Skip to main content

Innate Immune Mechanisms in the Liver

  • Chapter
Liver Immunology

Abstract

Having been ignored by immunologists for years, the liver is now known to be a site of complex immune activity and to play a key role in some of the most important pathologies, including septicemia, metastases, and hepatotropic infections. Even in its healthy state, the liver is presented with an intricate combination of immunological challenges for which it is surprisingly well equipped. These challenges include massive antigenic loads of harmless dietary and commensal products borne by the portal tract, which must be immunologically tolerated, but which may be laced with pathogens or toxins, requiring a swift response. Its blood supply of approx 1.5 L per minute ensures that the liver is the organ most frequently exposed to blood-borne metastatic stimuli, while products of hepatic metabolism may be carcinogenic. The liver immune system must therefore provide protection against pathogens, transformed liver cells, and metastasic cells while at the same time tolerating harmless self and foreign antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medzhitov R, Janeway C. Innate immunity. N Engl J Med 2000; 343:338–344.

    Article  PubMed  CAS  Google Scholar 

  2. Medzhitov R, Janeway C. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296:298–300.

    Article  PubMed  CAS  Google Scholar 

  3. Cooper EL, Kauschke E, Cosarizza A. Digging for innate immunity since Darwin and Metchnikoff. BioEssays 2002; 24:319–333.

    Article  PubMed  CAS  Google Scholar 

  4. Janeway C, Travers P, Walport M, Shlomchik M. Immunobiology, 6th ed. New York, Churchill Livingstone, pp. 37–48.

    Google Scholar 

  5. Van Oosten M, van Amersfoort ES, van Berkel TJ, Kuiper J. Scavenger receptor-like receptors for the binding of lipopolysaccharide and lipoteichoic acid to liver endothelial and Kupffer cells. J Endotoxin Res 2001; 7:381–384.

    PubMed  Google Scholar 

  6. Rowell DL, Eckmann L, Dwinell MB, et al. Human hepatocytes express an array of proinflammatory cytokines after agonist stimulation or bacterial invasion. Am J Physiol 1997; 273: 322–332.

    Google Scholar 

  7. Wagner S, Lynch NJ, Walter W, Schwaeble WJ, Loos M. Differential expression of the murine mannose-binding lectins A and C in lymphoid and nonlymphoid organs and tissues. J Immunol 2003; 170: 1462–1465.

    PubMed  CAS  Google Scholar 

  8. Strey CW, Markiewski M, Mastellos D, et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 2003; 198:913–923.

    Article  PubMed  CAS  Google Scholar 

  9. Diehl AM. Cytokine regulation of liver injury and repair. Immunol Rev 2000; 174:160–171.

    Article  PubMed  CAS  Google Scholar 

  10. O’Neill LA. Immunology. After the toll rush. Science 2004; 303:1481–1482.

    Article  PubMed  CAS  Google Scholar 

  11. O’Neill LA. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol 2004; 25:687–693.

    Article  PubMed  CAS  Google Scholar 

  12. Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol 2003; 74:479–485.

    Article  PubMed  CAS  Google Scholar 

  13. Seki E, Tsutsui H, Iimuro Y, et al. Contribution of Toll-like receptor/ myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology 2005; 41:443–450.

    Article  PubMed  CAS  Google Scholar 

  14. Knolle PA, Loser E, Protzer U, et al. Regulation of endotoxininduced IL-6 production in liver sinusoidal endothelial cells and Kupffer cells by IL-10. Clin Exp Immunol 1997; 107:555–561.

    Article  PubMed  CAS  Google Scholar 

  15. De Creus A, Abe M, Lau AH, Hackstein H, Raimondi G, Thomson AW. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J Immunol 2005; 174:2037–2045.

    PubMed  Google Scholar 

  16. Sanchez-Campillo M, Chicano A, Torio A, et al. Implication of CpG-ODN and reactive oxygen species in the inhibition of intracellular growth of Salmonella typhimurium in hepatocytes. Microbes Infect 2004; 6:813–820.

    Article  PubMed  CAS  Google Scholar 

  17. Wisse E. Observations on the fine structure and peroxidase cytochemistry of normal rat liver Kupffer cells. J Ultrastruct Res 1974; 46:393–426.

    Article  PubMed  CAS  Google Scholar 

  18. Wardle EN. Kupffer cells and their function. Liver 1987; 7:63–75.

    PubMed  CAS  Google Scholar 

  19. Morita A, Itoh Y, Toyama T, et al. Activated Kupffer cells play an important role in intra-hepatic Th1-associated necro-inflammation in Concanavalin A-induced hepatic injury in mice. Hepatol Res 2003; 27:143–150.

    Article  PubMed  CAS  Google Scholar 

  20. Mosher B, Dean R, Harkema J, Remick D, Palma J, Crockett E. Inhibition of Kupffer cells reduced CXC chemokine production and liver injury. J Surg Res 2001; 99:201–210.

    Article  PubMed  CAS  Google Scholar 

  21. Hinglais N, Kazatchkine MD, Mandet C, Appay MD, Bariety J. Human liver Kupffer cells express CR1, CR3, and CR4 complement receptor antigens: an immunohistochemical study. Lab Invest 1989; 61:509–514.

    PubMed  CAS  Google Scholar 

  22. Ross GD, Vetvicka V. CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin Exp Immunol 1993; 92:181–184.

    Article  PubMed  CAS  Google Scholar 

  23. Van Egmond M, van Garderen E, van Spriel AB, et al. FcaRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nat Med 2000; 6:680–685.

    Article  PubMed  Google Scholar 

  24. Lentini A, Falasca L, Autuori F, Dini L. The simultaneous exposition of galactose and mannose-specific receptors on rat liver macrophages is developmentally regulated. Biosci Rep 1992; 12:453–461.

    Article  PubMed  CAS  Google Scholar 

  25. Naito M, Hasegawa G, Takahashi K. Development, differentiation, and maturation of Kupffer cells. Microsc Res Tech 1997; 39:350–364.

    Article  PubMed  CAS  Google Scholar 

  26. Taniguchi T, Toyoshima T, Fukao K, Nakuchi H. Presence of hematopoietic stem cells in the adult liver. Nat Med 1996; 2: 198–203.

    Article  PubMed  CAS  Google Scholar 

  27. Watanabe H, Miyaji C, Seki S, Abo, T. c-kit-stem cells and thymocyte precursors in the livers of adult mice. J Exp Med 1996; 184:687–693.

    Article  PubMed  CAS  Google Scholar 

  28. Crosbie OM, Reynolds M, McEntee G, Traynor O, Hegarty J, O’Farrelly C. In vitro evidence for the presence of hematopoietic stem cells in the adult human liver. Hepatology 1999; 29: 1193–1198.

    Article  PubMed  CAS  Google Scholar 

  29. Golden-Mason L, Curry M, Nolan N, et al. Differential expression of lymphoid and myeloid markers on differentiating hematopoietic stem cells in normal and tumor bearing adult human liver. Hepatology 2000; 31:1251–1256.

    Article  PubMed  CAS  Google Scholar 

  30. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 2002; 23:445–449.

    Article  PubMed  CAS  Google Scholar 

  31. Thomson AW, Drakes ML, Zahorchak AF, et al. Hepatic dendritic cells: immunobiology and role in liver transplantation. J Leukoc Biol 1999; 66:322–330.

    PubMed  CAS  Google Scholar 

  32. Thomson AW, Lu L. Dendritic cells as regulators of immune reactivity: implications for transplantation. Transplantation 1999; 68:1–8.

    Article  PubMed  CAS  Google Scholar 

  33. Thomson AW, Lu L. Are dendritic cells the key to liver transplant tolerance? Immunol Today 1999; 20:27–32.

    Article  PubMed  CAS  Google Scholar 

  34. Goddard S, Youster J, Morgan E, Adams DH. Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am J Pathol 2004; 164:511–519.

    PubMed  CAS  Google Scholar 

  35. Doherty DG, O’Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev 2000; 174:5–20.

    Article  PubMed  CAS  Google Scholar 

  36. Hata K, Ru Zhang X, Iwatsuki S, Van Thiel D, Herberman R, Whiteside T. Isolation, phenotyping and functional analysis of lymphocytes from human liver. Clin Immunol Pathol 1990; 56: 401–419.

    Article  CAS  Google Scholar 

  37. Hata K, Van Thiel D, Herberman RB, Whiteside T. Natural killer activity of human-derived lymphocytes in various liver diseases. Hepatology 1991; 14:495–503.

    Article  PubMed  CAS  Google Scholar 

  38. Winnock M, Gacia Barcina M, Lukomska B, et al. Human liver-associated lymphocytes: an overview. J Gastroenterol Hepatol 1995; 10(Suppl 1):S43–S46.

    PubMed  Google Scholar 

  39. Doherty DG, Norris S, Madrigal-Estebas L, et al. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and ThO cytokine secretion patterns. J Immunol 1999; 163:2314–2321.

    PubMed  CAS  Google Scholar 

  40. Lanier LL, Corliss B, Philips JH. Arousal and inhibition of human NK cells. Immunol Rev 1997; 155:145–154.

    Article  PubMed  CAS  Google Scholar 

  41. Takii Y, Hashimoto S, Iiai T, Watanabe H, Hatakeyama K, Abo T. Increase in the proportion of granulated CD56+ T cells in patients with malignancy. Clin Exp Immunol 1994; 97:522–527.

    Article  PubMed  CAS  Google Scholar 

  42. Winnock M, Garcia-Barcina M, Huet S, et al. Functional characterization of liver-associated lymphocytes in patients with liver metastasis. Gastroenterology 1993; 105:1152–1158.

    PubMed  CAS  Google Scholar 

  43. Winnock M, Garcia-Barcina M, Bioulac-Sage P, Balabaud C. Liver-associated lymphocytes: role in tumor defense. Semin Liver Dis 1993; 13:81–92.

    PubMed  CAS  Google Scholar 

  44. Norris S, Doherty D, Curry M, et al. Selective reduction of natural killer cells and T cells expressing inhibitory receptors for MHC class I in the livers of patients with hepatic malignancy. Cancer Immunol Immunother 2003; 52:53–58.

    PubMed  CAS  Google Scholar 

  45. Crotta S, Stilla A, Wack A, et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med 2002; 195:35–41.

    Article  PubMed  CAS  Google Scholar 

  46. Nattermann J, Nischalke HD, Hofmeister V, et al. The HLA-A2 restricted T cell epitope HCV core 35–44 stabilizes HLA-E expression and inhibits cytolysis mediated by natural killer cells. Am J Pathol 2005; 166:443–453.

    PubMed  CAS  Google Scholar 

  47. Brigl M, Brenner MB. CD1: antigen presentation and T cell function. Annu Rev Immunol 2004; 22:817–890.

    Article  PubMed  CAS  Google Scholar 

  48. Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005; 23:877–900.

    Article  PubMed  CAS  Google Scholar 

  49. Hayakawa Y, Godfrey DI, Smyth MJ. a-Galactosylceramide: potential immunomodulatory activity and future application. Curr Med Chem 2004; 11:241–252.

    Article  PubMed  CAS  Google Scholar 

  50. Giaccone G, Punt CJ, Ando Y, et al. A phase I study of the natural killer T-cell ligand a-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 2002; 8:3702–3709.

    PubMed  CAS  Google Scholar 

  51. Nieda M, Okai M, Tazbirkova A, et al. Therapeutic activation of Va24+Vb11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 2004; 103:383–389.

    Article  PubMed  CAS  Google Scholar 

  52. Kenna T, Golden-Mason L, Porcelli SA, et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 2003; 171: 1775–1779.

    PubMed  CAS  Google Scholar 

  53. Lucas M, Gadola S, Meier U, et al. Frequency and phenotype of circulating Va24/Vb11 double-positive natural killer T cells during hepatitis C virus infection. J Virol 2003; 77:2251–2257.

    Article  PubMed  CAS  Google Scholar 

  54. Barnaba V, Franco A, Paroli M, et al. Selective expansion of cytotoxic T lymphocytes with a CD4+CD56+ surface phenotype and a T helper type 1 profile of cytokine secretion in the liver of patients chronically infected with hepatitis B virus. J Immunol 1994; 152:3074–3087.

    PubMed  CAS  Google Scholar 

  55. Deignan T, Curry MP, Doherty DG, et al. Decrease in hepatic CD56+ T cells and Va24+ natural killer T cells in chronic hepatitis C viral infection. J Hepatol 2002; 37:101–108.

    Article  PubMed  CAS  Google Scholar 

  56. Kelly AM, Golden-Mason L, Traynor O, McEntee G, Hegarty JE, O’Farrelly C. Interleukin 12 (IL-12) is increased in tumour bearing human liver and expands CD8+/CD56+ T cells in vitro but not in vivo. Cytokine 2004; 25:273–282.

    Article  PubMed  CAS  Google Scholar 

  57. Harada N, Shimada M, Okano S, et al. IL-12 gene therapy is an effective therapeutic strategy for hepatocellular carcinoma in immunosuppressed mice. J Immunol 2004; 173:6635–6644.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

O’Farrelly, C., Doherty, D.G. (2007). Innate Immune Mechanisms in the Liver. In: Gershwin, M.E., Vierling, J.M., Manns, M.P. (eds) Liver Immunology. Humana Press. https://doi.org/10.1007/978-1-59745-518-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-518-3_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-818-8

  • Online ISBN: 978-1-59745-518-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics