Skip to main content

Connexins in Skeletal Biology

  • Chapter
Connexins

Abstract

The skeleton is a dynamic structure that constantly remodels in response to local and systemic stimuli to meet the needs of structural integrity, mechanical competence, and maintenance of mineral homeostasis. Control of bone remodeling requires coordinated activity among osteoblasts, osteocytes, and osteoclasts. In recent years, knowledge about the biological role of connexins in the skeletal system has significantly advanced, primarily as a result of studies involving mouse and human connexin genetics. Cx43, the most abundant gap junction protein in the skeleton, is required for normal skeletal development (bone modeling) and for its maintenance in postnatal life (bone remodeling). These biological functions are underscored by the skeletal malformations and severe osteopenia present in oculodentodigital dysplasia, a disease linked to CX43 gene (GJA1) mutations, and by Gja1 ablation in mice. Cx43 modulates osteoblast differentiation and function by allowing full responses to extracellular cues via upregulation of specific signaling pathways converging on connexin-sensitive transcriptional units. Other connexins are present in the skeletal tissue, but their function is only partially understood. Gap junctional intercellular communication and gap junction hemichannels are also critical in mechanostransduction, functioning to integrate and amplify mechanical signals throughout bone cell networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Civitelli R, Beyer EC, Warlow PM, Robertson AJ, Geist ST, Steinberg TH. Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest. 1993;91:1888–96.

    Article  CAS  PubMed  Google Scholar 

  2. Steinberg TH, Civitelli R, Geist ST, Robertson AJ, Hick E, Veenstra RD, Wang H-Z, Warlow PM, Westphale EM, Laing JG, Beyer EC. Connexin43 and connexin45 form gap junctions with different molecular permeabilities in osteoblastic cells. EMBO J. 1994;13:744–50.

    CAS  PubMed  Google Scholar 

  3. Donahue HJ, McLeod KJ, Rubin CT, Andersen J, Grine EA, Hertzberg EL, Brink PR. Cell-to-cell communication in osteoblastic networks: cell line-dependent hormonal regulation of gap junction function. J Bone Miner Res. 1995;10:881–9.

    Article  CAS  PubMed  Google Scholar 

  4. Ilvesaro J, Vaananen K, Tuukkanen J. Bone-resorbing osteoclasts contain gap-junctional connexin-43. J Bone Miner Res. 2000;15:919–26.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng B, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J Bone Miner Res. 2001;16:249–59.

    Article  CAS  PubMed  Google Scholar 

  6. Pizard A, Burgon PG, Paul DL, Bruneau BG, Seidman CE, Seidman JG. Connexin 40, a target of transcription factor Tbx5, patterns wrist, digits, and sternum. Mol Cell Biol. 2005;25:5073–83.

    Article  CAS  PubMed  Google Scholar 

  7. Coelho CN, Kosher RA. A gradient of gap junctional communication along the anterior-posterior axis of the developing chick limb bud. Dev Biol. 1991;148:529–35.

    Article  CAS  PubMed  Google Scholar 

  8. Dealy CN, Beyer EC, Kosher RA. Expression patterns of mRNAs for the gap junction proteins connexin43 and connexin42 suggest their involvement in chick limb morphogenesis and specification of the arterial vasculature. Dev Dyn. 1994;199:156–67.

    CAS  PubMed  Google Scholar 

  9. Green CR, Bowles L, Crawley A, Tickle C. Expression of the connexin43 gap junctional protein in tissues at the tip of the chick limb bud is related to the epithelial-mesenchymal interactions that mediate morphogenesis. Dev Biol. 1994;161:12–21.

    Article  PubMed  Google Scholar 

  10. Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000;151:931–44.

    Article  CAS  PubMed  Google Scholar 

  11. Chung DJ, Castro CH, Watkins M, Stains JP, Chung MY, Szejnfeld VL, Willecke K, Theis M, Civitelli R. Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43. J Cell Sci. 2006;119:4187–98.

    Article  CAS  PubMed  Google Scholar 

  12. Castro CH, Stains JP, Sheikh S, Szejnfeld VL, Willecke K, Theis M, Civitelli R. Development of mice with osteoblast-specific connexin43 gene deletion. Cell Commun Adhes. 2003;10:445–50.

    CAS  PubMed  Google Scholar 

  13. Becker DL, McGonnell I, Makarenkova HP, Patel K, Tickle C, Lorimer J, Green CR. Roles for α1 connexin in morphogenesis of chick embryos revealed using a novel antisense approach. Dev Genet. 1999;24:33–42.

    Article  CAS  PubMed  Google Scholar 

  14. McGonnell IM, Green CR, Tickle C, Becker DL. Connexin43 gap junction protein plays an essential role in morphogenesis of the embryonic chick face. Dev Dyn. 2001;222:420–38.

    Article  CAS  PubMed  Google Scholar 

  15. Alappat S, Zhang ZLY, Chen YP. Analysis of Msx1; Msx2 double mutants reveals multiple roles for Msx homeobox gene family and craniofacial genes in limb development. Cell Res. 2003;13:429–42.

    Article  CAS  PubMed  Google Scholar 

  16. Cohen MM Jr. Craniofacial disorders caused by mutations in homeobox genes MSX1 and MSX2. J Craniofac Genet Dev Biol. 2000;20:19–25.

    CAS  PubMed  Google Scholar 

  17. Iovine MK, Johnson SL. Genetic analysis of isometric growth control mechanisms in the zebrafish caudal Fin. Genetics 2000;155:1321–29.

    CAS  PubMed  Google Scholar 

  18. Iovine MK, Higgins EP, Hindes A, Coblitz B, Johnson SL. Mutations in connexin43 (GJA1) perturb bone growth in zebrafish fins. Dev Biol. 2005;278:208–19.

    Article  CAS  PubMed  Google Scholar 

  19. Basson CT, Huang T, Lin RC, Bachinsky DR, Weremowicz S, Vaglio A, Bruzzone R, Quadrelli R, Lerone M, Romeo G, Silengo M, Pereira A, Krieger J, Mesquita SF, Kamisago M, Morton CC, Pierpont ME, Müller CW, Seidman JG, Seidman CE. Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.

    Article  CAS  PubMed  Google Scholar 

  20. Richardson R, Donnai D, Meire F, Dixon MJ. Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. J Med Genet. 2004;41:60–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kjaer KW, Hansen L, Eiberg H, Leicht P, Opitz JM, Tommerup N. Novel Connexin 43 (GJA1) mutation causes oculo-dento-digital dysplasia with curly hair. Am J Med Genet. 2004;127A:152–7.

    Article  PubMed  Google Scholar 

  22. Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet. 2003;72:408–18.

    Article  CAS  PubMed  Google Scholar 

  23. Loddenkemper T, Grote K, Evers S, Oelerich M, Stogbauer F. Neurological manifestations of the oculodentodigital dysplasia syndrome. J Neurol. 2002;249:584–95.

    Article  PubMed  Google Scholar 

  24. Schrander-Stumpel CT, Groot-Wijnands JB, Die-Smulders C, Fryns JP. Type III syndactyly and oculodentodigital dysplasia: a clinical spectrum. Genet Couns. 1993;4:271–6.

    CAS  PubMed  Google Scholar 

  25. Shibayama J, Paznekas W, Seki A, Taffet S, Jabs EW, Delmar M, Musa H. Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia. Circ Res. 2005;96:e83–91.

    Article  CAS  PubMed  Google Scholar 

  26. Roscoe W, Veitch GI, Gong XQ, Pellegrino E, Bai D, McLachlan E, Shao Q, Kidder GM, Laird DW. Oculodentodigital dysplasia-causing connexin43 mutants are non-functional and exhibit dominant effects on wildtype connexin43. J Biol Chem. 2005;280:11458–66.

    Article  CAS  PubMed  Google Scholar 

  27. Flenniken AM, Osborne LR, Anderson N, Ciliberti N, Fleming C, Gittens JE, Gong XQ, Kelsey LB, Lounsbury C, Moreno L, Nieman BJ, Peterson K, Qu D, Roscoe W, Shao Q, Tong D, Veitch GI, Voronina I, Vukobradovic I, Wood GA, Zhu Y, Zirngibl RA, Aubin JE, Bai D, Bruneau BG, Grynpas M, Henderson JE, Henkelman RM, McKerlie C, Sled JG, Stanford WL, Laird DW, Kidder GM, Adamson SL, Rossant J. A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development. 2005;132:4375–86.

    Article  CAS  PubMed  Google Scholar 

  28. Kumai M, Nishii K, Nakamura K, Takeda N, Suzuki M, Shibata Y. Loss of connexin45 causes a cushion defect in early cardiogenesis. Development. 2000;127:3501–12.

    CAS  PubMed  Google Scholar 

  29. Koval M, Harley JE, Hick E, Steinberg TH. Connexin46 is retained as monomers in a trans-Golgi compartment of osteoblastic cells. J Cell Biol. 1997;137:847–57.

    Article  CAS  PubMed  Google Scholar 

  30. Gong X-H, Li E, Klier G, Kumar NM, Gilula NB. Disruption of α3 connexin gene leads to age-related cataract formation in mice. Mol Biol Cell. 1996;7:509a.

    Google Scholar 

  31. Stains JP, Civitelli R. Gap junctions in skeletal development and function. Biochim Biophys Acta. 2005;1719:69–81.

    Article  CAS  PubMed  Google Scholar 

  32. Stains JP, Civitelli R. Cell-cell interactions in regulating osteogenesis and osteoblast function. Birth Defects Res C Embryo Today. 2005;75:72–80.

    Article  CAS  PubMed  Google Scholar 

  33. Reaume AG, De Sousa PA, Kulkarmi S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J. Cardiac malformation in neonatal mice lacking connexin43. Science 1995;267:1831–4.

    Article  CAS  PubMed  Google Scholar 

  34. McLachlan E, Manias JL, Gong XQ, Lounsbury CS, Shao Q, Bernier SM, Bai D, Laird DW. Functional characterization of oculodentodigital dysplasia-associated Cx43 mutants. Cell Commun Adhes. 2005;12:279–92.

    Article  CAS  PubMed  Google Scholar 

  35. Watkins M, Ornitz D, Willecke K, Civitelli R. Connexin43 is required for normal skeletal development and bone mass acquisition. J Bone Miner Res. 2006;21:S56.

    Google Scholar 

  36. Presley CA, Lee AW, Kastl B, Igbinosa I, Yamada Y, Fishman GI, Gutstein DE, Cancelas JA. Bone marrow connexin-43 expression is critical for hematopoietic regeneration after chemotherapy. Cell Commun Adhes. 2005; 12:307–17.

    Article  CAS  PubMed  Google Scholar 

  37. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995;57:344–58.

    Article  CAS  PubMed  Google Scholar 

  38. Donahue HJ. Gap junctional intercellular communication in bone: a cellular basis for the mechanostat set point. Calcif Tissue Int. 1998;62:85–8.

    Article  CAS  PubMed  Google Scholar 

  39. Van der Molen MA, Rubin CT, McLeod KJ, McCauley LK, Donahue HJ. Gap junctional intercellular communication contributes to hormonal responsiveness in osteoblastic networks. J Biol Chem. 1996;271:12165–71.

    Article  Google Scholar 

  40. Schiller PC, Mehta PP, Roos BA, Howard GA. Hormonal regulation of intercellular communication: parathyroid hormone increases connexin43 gene expression and gap-junctional communication in osteoblastic cells. Mol Endocrinol. 1992;6:1433–40.

    Article  CAS  PubMed  Google Scholar 

  41. Ziambaras K, Lecanda F, Steinberg TH, Civitelli R. Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res. 1998;13:218–28.

    Article  CAS  PubMed  Google Scholar 

  42. Schiller PC, D'Ippolito G, Balkan W, Roos BA, Howard GA. Gap-junctional communication mediates parathyroid hormone stimulation of mineralization in osteoblastic cultures. Bone 2001;28:38–44.

    Article  CAS  PubMed  Google Scholar 

  43. Dobnig H, Turner RT. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 1995;136:3632–8.

    Article  CAS  PubMed  Google Scholar 

  44. Iida-klein A, Zhou H, Lu SS, Levine LR, Ducayen-Knowles M, Dempster DW, Nieves J, Lindsay R. Anabolic action of parathyroid hormone is skeletal site specific at the tissue and cellular levels in mice. J Bone Miner Res. 2002;17:808–16.

    Article  CAS  PubMed  Google Scholar 

  45. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    Article  CAS  PubMed  Google Scholar 

  46. Plotkin LI, Manolagas SC, Bellido T. Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem. 2002;277:8648–57.

    Article  CAS  PubMed  Google Scholar 

  47. Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005;280:7317–25.

    Article  CAS  PubMed  Google Scholar 

  48. Moreno AP, Fishman GI, Beyer EC, Spray DC. Voltage-dependent gating and single channel analysis of heterotypic gap junction channels formed of Cx45 and Cx43. In: Progress in Cell Research. Y. Kanno, editor. Amsterdam, The Netherlands. Elsevier Science B.V.; 1995. pp. 405–8.

    Google Scholar 

  49. Koval M, Geist ST, Westphale EM, Kemendy AE, Civitelli R, Beyer EC, Steinberg TH. Transfected connexin45 alters gap junction permeability in cells expressing endogenous connexin43. J Cell Biol. 1995;130:987–95.

    Article  CAS  PubMed  Google Scholar 

  50. Martínez AD, Hayrapetyan V, Moreno AP, Beyer EC. Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ Res. 2002;90:1100–7.

    Article  CAS  PubMed  Google Scholar 

  51. Lecanda F, Towler DA, Ziambaras K, Cheng S-L, Koval M, Steinberg TH, Civitelli R. Gap junctional communication modulates gene expression in osteoblastic cells. Mol Biol Cell. 1998;9:2249–58.

    CAS  PubMed  Google Scholar 

  52. Gramsch B, Gabriel HD, Wiemann M, Grummer R, Winterhager E, Bingmann D, Schirrmacher K. Enhancement of connexin 43 expression increases proliferation and differentiation of an osteoblast-like cell line. Exp Cell Res. 2001;264:397–407.

    Article  CAS  PubMed  Google Scholar 

  53. Schiller PC, D'Ippolito G, Brambilla R, Roos BA, Howard GA. Inhibition of gap-junctional communication induces the trans-differentiation of osteoblasts to an adipocytic phenotype in vitro. J Biol Chem. 2001;276:14133–8.

    CAS  PubMed  Google Scholar 

  54. Upham BL, Suzuki J, Chen G, Wang Y, McCabe LR, Chang CC, Krutovskikh VA, Yamasaki H, Trosko JE. Reduced gap junctional intercellular communication and altered biological effects in mouse osteoblast and rat liver oval cell lines transfected with dominant-negative connexin 43. Mol Carcinog. 2003;37:192–201.

    Article  CAS  PubMed  Google Scholar 

  55. Stains JP, Lecanda F, Screen J, Towler DA, Civitelli R. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promotors. J Biol Chem. 2003;278:24377–87.

    Article  CAS  PubMed  Google Scholar 

  56. Stains JP, Civitelli R. Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription. Mol Biol Cell. 2005;16:64–72.

    Article  CAS  PubMed  Google Scholar 

  57. Hughes-Fulford M. Signal transduction and mechanical stress. Sci STKE. 2004;2004:RE12.

    Article  PubMed  Google Scholar 

  58. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98.

    Article  CAS  PubMed  Google Scholar 

  59. McLeod KJ, Donahue HJ, Levin PE, Fontaine MA, Rubin CT. Electric fields modulate bone cell function in a density-dependent manner. J Bone Miner Res. 1993;8: 977–84.

    Article  CAS  PubMed  Google Scholar 

  60. You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem. 2001;276:13365–13371.

    Article  CAS  PubMed  Google Scholar 

  61. Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ. Differential effect of steady versus oscillating flow on bone cells. J Biomech. 1998;31:969–76.

    Article  CAS  PubMed  Google Scholar 

  62. Kurokouchi K, Jacobs CR, Donahue HJ. Oscillating fluid flow inhibits TNF-α-induced NF-kappa B activation via an Ikappa B kinase pathway in osteoblast-like UMR106 cells. J Biol Chem. 2001;276:13499–504.

    Article  CAS  PubMed  Google Scholar 

  63. Saunders MM, You J, Zhou Z, Li Z, yellowley CE, Kunze EL, Jacobs CR, Donahue HJ. Fluid flow-induced prostaglandin E2 response of osteoblastic ROS 17/2.8 cells is gap junction-mediated and independent of cytosolic calcium. Bone 2003;32:350–6.

    Article  CAS  PubMed  Google Scholar 

  64. Alford AI, Jacobs CR, Donahue HJ. Oscillating fluid flow regulates gap junction communication in osteocytic MLO-Y4 cells by an ERK1/2 MAP kinase-dependent mechanism. Bone 2003;33:64–70.

    Article  CAS  PubMed  Google Scholar 

  65. Saunders MM, You J, Trosko JE, Yamasaki H, Li Z, Donahue HJ, Jacobs CR. Gap junctions and fluid flow response in MC3T3-E1 cells. Am J Physiol Cell Physiol. 2001;281:C1917–25.

    CAS  PubMed  Google Scholar 

  66. Van der Molen MA, Donahue HJ, Rubin CT, McLeod KJ. Osteoblastic networks with deficient coupling: differential effects of magnetic and electric field exposure. Bone 2000;27:227–31.

    Article  Google Scholar 

  67. Donahue HJ. Gap junctions and biophysical regulation of bone cell differentiation. Bone 2000;26:417–22.

    Article  CAS  PubMed  Google Scholar 

  68. Wall ME, Banes AJ. Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact. 2005;5:70–84.

    CAS  PubMed  Google Scholar 

  69. Cheng B, Kato Y, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX. PGE2 is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology 2001;142:3464–73.

    Article  CAS  PubMed  Google Scholar 

  70. Cherian PP, Cheng B, Gu S, Sprague E, Bonewald LF, Jiang JX. Effects of mechanical strain on the function of gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem. 2003;278:43146–56.

    Article  CAS  PubMed  Google Scholar 

  71. Thi MM, Kojima T, Cowin SC, Weinbaum S, Spray DC. Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells. Am J Physiol Cell Physiol. 2003;284:C389–403.

    CAS  PubMed  Google Scholar 

  72. Lozupone E, Palumbo C, Favia A, Ferretti M, Palazzini S, Cantatore FP. Intermittent compressive load stimulates osteogenesis and improves osteocyte viability in bones cultured ‘in vitro’. Clin Rheumatol. 1996;15:563–572.

    Article  CAS  PubMed  Google Scholar 

  73. Su M, Borke JL, Donahue HJ, Li Z, Warshawsky NM, Russell CM, Lewis JE. Expression of connexin 43 in rat mandibular bone and periodontal ligament (PDL) cells during experimental tooth movement. J Dent Res. 1997;76:1357–66.

    Article  CAS  PubMed  Google Scholar 

  74. Gluhak-Heinrich J, Gu S, Pavlin D, Jiang JX. Mechanical loading stimulates expression of connexin 43 in alveolar bone cells in the tooth movement model. Cell Commun Adhes. 2006;13:115–25.

    Article  CAS  PubMed  Google Scholar 

  75. D'Andrea P, Vittur F. Gap junctions mediate intercellular calcium signaling in cultured articular chondrocytes. Cell Calcium. 1996;20:389–97.

    Article  PubMed  Google Scholar 

  76. Donahue HJ, Guilak F, Van der Molen MA, McLeod KJ, Rubin CT, Grande DA, Brink PR. Chondrocytes isolated from mature articular cartilage retain the capacity to from functional gap junctions. J Bone Miner Res. 1995;10:1359–64.

    Article  CAS  PubMed  Google Scholar 

  77. Jørgensen NR, Geist ST, Civitelli R, Steinberg TH. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biol. 1997;139:497–506.

    Article  PubMed  Google Scholar 

  78. Jørgensen NR, Henriksen Z, Brot C, Eriksen EF, Sorensen OH, Civitelli R, Steinberg TH. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J Bone Miner Res. 2000;15:1024–32.

    Article  PubMed  Google Scholar 

  79. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M. Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA. 1998;95:15735–40.

    Google Scholar 

  80. Stout CE, Costantin JL, Naus CC, Charles AC. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem. 2002;277:10482–8.

    Article  CAS  PubMed  Google Scholar 

  81. Romanello M, Pani B, Bicego M, D'Andrea P. Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun. 2001;289:1275–81.

    Article  CAS  PubMed  Google Scholar 

  82. Jørgensen NR, Teilmann SC, Henriksen Z, Civitelli R, Sorensen OH, Steinberg TH. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells. J Biol Chem. 2003;278:4082–86.

    Article  PubMed  Google Scholar 

  83. Genetos DC, Geist DJ, Liu D, Donahue HJ, Duncan RL. Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J Bone Miner Res. 2005;20:41–9.

    Article  CAS  PubMed  Google Scholar 

  84. Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005;16:3100–6.

    Article  CAS  PubMed  Google Scholar 

  85. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol. 2007;212:207–14.

    Article  CAS  PubMed  Google Scholar 

  86. Spray DC, Ye ZC, Ransom BR. Functional connexin ‘hemichannels’: a critical appraisal. Glia 2006;54:758–73.

    Article  PubMed  Google Scholar 

  87. Yellowley CE, Li Z, Zhou Z, Jacobs CR, Donahue HJ. Functional gap junctions between osteocytic and osteoblastic cells. J Bone Miner Res. 2000;15:209–17.

    Article  CAS  PubMed  Google Scholar 

  88. Taylor AF, Saunders MM, Shingle DL, Cimbala JM, Zhou Z, Donahue HJ. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am J Physiol Cell Physiol. 2007;292:C545–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) grants AR41255 (to RC) and AG13087-11 (to HD). We also thank Amanda Taylor, Ryan Riddle, and Jung Lim for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Civitelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Civitelli, R., Donahue, H.J. (2009). Connexins in Skeletal Biology. In: Harris, A.L., Locke, D. (eds) Connexins. Humana Press. https://doi.org/10.1007/978-1-59745-489-6_17

Download citation

Publish with us

Policies and ethics