1996) Regulation of Cdc2 activity by phosphorylation at T14/Y15. Prog Cell Cycle Res 2:99–105

    Article  PubMed  CAS  Google Scholar 

  55. Hoffmann I, Karsenti E (1994) The role of cdc25 in checkpoints and feedback controls in the eukaryotic cell cycle. J Cell Sci Suppl 18:75–79

    PubMed  CAS  Google Scholar 

  56. Jessus C, Ozon R (1995) Function and regulation of cdc25 protein phosphate through mitosis and meiosis. Prog Cell Cycle Res 1:215–228

    Article  PubMed  CAS  Google Scholar 

  57. Mueller PR et al (1995) Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270(5233):86–90

    Article  PubMed  CAS  Google Scholar 

  58. Baker DJ et al (2007) Mitotic regulation of the anaphase-promoting complex. Cell Mol Life Sci 64(5):589–600

    Article  PubMed  CAS  Google Scholar 

  59. Fang G, Yu H, Kirschner MW (1999) Control of mitotic transitions by the anaphase-promoting complex. Philos Trans R Soc Lond B Biol Sci 354(1389):1583–1590

    Article  PubMed  CAS  Google Scholar 

  60. Page AM, Hieter P (1999) The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem 68:583–609

    Article  PubMed  CAS  Google Scholar 

  61. Pietenpol JA, Stewart ZA (2002) Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475–481

    Article  PubMed  Google Scholar 

  62. van Vugt MA, Bras A, Medema RH (2005) Restarting the cell cycle when the checkpoint comes to a halt. Cancer Res 65(16):7037–7040

    Article  PubMed  Google Scholar 

  63. Peeper DS, van der Eb AJ, Zantema A (1994) The G1/S cell-cycle checkpoint in eukaryotic cells. Biochim Biophys Acta 1198(2–3):215–230

    PubMed  Google Scholar 

  64. Little JB (1968) Delayed initiation of DNA synthesis in irradiated human diploid cells. Nature 218(5146):1064–1065

    Article  PubMed  CAS  Google Scholar 

  65. Gu Y, Rosenblatt J, Morgan DO (1992) Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J 11(11):3995–4005

    PubMed  CAS  Google Scholar 

  66. Sebastian B, Kakizuka A, Hunter T (1993) Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc Natl Acad Sci U S A 90(8):3521–3524

    Article  PubMed  CAS  Google Scholar 

  67. Terada Y et al (1995) Requirement for tyrosine phosphorylation of Cdk4 in G1 arrest induced by ultraviolet irradiation. Nature 376(6538):358–362

    Article  PubMed  CAS  Google Scholar 

  68. Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351(6326):453–456

    Article  PubMed  CAS  Google Scholar 

  69. Kastan MB et al (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51(23 Pt 1):6304–6311

    PubMed  CAS  Google Scholar 

  70. Maltzman W, Czyzyk L (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4(9):1689–1694

    PubMed  CAS  Google Scholar 

  71. Campbell C et al (1993) Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation. Cancer Res 53(12):2697–2679

    PubMed  CAS  Google Scholar 

  72. Di Leonardo A et al (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8(21):2540–2551

    Article  PubMed  Google Scholar 

  73. Nelson WG, Kastan MB (1994) DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 14(3):1815–1823

    PubMed  CAS  Google Scholar 

  74. Xiong Y et al (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366(6456):701–704

    Article  PubMed  CAS  Google Scholar 

  75. Harper JW et al (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75(4):805–816

    Article  PubMed  CAS  Google Scholar 

  76. Deng C et al (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82(4):675–684

    Article  PubMed  CAS  Google Scholar 

  77. Gottifredi V, Prives C (2005) The S phase checkpoint: when the crowd meets at the fork. Semin Cell Dev Biol 16(3):355–368

    Article  PubMed  CAS  Google Scholar 

  78. Painter RB, Young BR (1976) Formation of nascent DNA molecules during inhibition of replicon initiation in mammalian cells. Biochim Biophys Acta 418(2):146–153

    Article  PubMed  CAS  Google Scholar 

  79. Painter RB, Young BR (1980) Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci U S A 77(12):7315–7317

    Article  PubMed  CAS  Google Scholar 

  80. Beamish H et al (1996) Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation. J Biol Chem 271(34):20486–20493

    Article  PubMed  CAS  Google Scholar 

  81. O’Connell MJ, Walworth NC, Carr AM (2000) The G2-phase DNA-damage checkpoint. Trends Cell Biol 10(7):296–303

    Article  PubMed  Google Scholar 

  82. Lock RB, Ross WE (1990) Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res 50(12):3761–3766

    PubMed  CAS  Google Scholar 

  83. Lock RB, Ross WE (1990) Possible role for p34cdc2 kinase in etoposide-induced cell death of Chinese hamster ovary cells. Cancer Res 50(12):3767–3771

    PubMed  CAS  Google Scholar 

  84. Paules RS et al (1995) Defective G2 checkpoint function in cells from individuals with familial cancer syndromes. Cancer Res 55(8):1763–1773

    PubMed  CAS  Google Scholar 

  85. Herzinger T et al (1995) Ultraviolet B irradiation-induced G2 cell cycle arrest in human keratinocytes by inhibitory phosphorylation of the cdc2 cell cycle kinase. Oncogene 11(10):2151–2156

    PubMed  CAS  Google Scholar 

  86. Gallant P, Nigg EA (1992) Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J Cell Biol 117(1):213–224

    Article  PubMed  CAS  Google Scholar 

  87. Pines J, Hunter T (1989) Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58(5):833–846

    Article  PubMed  CAS  Google Scholar 

  88. Rudner AD, Murray AW (1996) The spindle assembly checkpoint. Curr Opin Cell Biol 8(6):773–780

    Article  PubMed  CAS  Google Scholar 

  89. Murray AW (1995) The genetics of cell cycle checkpoints. Curr Opin Genet Dev 5(1):5–11

    Article  PubMed  CAS  Google Scholar 

  90. Lenart P, Peters JM (2006) Checkpoint activation: don't get mad too much. Curr Biol 16(11):R412–414

    Article  PubMed  CAS  Google Scholar 

  91. Vanoosthuyse V et al (2004) Kinetochore targeting of fission yeast Mad and Bub proteins is essential for spindle checkpoint function but not for all chromosome segregation roles of Bub1p. Mol Cell Biol 24(22):9786–9801

    Article  PubMed  CAS  Google Scholar 

  92. Pinsky BA, Biggins S (2005) The spindle checkpoint: tension versus attachment. Trends Cell Biol 15(9):486–493

    Article  PubMed  CAS  Google Scholar 

  93. Lens SM, Medema RH (2003) The survivin/Aurora B complex: its role in coordinating tension and attachment. Cell Cycle 2(6):507–510

    Article  PubMed  CAS  Google Scholar 

  94. Goulding SE, Earnshaw WC (2005) Shugoshin: a centromeric guardian senses tension. Bioessays 27(6):588–591

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Galderisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giordano, A., Galderisi, U. (2010). Short Introduction to the Cell Cycle. In: Giordano, A., Galderisi, U. (eds) Cell Cycle Regulation and Differentiation in Cardiovascular and Neural Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-153-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-153-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-152-3

  • Online ISBN: 978-1-60327-153-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics