Skip to main content

Functional Imaging of Renal Cell Carcinoma

  • Chapter
Clinical Management of Renal Tumors

Abstract

F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) has been increasingly used in oncology and has been applied for the diagnosis, staging, and followup of several cancers. The role of FDG PET in renal cell carcinoma is currently evolving. Current evidence suggests that this imaging modality has limited sensitivity, but in selected situations PET might complement conventional imaging techniques in further delineating suspicious lesions. Improvements in image acquisition and processing techniques, use of radioisotopes other than FDG and increasing experience with combined PET and computed tomography scanners will increase the applicability of functional imaging in renal cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wahl RL, Harney J, Hutchins G, Grossman HB. Imaging of renal cancer using positron emission tomography with 2-deoxy-2-(18F)-fluoro-D-glucose: pilot animal and human studies. J Urol 1991;146(6):1470–1474.

    CAS  PubMed  Google Scholar 

  2. Kubota K. From tumor biology to clinical PET: a review of positron emission tomography (PET) in oncology. Ann Nucl Med 2001;15(6):471–486.

    Article  CAS  PubMed  Google Scholar 

  3. Bomanji JB, Costa DC, Ell PJ. Clinical role of positron emission tomography in oncology. Lancet Oncol 2001;2(3):157–164.

    Article  CAS  PubMed  Google Scholar 

  4. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231(2):305–332.

    Article  PubMed  Google Scholar 

  5. Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J. Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 1996;56(5):1164–1167.

    CAS  PubMed  Google Scholar 

  6. Smith TA. Facilitative glucose transporter expression in human cancer tissue. Br J Biomed Sci 1999; 56(4):285–292.

    CAS  PubMed  Google Scholar 

  7. Kurokawa T, Yoshida Y, Kawahara K, et al. Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the ovary. Int J Cancer 2004;109(6):926–932.

    Article  CAS  PubMed  Google Scholar 

  8. Kato H, Takita J, Miyazaki T, et al. Correlation of 18-F-fluorodeoxyglucose (FDG) accumulation with glucose transporter (Glut-1) expression in esophageal squamous cell carcinoma. Anticancer Res 2003;23(4):3263–3272.

    CAS  PubMed  Google Scholar 

  9. Yen TC, See LC, Lai CH, et al. 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med 2004;45(1):22–29.

    CAS  PubMed  Google Scholar 

  10. Higashi K, Ueda Y, Sakurai A, et al. Correlation of Glut-1 glucose transporter expression with. Eur J Nucl Med 2000;27(12):1778–1785.

    Article  CAS  PubMed  Google Scholar 

  11. Higashi T, Tamaki N, Torizuka T, et al. FDG uptake, GLUT-1 glucose transporter and cellularity in human pancreatic tumors. J Nucl Med 1998;39(10):1727–1735.

    CAS  PubMed  Google Scholar 

  12. Chung JK, Lee YJ, Kim SK, Jeong JM, Lee DS, Lee MC. Comparison of [18F]fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer. Nucl Med Commun 2004;25(1):11–17.

    Article  CAS  PubMed  Google Scholar 

  13. Hooft L, van der Veldt AA, van Diest PJ, et al. [18F]fluorodeoxyglucose uptake in recurrent thyroid cancer is related to hexokinase I expression in the primary tumor. J Clin Endocrinol Metab 2005;90(1):328–334.

    Article  CAS  PubMed  Google Scholar 

  14. Bos R, van Der Hoeven JJ, van Der Wall E, et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 2002;20(2): 379–387.

    Article  CAS  PubMed  Google Scholar 

  15. Smith TA. FDG uptake, tumour characteristics and response to therapy: a review. Nucl Med Commun 1998;19(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  16. Miyakita H, Tokunaga M, Onda H, et al. Significance of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohistochemical glucose transporter 1 (GLUT-1) expression in the cancer. Int J Urol 2002;9(1):15–18.

    Article  PubMed  Google Scholar 

  17. Nagase Y, Takata K, Moriyama N, Aso Y, Murakami T, Hirano H. Immunohistochemical localization of glucose transporters in human renal cell carcinoma. J Urol 1995;153(3 pt 1):798–801.

    CAS  PubMed  Google Scholar 

  18. Ficarra V, Righetti R, Pilloni S, et al. Prognostic factors in patients with renal cell carcinoma: retrospective analysis of 675 cases. Eur Urol 2002;41(2):190–198.

    Article  PubMed  Google Scholar 

  19. Tsui KH, Shvarts O, Smith RB, Figlin RA, deKernion JB, Belldegrun A. Prognostic indicators for renal cell carcinoma: a multivariate analysis of 643 patients using the revised 1997 TNM staging criteria. J Urol 2000;163(4):1090–1095; quiz 1295.

    Article  CAS  PubMed  Google Scholar 

  20. Ramdave S, Thomas GW, Berlangieri SU, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol 2001;166(3): 825–830.

    Article  CAS  PubMed  Google Scholar 

  21. Aide N, Cappele O, Bottet P, et al. Efficiency of [(18)F]FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging 2003;30(9): 1236–1245.

    Article  PubMed  Google Scholar 

  22. Kang DE, White RL Jr, Zuger JH, Sasser HC, Teigland CM. Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 2004;171(5):1806–1809.

    Article  PubMed  Google Scholar 

  23. Bachor R, Kotzerke J, Gottfried HW, Brandle E, Reske SN, Hautmann R. [Positron emission tomography in diagnosis of renal cell carcinoma]. Urologe A 1996;35(2):146–150.

    CAS  PubMed  Google Scholar 

  24. Safaei A, Figlin R, Hoh CK, et al. The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin Nephrol 2002;57(1):56–62.

    CAS  PubMed  Google Scholar 

  25. Byrne AM, Hill AD, Skehan SJ, McDermott EW, O’Higgins NJ. Positron emission tomography in the staging and management of breast cancer. Br J Surg 2004;91(11):1398–1409.

    Article  CAS  PubMed  Google Scholar 

  26. Birim O, Kappetein AP, Stijnen T, Bogers AJ. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg 2005;79(1):375–382.

    Article  PubMed  Google Scholar 

  27. Majhail NS, Urbain JL, Albani JM, et al. F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol 2003;21(21): 3995–4000.

    Article  PubMed  Google Scholar 

  28. Jadvar H, Kherbache HM, Pinski JK, Conti PS. Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma. Clin Nephrol 2003;60(6):395–400.

    CAS  PubMed  Google Scholar 

  29. Brouwers AH, Dorr U, Lang O, et al. 131 I-cG250 monoclonal antibody immunoscintigraphy versus [18 F]FDG-PET imaging in patients with metastatic renal cell carcinoma: a comparative study. Nucl Med Commun 2002;23(3):229–236.

    Article  CAS  PubMed  Google Scholar 

  30. Chang CH, Shiau YC, Shen YY, Kao A, Lin CC, Lee CC. Differentiating solitary pulmonary metastases in patients with renal cell carcinomas by 18F-fluoro-2-deoxyglucose positron emission tomography—a preliminary report. Urol Int 2003;71(3):306–309.

    Article  CAS  PubMed  Google Scholar 

  31. Townsend DW, Carney JP, Yap JT, Hall NC. PET/CT today and tomorrow. J Nucl Med 2004;45(suppl 1):4S–14S.

    PubMed  Google Scholar 

  32. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41(8):1369–1379.

    CAS  PubMed  Google Scholar 

  33. Martinelli M, Townsend D, Meltzer C, Villemagne VV. 7. Survey of results of whole body imaging using the PET/CT at the University of Pittsburgh Medical Center PET facility. Clin Positron Imaging 2000;3(4):161.

    Article  PubMed  Google Scholar 

  34. Bar-Shalom R, Yefremov N, Guralnik L, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 2003;44(8):1200–1209.

    PubMed  Google Scholar 

  35. Lardinois D, Weder W, Hany TF, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 2003;348(25):2500–2507.

    Article  PubMed  Google Scholar 

  36. Schoder H, Yeung HW, Gonen M, Kraus D, Larson SM. Head and neck cancer: clinical usefulness and accuracy of PET/CT image fusion. Radiology 2004;231(1):65–72.

    Article  PubMed  Google Scholar 

  37. Keidar Z, Haim N, Guralnik L, et al. PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med 2004;45(10):1640–1646.

    PubMed  Google Scholar 

  38. Knopp MV, von Tengg-Kobligk H, Choyke PL. Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring. Mol Cancer Ther 2003;2(4):419–426.

    CAS  PubMed  Google Scholar 

  39. Sahani DV, Kalva SP, Hamberg LM, et al. Assessing Tumor Perfusion and Treatment Response in Rectal Cancer with Multisection CT: Initial Observations. Radiology 2005;234(3):785–792.

    Article  PubMed  Google Scholar 

  40. Montemurro F, Martincich L, De Rosa G, et al. Dynamic contrast-enhanced MRI and sonography in patients receiving primary chemotherapy for breast cancer. Eur Radiol 2005;15:1224–1233.

    Article  PubMed  Google Scholar 

  41. Martincich L, Montemurro F, De Rosa G, et al. Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 2004;83(1):67–76.

    Article  PubMed  Google Scholar 

  42. Mankoff DA, Shields AF, Krohn KA. PET imaging of cellular proliferation. Radiol Clin North Am 2005;43(1):153–167.

    Article  PubMed  Google Scholar 

  43. Piert M, Machulla HJ, Picchio M, et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 2005;46(1):106–113.

    PubMed  Google Scholar 

  44. McQuade P, Martin KE, Castle TC, et al. Investigation into (64)Cu-labeled Bis(selenosemicarbazone) and Bis(thiosemicarbazone) complexes as hypoxia imaging agents. Nucl Med Biol 2005;32(2):147–156.

    Article  CAS  PubMed  Google Scholar 

  45. Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol Clin North Am 2005;43(1):169–187.

    Article  PubMed  Google Scholar 

  46. Shreve P, Chiao PC, Humes HD, Schwaiger M, Gross MD. Carbon-11-acetate PET imaging in renal disease. J Nucl Med 1995;36(9):1595–1601.

    CAS  PubMed  Google Scholar 

  47. Anderson H, Yap JT, Wells P, et al. Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer 2003; 89(2):262–267.

    Article  CAS  PubMed  Google Scholar 

  48. Lara PN Jr, Quinn DI, Margolin K, et al. SU5416 plus interferon alpha in advanced renal cell carcinoma: a phase II California Cancer Consortium Study with biological and imaging correlates of angiogenesis inhibition. Clin Cancer Res 2003;9(13):4772–4781.

    CAS  PubMed  Google Scholar 

  49. Divgi CR, O’Donoghue JA, Welt S, et al. Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J Nucl Med 2004;45(8):1412–1421.

    CAS  PubMed  Google Scholar 

  50. Divgi CR, Bander NH, Scott AM, et al. Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin Cancer Res 1998;4(11):2729–2739.

    CAS  PubMed  Google Scholar 

  51. Lartizien C, Kinahan PE, Comtat C. A lesion detection observer study comparing 2-dimensional versus fully 3—dimensional whole-body PET imaging protocols. J Nucl Med 2004;45(4):714–723.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Majhail, N.S., Bukowski, R.M. (2008). Functional Imaging of Renal Cell Carcinoma. In: Bukowski, R.M., Novick, A.C. (eds) Clinical Management of Renal Tumors. Humana Press. https://doi.org/10.1007/978-1-60327-149-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-149-3_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-251-3

  • Online ISBN: 978-1-60327-149-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics