Skip to main content

Gas Dissolution, Release, and Bubble Formation in Flotation Systems

  • Chapter
  • First Online:
Flotation Technology

Abstract

The theories and principles of gas dissolution, release, and bubble formation in gas flotation systems are introduced in detail for process design, optimization, and operation. Also introduced is a new instrument for real-time measurement of bubble content and size distribution in a typical flotation system consisting of gas bubbles (gas phase) and bulk water (liquid phase). Specific engineering topics included in this chapter are: gas dispersion principles, gas dispersion tester, bubble tester operation, gas dispersion example, gas transfer principles, Henry’s Law constants, partial pressures, solubilities of various gases, gas dissolution and release, gas bubble formation and size distribution, bubble attachment, bubble rising and flotation, gas dissolution in water containing high dissolved solids or high salinity, and engineering design examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang LK, Wang MHS, Yaksich SM, Granstrom ML (1978) Water treatment with multiphase flow reactor and cationic surfactants. J Am Water Works Assoc 70(9):522–528

    CAS  Google Scholar 

  2. Krofta M, Wang LK (1982) Potable water treatment by dissolved air flotation and filtration. J Am Water Works Assoc 74(6):304–310

    Google Scholar 

  3. Krofta M, Wang LK (1985) Application of dissolved air flotation to the Lenox, Massachusetts water supply: water purification by flotation. J N Engl Water Works Assoc 99(3):249–264, Sept

    CAS  Google Scholar 

  4. Krofta M, Wang LK (1985) Application of dissolved air flotation to the Lenox, Massachusetts water supply: sludge thickening by flotation or lagoon. J N Engl Water Works Assoc 99(3):265–284, Sept

    CAS  Google Scholar 

  5. Zabel T (1985) The advantages of dissolved-air flotation for water treatment. J Am Water Works Assoc 77(5):37–41

    Google Scholar 

  6. Hyde RA, Miller DG, Packham RF, Richards WN (1977) Water clarification by flotation. J Am Water Works Assoc 69(7):369–374

    CAS  Google Scholar 

  7. Krofta M, Guss D, Wang LK (1983) Improved biological treatment with a secondary flotation clarifier. Civil Eng Practicing Des Engineers 2:307–324

    Google Scholar 

  8. Krofta M, Wang LK (1984) Development of innovative Sandfloat systems for water purification and pollution control. ASPE J Eng Plumbing 0(1):1–16

    Google Scholar 

  9. Krofta M, Wang LK (1984) Tertiary treatment of secondary effluent by dissolved air flotation and filtration. Civil Eng Practicing Des Engineers 3:253–272

    Google Scholar 

  10. Krofta M, Wang LK (1986) Wastewater treatment by biological-physicochemical two-stage process System. Proceedings of the 41st industrial waste conference, Lewis Publishers Inc., Chelsea, MI, May 1986, pp 67–72

    Google Scholar 

  11. Krofta M, Wang LK (1987) Flotation technology and secondary clarification. TAPPI J 70(4):92–96

    CAS  Google Scholar 

  12. Krofta M, Guss D, Wang LK (1987) Development of low-cost flotation technology and systems for wastewater treatment. Proceedings of the 42nd industrial waste conference, Lewis Publishers Inc., Chelsea, MI, May 1987, pp 185–195

    Google Scholar 

  13. Wang LK, Dahm DB, Baier RE, Ziegler RC (1975) Treatment of tannery effluents by surface adsorption. J Appl Chem Biotechnol 25:475–490

    Article  CAS  Google Scholar 

  14. Krofta M, Wang LK (1989) The world’s largest potable flotation–filtration plant. OCEESA J 6(1):7–10

    Google Scholar 

  15. Wang LK (2007) Emerging flotation technologies. In: Wang LK, Hung YT, Shammas NK (eds) Advanced physicochemical treatment processes. Humana Press, Totowa, NJ, pp 449–484

    Google Scholar 

  16. Wang LK, Shammas NK (2007) Pressurized ozonation. In: Wang LK, Hung YT, Shammas NK (eds) Advanced physicochemical treatment processes. Humana Press, Totowa, NJ, pp 1–56

    Google Scholar 

  17. Wang LK, Wang MHS (1995) Bubble dynamics and material balances of dissolved gas flotation process. Water Treat 10:41–54

    Google Scholar 

  18. Krofta M, Wang LK (1999) Flotation and related adsorptive bubble separation processes, 4th edn. Lenox Institute of Water Technology, Lenox, MA. Technical Manual No. Lenox/7–25–1999/348, 212p

    Google Scholar 

  19. Wang LK, Kurylko L, Wang MHS (1992) Gas dissolving and releasing liquid treatment system. US Patent No. 5167806, US Patent & Trademark Office, Washington, DC, Dec.

    Google Scholar 

  20. Wang LK, Kurylko L, Wang MHS (1993) Water and wastewater treatment. US Patent No. 5240600. US Patent & Trademark Office, Washington, DC, Aug.

    Google Scholar 

  21. Wang LK, Kurylko L, Wang MHS (1996) Sequencing batch liquid treatment. US Patent No. 5354458. U.S. Patent & Trademark Office, Washington, DC

    Google Scholar 

  22. Krofta M, Wang LK (2000) Flotation engineering. Lenox Institute of Water Technology, Lenox, MA, Technical Manaual No. Lenox/01–05–2000/368, first edition, Jan 2000, 255p

    Google Scholar 

  23. SWBIC (2010) Gas transfer. Southwest Biotechnology and Informatics Center, Washington, DC. http://www.swbic.org

    Google Scholar 

  24. Wang LK, Fahey EM, Wu Z (2005) Dissolved air flotation. In: Wang LK, Hung YT, Shammas NK (eds) Physicochemical treatment processes. Humana Press, Totowa, NJ, pp 431–500

    Chapter  Google Scholar 

  25. Nave CR (2010) Hyperphysics. Department of Physics and Astronomy, Georgia State University, GA. http://www.gsu.edu

    Google Scholar 

  26. Wang LK (1986) Dredging operations and waste disposal. In: Wang LK, Pereira NC (eds) Water resources and natural control processes, 1st edn. Humana Press, Totowa, NJ, pp 447–496

    Chapter  Google Scholar 

  27. Wang LK, Elmore DC (1981) Computer-aided modeling of water vapor pressure, gas adsorption coefficient and oxygen solubility. Technical Report PB82–118787. U.S. Dept. of Commerce, National Technical Information Service, Springfield, VA, p 137

    Google Scholar 

  28. KSV (2010) Bubble pressure tensiometer. KSV Instruments Ltd., Helsinki, Finland. http://www.ksvltd.com

    Google Scholar 

  29. Maiken E (1995) Bubble decompression strategies. http://www.cisatlantic.com

    Google Scholar 

  30. Lage PLC (1999) Conservation of bubble size distribution during gas reactive absorption in bubble column reactors. Braz J Chem Eng 16(4):18

    Article  Google Scholar 

  31. Chahine GL, Kalumuch KM, Cheng JY, Frederick GS (2010) Validation of bubble distribution measurements of the ABS acoustic bubble spectrometer with high speed video photography. Technical Report No. CAV2001. Jessup, MD. http://www.dynaflow-inc.com

  32. Wienke BR (1991) Basic decompression theory and application. Technical Report. Best Publishing Company, Flagstaff, AZ

    Google Scholar 

  33. Sonoyama ZN, Iguchi M (2002) Bubble formation and detachment on nonwetted surfaces. Metall Mater Trans 33B:155–159

    CAS  Google Scholar 

  34. Data Physics (2009) Surface chemistry glossary. Data Physics Instruments GmbH. Filderstadt, DE. http://www.dataphysics.de

    Google Scholar 

  35. Editor (2010) Bubble rise in single capillaries – experimental set-up and procedure. Universteit Amsterdam, Kruislaaan, Amsterdam, Netherlands. http://www.science.uva.nl

  36. Cargille-Sacher Labs (2005) Procedure for rising bubble rise testing using viscosity tubes. Technical Report. Gargille-Sacher Laboratories Inc., Cedar Grove, NJ, Sept

    Google Scholar 

  37. Wang LK, Wang MHS (2007) Bubble dynamics of adsorptive bubble separation processes. 2007 National engineers week conference, Albany Marriott, Albany, NY, 15–16 Feb 2007

    Google Scholar 

  38. Wang LK, Shammas NK, Guss DB (2010) Flotation biological systems. In: Wang LK, Ivanov V, Tay JH, Hung YT (eds) Environmental biotechnology. Humana Press, Totowa, NJ

    Chapter  Google Scholar 

  39. Univ. of Pittsburg (2001) Froth flotation. College of Engineering, University of Pittsburg, PA. http://www.engr.pitt.edu/chemical/undergrad/lab_manuals/flotation.pdf

    Google Scholar 

  40. Gameson AH, Robertson HH (1955) Dissolved oxygen concentration. J Appl Chem 5:503

    Google Scholar 

  41. Fair GM, Geyer JC, Okun DA (1968) Water and wastewater engineering, vol 2. Wiley, NYC, NY

    Google Scholar 

  42. Humenick MJ (1977) Water and wastewater treatment. Marcel Dekker, Inc., NYC, NY

    Google Scholar 

  43. Hodgeman CD (1955) Handbook of chemistry and physics. Chemical Rubber Publishing Co., NYC, NY, 36th Ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, L.K., Shammas, N.K., Selke, W.A., Aulenbach, D.B. (2010). Gas Dissolution, Release, and Bubble Formation in Flotation Systems. In: Wang, L., Shammas, N., Selke, W., Aulenbach, D. (eds) Flotation Technology. Handbook of Environmental Engineering, vol 12. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-133-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-133-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-494-4

  • Online ISBN: 978-1-60327-133-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics