Skip to main content

Voltage-Gating Mechanisms of Connexin Channels

  • Chapter
Connexins

Abstract

Channels formed by the connexin family of proteins display multiple forms of voltage dependence that have different sensitivities and time courses. Intercellular (junctional) channels are sensitive to two orientations of applied voltage: inside-out or transmembrane voltage (Vi-o or Vm), and transjunctional voltage (Vj). At least two voltage-gating mechanisms operate in both intercellular channels and in unapposed hemichannels. The Vj or fast-gating mechanism is sensitive to Vj. The loop or slow-gating mechanism is also sensitive to Vj and may also be sensitive to Vi–o/Vm and to channel closure by chemical agents. Both types of voltage-gating are intrinsic to hemichannels; in an intercellular channel, each apposed hemichannel contains separate gating structures arranged in series. The molecular determinants and the mechanism of polarity determination of Vj/fast-gating have been studied extensively for homomeric Cx26 and Cx32 hemichannels. These studies have shown that difference in gating polarity of Cx26 and Cx32 hemichannels results from a difference in the charge of the second amino acid residue. The voltage polarity to which Cx32 hemichannels close can be reversed by negative charge substitutions up to the tenth but not the eleventh residue. This has led to a structural model in which the first ten amino acid residues of the amino-terminal domain form the entry of the channel pore by virtue of a turn initiated by the flexibility of a glycine residue at the twelveth position. This model is supported by nuclear magnetic resonance (NMR)-derived structures of a peptide of the amino-terminal domain of Cx26 and permeation studies demonstrating that charged residues in the amino-terminal domain are determinants of unitary conductance and contribute to the rectification of current through the open channel. Initially, it was proposed that the inward movement of the charges in the amino-terminal domain initiates Vj/fast-gating. This view was complicated by the discovery of homomeric channels that display bipolar Vj/fast-gating, leading to the possibility that the voltage sensor functions as a center-open toggle switch. The subsequent conformational changes that result in channel closure to a substate may involve the actions of a proline kink in the second transmembrane domain, an interaction between the cytoplasmic loop and carboxyl-terminal domain, or could result from the movement of the amino-terminal domain as a gating particle. Less is known about the molecular determinants and mechanisms of loop/slow-gating. The process is mechanistically distinct from Vj/fast-gating, in at least its initiation. The two processes may share structural elements, although it is unlikely that the conformational changes with gating will be identical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verselis VK, Bennett MVL, Bargiello TA. A voltage-dependent gap junction in Drosophila melanogaster. Biophys J. 1991;59:114–26.

    Article  CAS  PubMed  Google Scholar 

  2. Bukauskas FF, Weingart R. Voltage-dependent gating of single gap junction channels in an insect cell line. Biophys J. 1994;67:613–25.

    Article  CAS  PubMed  Google Scholar 

  3. Barrio LC, Suchyna T, Bargiello T, Xu LX, Roginski RS, Bennett MV, Nicholson BJ. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci USA. 1991;88:8410–4.

    Article  CAS  PubMed  Google Scholar 

  4. Rubin JB, Verselis VK, Bennett MVL, Bargiello TA. A domain substitution procedure and its use to analyze voltage dependence of homotypic gap junctions formed by connexins 26 and 32. Proc Natl Acad Sci USA. 1992;89:3820–4.

    Article  CAS  PubMed  Google Scholar 

  5. Rubin JB, Verselis VK, Bennett MVL, Bargiello TA. Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys J. 1992;62:183–93.

    Article  CAS  PubMed  Google Scholar 

  6. Brink PR, Cronin K, Banach K, Peterson E, Westphale EM, Seul KH, Ramanan SV, Beyer EC. Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol. 1997;273: C1386–96.

    CAS  PubMed  Google Scholar 

  7. Oh S, Rubin JB, Bennett MVL, Verselis VK, Bargiello TA. Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J Gen Physiol. 1999;114:339–64.

    Article  CAS  PubMed  Google Scholar 

  8. Chen D, Eisenberg R. Charges, currents and potentials in ionic channels of one conformation. Biophys J. 1993;64:1405–21.

    Article  CAS  PubMed  Google Scholar 

  9. Puljung MC, Berthoud VM, Beyer EC, Hanck DA. Polyvalent cations constitute the voltage-gating particle in human connexin37 hemichannels. J Gen Physiol. 2004; 124:587–603.

    Article  CAS  PubMed  Google Scholar 

  10. Srinivas M, Calderon DP, Kronengold J, Verselis VK. Regulation of connexin hemichannels by monovalent cations. J Gen Physiol. 2006;127:67–75.

    Article  CAS  PubMed  Google Scholar 

  11. Harris AL, Spray DC, Bennett MVL. Kinetic properties of a voltage-dependent junctional conductance. J Gen Physiol. 1981;77:95–117.

    Article  CAS  PubMed  Google Scholar 

  12. Brink PR, Ramanan SV, Christ GJ. Human connexin 43 gap junction channel gating: evidence for mode shifts and/or heterogeneity. Am J Physiol. 1996;271:C321–31.

    CAS  PubMed  Google Scholar 

  13. Chen-Izu Y, Moreno AP. Spangleer SR. Opposing gates model for voltage-gating of gap junction channels Am J Physiol. 2001;281:C1604-C1613

    CAS  Google Scholar 

  14. Ramanan SV, Valiunas V, Brink PR. Non-stationary fluctuation analysis of macroscopic gap junction channel records. J Membr Biol. 2005;205:81–8.

    Article  CAS  PubMed  Google Scholar 

  15. Rackauskas M, Kreuzberg MM, Pranevicius M, Willecke K, Verselis VK, Bukauskas FF. Gating properties of heterotypic gap junction channels formed of connexins 40, 43, and 45. Biophys J. 2007;92:1952–65.

    Article  CAS  PubMed  Google Scholar 

  16. Oh S, Ri Y, Bennett MVL, Trexler EB, Verselis VK, Bargiello TA. Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron. 1997;19:927–38.

    Article  CAS  PubMed  Google Scholar 

  17. Trexler EB, Bennett MVL, Bargiello TA, Verselis VK. Voltage-gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci USA. 1996;93:5836–41.

    Article  CAS  PubMed  Google Scholar 

  18. Bukauskas FF, Elfgang C, Willecke K, Weingart R. Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys J. 1995;68:2289–98

    Article  CAS  PubMed  Google Scholar 

  19. Revilla A, Bennett MVL, Barrio LC. Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc Natl Acad Sci USA. 2000;97:14760–5.

    Article  CAS  PubMed  Google Scholar 

  20. Verselis VK, Ginter CS, Bargiello TA. Opposite voltage-gating polarities of two closely related connexins. Nature. 1994;368:348–51.

    Article  CAS  PubMed  Google Scholar 

  21. Tong JJ, Liu X, Dong L, Ebihara L. Exchange of gating properties between rat Cx46 and chicken Cx45.6. Biophys J. 2004;87:2397–406.

    Article  CAS  PubMed  Google Scholar 

  22. Dong L, Liu X, Li H, Vertel BM, Ebihara L. Role of the N-terminus in permeability of chicken connexin45.6 gap junctional channels. J Physiol. 2006;576:787–99.

    Article  CAS  PubMed  Google Scholar 

  23. Gemel J, Lin X, Veenstra RD, Beyer EC. N-terminal residues in Cx43 and Cx40 determine physiological properties of gap junction channels, but do not influence heteromeric assembly with each other or with Cx26. J Cell Sci. 2006;119:2258–68.

    Article  CAS  PubMed  Google Scholar 

  24. Ramanan SV, Brink PR, Varadaraj K, Peterson E, Schirrmacher K, Banach K. A three-state model for connexin37 gating kinetics. Biophys J. 1999;76:2520–9.

    Article  CAS  PubMed  Google Scholar 

  25. Banach K, Ramanan SV, Brink PR. The influence of surface charges on the conductance of the human connexin37 gap junction channel Biophys J. 2000;78:752–60.

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez D, Gomez-Hernandez JM, Barrio LC. Molecular basis of voltage dependence of connexin channels: an integrative appraisal. Prog Biophys Mol Biol. 2007;94:66–106.

    Article  CAS  PubMed  Google Scholar 

  27. Oh S, Abrams CK, Verselis VK, Bargiello TA. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J Gen Physiol. 2000;116:13–31.

    Article  CAS  PubMed  Google Scholar 

  28. Pfahnl A, Zhou XW, Werner R, Dahl G. A chimeric connexin forming gap junction hemichannels. Pflügers Arch. 1997;433:773–9

    Article  CAS  PubMed  Google Scholar 

  29. Purnick PE, Oh S, Abrams CK, Verselis VK, Bargiello TA. Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32. Biophys J. 2000;79:2403–15.

    Article  CAS  PubMed  Google Scholar 

  30. Oh S, Rivkin S, Tang Q, Verselis VK, Bargiello TA. Determinants of gating polarity of a connexin 32 hemichannel. Biophys J. 2004;87:912–28.

    Article  CAS  PubMed  Google Scholar 

  31. Purnick PE, Benjamin DC, Verselis VK, Bargiello TA, Dowd TL. Structure of the amino terminus of a gap junction protein. Arch Biochem Biophys. 2000;381:181–90.

    Article  CAS  PubMed  Google Scholar 

  32. Banach K, Ramanan SV, Brink PR. Homotypic hCx37 and rCx43 and their heterotypic form. In: Werner R, editor. Gap Junctions: IOS Press; 1998; 76–80.

    Google Scholar 

  33. Srinivas M, Kronengold J, Bukauskas FF, Bargiello TA, Verselis VK. Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J. 2005;88:1725–39.

    Article  CAS  PubMed  Google Scholar 

  34. Bao L, Sachs F, Dahl G. Connexins are mechanosensitive. Am J Physiol Cell Physiol. 2004;287:C1389–95.

    Article  CAS  PubMed  Google Scholar 

  35. Cha A, Bezanilla F. Structural implications of fluorescence quenching in the Shaker K+ channel. J Gen Physiol. 1998;112:391–408.

    Article  CAS  PubMed  Google Scholar 

  36. Horenstein J, Wagner DA, Czajkowski C, Akabas MH. Protein mobility and GABA-induced conformational changes in GABA(A) receptor pore-lining M2 segment. Nat Neurosci. 2001;4:477–85.

    CAS  PubMed  Google Scholar 

  37. Yang N, George AL Jr, Horn R. Molecular basis of charge movement in voltage-dependent sodium channels. Neuron. 1996;16:113–122.

    Article  PubMed  Google Scholar 

  38. Ri Y, Ballesteros JA, Abrams CK, Oh S, Verselis VK, Weinstein H, Bargiello TA. The role of a conserved proline residue in mediating conformational changes associated with voltage-gating of Cx32 gap junctions. Biophys J. 1999;76:2887–98.

    Article  CAS  PubMed  Google Scholar 

  39. Suchyna TM, Xu LX, Gao F, Fourtner CR, Nicholson BJ. Identification of a proline residue as a transduction element involved in voltage-gating of gap junctions. Nature. 1993;365:847–9.

    Article  CAS  PubMed  Google Scholar 

  40. Shibayama J, Gutierrez C, Gonzalez D, Kieken F, Seki A, Carrion JR, Sorgen PL, Taffet SM, Barrio LC, Delmar M. Effect of charge substitutions at residue his-142 on voltage-gating of connexin43 channels. Biophys J. 2006;91:4054–63.

    Article  CAS  PubMed  Google Scholar 

  41. Oshima A, Tani K, Hiroaki Y, Fujiyoshi Y, Sosinsky GE. Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule. Proc Natl Acad Sci USA. 2007;104:10034–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ballesteros JA, Weinstein H. Integrated methods for modeling G-protein coupled receptors. Methods Neurosci. 1995;25:366–428.

    Article  CAS  Google Scholar 

  43. Bukauskas FF, Bukauskiene A, Verselis VK. Conductance and permeability of the residual state of connexin43 gap junction channels. J Gen Physiol. 2002;119:171–85.

    Article  CAS  PubMed  Google Scholar 

  44. Bukauskas FF, Bukauskiene A, Bennett MVL, Verselis VK. Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophys J. 2001;81:137–52.

    Article  CAS  PubMed  Google Scholar 

  45. Revilla A, Castro C, Barrio LC. Molecular dissection of transjunctional voltage dependence in the connexin-32 and connexin-43 junctions. Biophys J. 1999;77:1374–83.

    Article  CAS  PubMed  Google Scholar 

  46. Revilla A, Bennett MVL, Barrio LC. Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc Natl Acad Sci USA. 2000;97: 14760–5.

    Google Scholar 

Download references

Acknowledgments

We thank our colleagues at Einstein and Stony Brook for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaddeus Bargiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bargiello, T., Brink, P. (2009). Voltage-Gating Mechanisms of Connexin Channels. In: Harris, A.L., Locke, D. (eds) Connexins. Humana Press. https://doi.org/10.1007/978-1-59745-489-6_4

Download citation

Publish with us

Policies and ethics