Skip to main content

Roles of SNARE Proteins in Synaptic Vesicle Fusion

  • Chapter
Molecular Mechanisms of Neurotransmitter Release

Part of the book series: Contemporary Neuroscience ((NEUROBIOL))

Abstract

Neurotransmitters are stored in small membrane-bound vesicles at synapses. Neurotransmitter release is initiated by depolarization of the neuron, which in turn activates voltage-gated calcium channels. Calcium influx then triggers the fusion of the synaptic vesicles with the plasma membrane. Fusion of the vesicular and plasma membranes is mediated by SNARE (soluble N-ethylmaleimide–sensitive factor attachment receptor) proteins. The SNAREs are now known to be used in all trafficking steps of the secretory pathway, including neurotransmission. This chapter describes the discovery of the SNAREs, their relevant structural features, models for their function, the specificity of interactions, and their interactions with the calcium-sensing machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trimble WS, Cowan DM, Scheller RH. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A 1988;85(12):4538–4542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Inoue A, Obata K, Akagawa K. Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J Biol Chem 1992;267(15):10613–10619.

    CAS  PubMed  Google Scholar 

  3. Bennett MK, Calakos N, Scheller RH. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992;257(5067):255–259.

    Article  CAS  PubMed  Google Scholar 

  4. Oyler GA, Higgins GA, Hart RA, et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 1989; 109(6 pt 1):3039–3052.

    Article  CAS  PubMed  Google Scholar 

  5. Brennwald P, Kearns B, Champion K, Keranen S, Bankaitis V, Novick P. Sec9 is a SNAP-25– like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 1994;79(2):245–258.

    Article  CAS  PubMed  Google Scholar 

  6. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980;21(1):205–215.

    Article  CAS  PubMed  Google Scholar 

  7. Burgen AS, Dickens F, Zatman LJ. The action of botulinum toxin on the neuro-muscular junction. J Physiol 1949;109(1–2):10–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blasi J, Chapman ER, Link E, et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 1993;365(6442):160–163.

    Article  CAS  PubMed  Google Scholar 

  9. Blasi J, Chapman ER, Yamasaki S, Binz T, Niemann H, Jahn R. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 1993;12(12):4821–4828.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Link E, Edelmann L, Chou JH, et al. Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis. Biochem Biophys Res Commun 1992;189(2): 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  11. Schiavo G, Benfenati F, Poulain B, et al. Tetanus and botulinum-B neurotoxins block neuro-transmitter release by proteolytic cleavage of synaptobrevin. Nature 1992;359(6398):832–835.

    Article  CAS  PubMed  Google Scholar 

  12. Marsal J, Ruiz-Montasell B, Blasi J, et al. Block of transmitter release by botulinum C1 action on syntaxin at the squid giant synapse. Proc Natl Acad Sci U S A 1997;94(26):14871–14876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Connor V, Heuss C, De Bello WM, et al. Disruption of syntaxin-mediated protein interactions blocks neurotransmitter secretion. Proc Natl Acad Sci U S A 1997;94(22):12186–12191.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hammarlund M, Palfreyman MT, Watanabe S, Olsen S, Jorgensen EM. Open syntaxin docks synaptic vesicles. PLoS Biol 2007;5(8):e198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Broadie K, Prokop A, Bellen HJ, O’Kane CJ, Schulze KL, Sweeney ST. Syntaxin and synapto-brevin function downstream of vesicle docking in Drosophila. Neuron 1995;15(3):663–673.

    Article  CAS  PubMed  Google Scholar 

  16. Schoch S, Deak F, Konigstorfer A, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001;294(5544):1117–1122.

    Article  CAS  PubMed  Google Scholar 

  17. Washbourne P, Thompson PM, Carta M, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 2002;5(1):19–26.

    CAS  PubMed  Google Scholar 

  18. Deitcher DL, Ueda A, Stewart BA, Burgess RW, Kidokoro Y, Schwarz TL. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J Neurosci 1998;18(6):2028–2039.

    CAS  PubMed  Google Scholar 

  19. Vilinsky I, Stewart BA, Drummond JA, Robinson IM, Deitcher DL. A Drosophila SNAP-25 null mutant reveals context-dependent redundancy with SNAP-24 in neurotransmission. Genetics 2002;162(1):259–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Balch WE, Glick BS, Rothman JE. Sequential intermediates in the pathway of intercompart-mental transport in a cell-free system. Cell 1984;39(3 Pt 2):525–536.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson DW, Wilcox CA, Flynn GC, et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 1989;339(6223):355–359.

    Article  CAS  PubMed  Google Scholar 

  22. Eakle KA, Bernstein M, Emr SD. Characterization of a component of the yeast secretion machinery: identification of the SEC18 gene product. Mol Cell Biol 1988;8(10): 4098–4109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Block MR, Glick BS, Wilcox CA, Wieland FT, Rothman JE. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci U S A 1988;85(21):7852–7856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clary DO, Griff IC, Rothman JE. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 1990;61(4):709–721.

    Article  CAS  PubMed  Google Scholar 

  25. Bock JB, Matern HT, Peden AA, Scheller RH. A genomic perspective on membrane compartment organization. Nature 2001;409(6822):839–841.

    Article  CAS  PubMed  Google Scholar 

  26. Jahn R, Lang T, Südhof TC. Membrane fusion. Cell 2003;112(4):519–533.

    Article  CAS  PubMed  Google Scholar 

  27. Söllner T, Whiteheart SW, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993;362(6418):318–324.

    Article  PubMed  Google Scholar 

  28. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 1993;75(3):409–418.

    Article  PubMed  Google Scholar 

  29. Rothman JE. Intracellular membrane fusion. Adv Second Messenger Phosphoprotein Res 1994;29:81–96.

    Article  CAS  PubMed  Google Scholar 

  30. Mayer A, Wickner W, Haas A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 1996;85(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  31. Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 1997;387(6629):199–202.

    Article  CAS  PubMed  Google Scholar 

  32. Littleton JT, Chapman ER, Kreber R, Garment MB, Carlson SD, Ganetzky B. Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 1998;21(2):401–413.

    Article  CAS  PubMed  Google Scholar 

  33. Grote E, Carr CM, Novick PJ. Ordering the final events in yeast exocytosis. J Cell Biol 2000;151(2):439–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion. Cell 1998;92(6):759–772.

    Article  CAS  PubMed  Google Scholar 

  35. Hu C, Ahmed M, Melia TJ, Söllner TH, Mayer T, Rothman JE. Fusion of cells by flipped SNAREs. Science 2003;300(5626):1745–1749.

    Article  CAS  PubMed  Google Scholar 

  36. Wickelgren WO, Leonard JP, Grimes MJ, Clark RD. Ultrastructural correlates of transmitter release in presynaptic areas of lamprey reticulospinal axons. J Neurosci 1985;5(5):1188–1201.

    CAS  PubMed  Google Scholar 

  37. Xu-Friedman MA, Harris KM, Regehr WG. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 2001;21(17):6666–6672.

    CAS  PubMed  Google Scholar 

  38. Satzler K, Sohl LF, Bollmann JH, et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J Neurosci 2002;22(24):10567–10579.

    CAS  PubMed  Google Scholar 

  39. Schneggenburger R, Meyer AC, Neher E. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 1999;23(2):399–409.

    Article  CAS  PubMed  Google Scholar 

  40. Stevens CF, Tsujimoto T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc Natl Acad Sci U S A 1995;92(3):846–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rosenmund C, Stevens CF. Definition of the readily releasable pool of vesicles at hippocam-pal synapses. Neuron 1996;16(6):1197–1207.

    Article  CAS  PubMed  Google Scholar 

  42. Fasshauer D, Sutton RB, Brunger AT, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 1998;95(26):15781–15786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kloepper TH, Nickias Kienle C, Fasshauer D. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell 2007;18(9):3463–3471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998;395(6700):347–353.

    Article  CAS  PubMed  Google Scholar 

  45. Fasshauer D, Antonin W, Subramaniam V, Jahn R. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat Struct Biol 2002;9(2):144–151.

    Article  CAS  PubMed  Google Scholar 

  46. Hayashi T, McMahon H, Yamasaki S, et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 1994;13(21):5051–5061.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fratti RA, Collins KM, Hickey CM, Wickner W. Stringent 3Q.1R composition of the SNARE 0–layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. J Biol Chem 2007;282(20):14861–14867.

    Article  CAS  PubMed  Google Scholar 

  48. Ossig R, Schmitt HD, de Groot B, et al. Exocytosis requires asymmetry in the central layer of the SNARE complex. EMBO 2000;19(22):6000–6010.

    Article  CAS  Google Scholar 

  49. Wei S, Xu T, Ashery U, et al. Exocytotic mechanism studied by truncated and zero layer mutants of the C-terminus of SNAP-25. EMBO J 2000;19(6):1279–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Dulubova I, Rizo J, Südhof TC. Functional analysis of conserved structural elements in yeast syntaxin Vam3p. J Biol Chem 2001;276(30):28598–28605.

    Article  CAS  PubMed  Google Scholar 

  51. Dilcher M, Kohler B, von Mollard GF. Genetic interactions with the yeast q-SNARE vti1 reveal novel functions for the r-snare ykt6. J Biol Chem 2001;276(37):34537–34544.

    Article  CAS  PubMed  Google Scholar 

  52. Gil A, Gutierrez LM, Carrasco-Serrano C, Alonso MT, Viniegra S, Criado M. Modifications in the C terminus of the synaptosome-associated protein of 25 kDa (SNAP-25) and in the complementary region of synaptobrevin affect the final steps of exocytosis. J Biol Chem 2002;277(12):9904–9910.

    Article  CAS  PubMed  Google Scholar 

  53. Baumert M, Maycox PR, Navone F, De Camilli P, Jahn R. Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J 1989;8(2):379–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Parlati F, McNew JA, Fukuda R, Miller R, Söllner TH, Rothman JE. Topological restriction of SNARE-dependent membrane fusion. Nature 2000;407(6801):194–198.

    Article  CAS  PubMed  Google Scholar 

  55. Fiebig KM, Rice LM, Pollock E, Brunger AT. Folding intermediates of SNARE complex assembly. Nat Struct Biol 1999;6(2):117–123.

    Article  CAS  PubMed  Google Scholar 

  56. Fasshauer D, Margittai M. A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J Biol Chem 2004;279(9):7613–7621.

    Article  CAS  PubMed  Google Scholar 

  57. Pobbati AV, Stein A, Fasshauer D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 2006;313(5787):673–676.

    Article  CAS  PubMed  Google Scholar 

  58. An SJ, Almers W. Tracking SNARE complex formation in live endocrine cells. Science 2004;306(5698):1042–1046.

    Article  CAS  PubMed  Google Scholar 

  59. Fujita Y, Shirataki H, Sakisaka T, et al. Tomosyn: a syntaxin-1–binding protein that forms a novel complex in the neurotransmitter release process. Neuron 1998;20(5):905–915.

    Article  CAS  PubMed  Google Scholar 

  60. Widberg CH, Bryant NJ, Girotti M, Rea S, James DE. Tomosyn interacts with the t-SNAREs syntaxin4 and SNAP23 and plays a role in insulin-stimulated GLUT4 translocation. J Biol Chem 2003;278(37):35093–35101.

    Article  CAS  PubMed  Google Scholar 

  61. Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J Biol Chem 2003;273(33):31159–31166.

    Article  CAS  Google Scholar 

  62. McEwen JM, Madison JM, Dybbs M, Kaplan JM. Antagonistic Regulation of Synaptic Vesicle Priming by Tomosyn and UNC-13. Neuron 2006;51(3):303–315.

    Article  CAS  PubMed  Google Scholar 

  63. Gracheva EO, Burdina AO, Holgado AM, et al. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans. PLoS Biol 2006;4(8):e261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Pobbati AV, Razeto A, Boddener M, Becker S, Fasshauer D. Structural basis for the inhibitory role of tomosyn in exocytosis. J Biol Chem 2004;279(45):47192–47200.

    Article  CAS  PubMed  Google Scholar 

  65. Hata Y, Slaughter CA, Südhof TC. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 1993;366(6453):347–351.

    Article  CAS  PubMed  Google Scholar 

  66. Garcia EP, Gatti E, Butler M, Burton J, De Camilli P. A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci U S A 1994;91(6):2003–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pevsner J, Hsu SC, Scheller RH. n-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci U S A 1994;91(4):1445–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Misura KM, Scheller RH, Weis WI. Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex. Nature 2000;404(6776):355–362.

    Article  CAS  PubMed  Google Scholar 

  69. Gallwitz D, Jahn R. The riddle of the Sec1/Munc-18 proteins—new twists added to their interactions with SNAREs. Trends Biochem Sci 2003;28(3):113–116.

    Article  CAS  PubMed  Google Scholar 

  70. Zilly FE, Sorensen JB, Jahn R, Lang T. Munc18–bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol 2006;4(10):e330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 2007;128(1):183–195.

    Article  CAS  PubMed  Google Scholar 

  72. Rickman C, Medine CN, Bergmann A, Duncan RR. Functionally and spatially distinct modes of MUNC18–syntaxin 1 interaction. J Biol Chem 2007;282(16):12097–12103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J. Munc18–1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A 2007;104(8):2697–2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu T, Tucker WC, Bhalla A, Chapman ER, Weisshaar JC. SNARE-driven, 25-millisecond vesicle fusion in vitro. Biophys J 2005;89(4):2458–2472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bowen ME, Weninger K, Brunger AT, Chu S. Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). Biophys J 2004;87(5):3569–3584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fix M, Melia TJ, Jaiswal JK, et al. Imaging single membrane fusion events mediated by SNARE proteins. Proc Natl Acad Sci U S A 2004;101(19):7311–7316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen YA, Scales SJ, Scheller RH. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 2001;30:161–170.

    Article  CAS  PubMed  Google Scholar 

  78. Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 1997;90(3):523–535.

    Article  CAS  PubMed  Google Scholar 

  79. Lin RC, Scheller RH. Structural organization of the synaptic exocytosis core complex. Neuron 1997;19(5):1087–1094.

    Article  CAS  PubMed  Google Scholar 

  80. Zhao C, Slevin JT, Whiteheart SW. Cellular functions of NSF: not just SNAPs and SNAREs. FEBS Lett 2007;581(11):2140–2149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marz KE, Lauer JM, Hanson PI. Defining the SNARE complex binding surface of α-SNAP: implications for SNARE complex disassembly. J Biol Chem 2003;278(29):27000–27008.

    Article  CAS  PubMed  Google Scholar 

  82. Scales SJ, Yoo B Y, Scheller RH. The ionic layer is required for efficient dissociation of the SNARE complex by α-SNAP and NSF. Proc Natl Acad Sci U S A 2001;98(25):14262–14267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lauer JM, Dalal S, Marz KE, Nonet ML, Hanson PI. SNARE complex zero layer residues are not critical for N-ethylmaleimide-sensitive factor-mediated disassembly. J Biol Chem 2006;281(21):14823–14832.

    Article  CAS  PubMed  Google Scholar 

  84. Langosch D, Hofmann M, Ungermann C. The role of transmembrane domains in membrane fusion. Cell Mol Life Sci 2007;64(7–8):850–864.

    Article  CAS  PubMed  Google Scholar 

  85. Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol 1998;5(9):765–769.

    Article  CAS  PubMed  Google Scholar 

  86. Hua S Y, Charlton MP. Activity-dependent changes in partial VAMP complexes during neuro-transmitter release. Nat Neurosci 1999;2(12):1078–1083.

    Article  CAS  PubMed  Google Scholar 

  87. Sorensen JB, Wiederhold K, Muller EM, et al. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 2006;25(5):955–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu T, Rammner B, Margittai M, Artalejo AR, Neher E, Jahn R. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 1999;99(7):713–722.

    Article  CAS  PubMed  Google Scholar 

  89. Melia TJ, Weber T, McNew JA, et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J Cell Biol 2002;158(5):929–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Han X, Jackson MB. Structural transitions in the synaptic SNARE complex during Ca2+-triggered exocytosis. J Cell Biol 2006;172(2):281–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chernomordik LV, Kozlov MM. Membrane hemifusion: crossing a chasm in two leaps. Cell 2005;123(3):375–382.

    Article  CAS  PubMed  Google Scholar 

  92. Kasson PM, Kelley NW, Singhal N, Vrljic M, Brunger AT, Pande VS. Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion. Proc Natl Acad Sci U S A 2006;103(32):11916–11921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cohen FS, Melikyan GB. The energetics of membrane fusion from binding, through hemifu-sion, pore formation, and pore enlargement. J Membr Biol 2004;199(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  94. Kuzmin PI, Zimmerberg J, Chizmadzhev YA, Cohen FS. A quantitative model for membrane fusion based on low-energy intermediates. Proc Natl Acad Sci U S A 2001;98(13): 7235–7240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grote E, Baba M, Ohsumi Y, Novick PJ. Geranylgeranylated SNAREs are dominant inhibitors of membrane fusion. J Cell Biol 2000;151(2):453–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McNew JA, Weber T, Parlati F, et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J Cell Biol 2000;150(1):105–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Earp LJ, Delos SE, Park HE, White JM. The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 2005;285:25–66.

    CAS  PubMed  Google Scholar 

  98. Kozlov MM, Markin VS. [Possible mechanism of membrane fusion]. Biofizika 1983;28(2):242–247.

    CAS  PubMed  Google Scholar 

  99. Knecht V, Mark AE, Marrink SJ. Phase behavior of a phospholipid/fatty acid/water mixture studied in atomic detail. J Am Chem Soc 2006;128(6):2030–2034.

    Article  CAS  PubMed  Google Scholar 

  100. Yang L, Huang HW. Observation of a membrane fusion intermediate structure. Science 2002;297(5588):1877–1879.

    Article  CAS  PubMed  Google Scholar 

  101. Jahn R, Südhof TC. Membrane fusion and exocytosis. Annu Rev Biochem 1999; 68:863–911.

    Article  CAS  PubMed  Google Scholar 

  102. Efrat A, Chernomordik LV, Kozlov MM. Point-like protrusion as a prestalk intermediate in membrane fusion pathway. Biophys J 2007;92(8):L61–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wong JL, Koppel DE, Cowan AE, Wessel GM. Membrane hemifusion is a stable intermediate of exocytosis. Dev Cell 2007;12(4):653–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xu Y, Zhang F, Su Z, McNew JA, Shin YK. Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 2005;12(5):417–422.

    Article  CAS  PubMed  Google Scholar 

  105. Lu X, Zhang F, McNew JA, Shin YK. Membrane fusion induced by neuronal SNAREs transits through hemifusion. J Biol Chem 2005;280(34):30538–30541.

    Article  CAS  PubMed  Google Scholar 

  106. Yoon TY, Okumus B, Zhang F, Shin YK, Ha T. Multiple intermediates in SNARE-induced membrane fusion. Proc Natl Acad Sci U S A 2006;103(52):19731–19736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zampighi GA, Zampighi LM, Fain N, Lanzavecchia S, Simon SA, Wright EM. Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. Biophys J 2006;91(8):2910–2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Melia TJ, You D, Tareste DC, Rothman JE. Lipidic antagonists to SNARE-mediated fusion. J Biol Chem 2006;281(40):29597–29605.

    Article  CAS  PubMed  Google Scholar 

  109. Reese C, Heise F, Mayer A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 2005;436(7049):410–414.

    CAS  PubMed  Google Scholar 

  110. Jun Y, Wickner W. Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc Natl Acad Sci U S A 2007;104(32):13010–13015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kemble GW, Danieli T, White JM. Lipid-anchored influenza hemagglutinin promotes hemi-fusion, not complete fusion. Cell 1994;76(2):383–391.

    Article  CAS  PubMed  Google Scholar 

  112. Chernomordik LV, Zimmerberg J, Kozlov MM. Membranes of the world unite! J Cell Biol 2006;175(2):201–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McNew JA, Weber T, Engelman DM, Söllner TH, Rothman JE. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol Cell 1999;4(3):415–421.

    Article  CAS  PubMed  Google Scholar 

  114. Melikyan GB, Brener SA, Ok DC, Cohen FS. Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J Cell Biol 1997;136(5):995–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Razinkov VI, Melikyan GB, Epand RM, Epand RF, Cohen FS. Effects of spontaneous bilayer curvature on influenza virus-mediated fusion pores. J Gen Physiol 1998;112(4):409–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Knecht V, Grubmüller H. Mechanical coupling via the membrane fusion SNARE protein syntaxin 1A: a molecular dynamics study. Biophys J 2003;84(3):1527–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kiessling V, Tamm LK. Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins. Biophys J 2003;84(1): 408–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Deak F, Shin OH, Kavalali ET, Südhof TC. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. J Neurosci 2006;26(25):6668–6676.

    Article  CAS  PubMed  Google Scholar 

  119. Siddiqui TJ, Vites O, Stein A, Heintzmann R, Jahn R, Fasshauer D. Determinants of synap-tobrevin regulation in membranes. Mol Biol Cell 2007;18(6):2037–2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Van Komen JS, Bai X, Rodkey TL, Schaub J, McNew JA. The polybasic juxtamembrane region of Sso1p is required for SNARE function in vivo. Eukaryot Cell 2005; 4(12):2017–2028.

    Article  CAS  Google Scholar 

  121. Montecucco C, Schiavo G, Pantano S. SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem Sci 2005;30(7):367–372.

    Article  CAS  PubMed  Google Scholar 

  122. Han X, Wang CT, Bai J, Chapman ER, Jackson MB. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 2004;304(5668):289–292.

    Article  CAS  PubMed  Google Scholar 

  123. Bowen ME, Engelman DM, Brunger AT. Mutational analysis of synaptobrevin transmembrane domain oligomerization. Biochemistry 2002;41(52):15861–15866.

    Article  CAS  PubMed  Google Scholar 

  124. Roy R, Laage R, Langosch D. Synaptobrevin transmembrane domain dimerization-revisited. Biochemistry 2004;43(17):4964–4970.

    Article  CAS  PubMed  Google Scholar 

  125. Roy R, Peplowska K, Rohde J, Ungermann C, Langosch D. Role of the Vam3p transmembrane segment in homodimerization and SNARE complex formation. Biochemistry 2006;45(24):7654–7660.

    Article  CAS  PubMed  Google Scholar 

  126. Laage R, Rohde J, Brosig B, Langosch D. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. J Biol Chem 2000;275(23):17481–17487.

    Article  CAS  PubMed  Google Scholar 

  127. Margittai M, Otto H, Jahn R. A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains. FEBS Lett 1999;446(1):40–44.

    Article  CAS  PubMed  Google Scholar 

  128. Rickman C, Hu K, Carroll J, Davletov B. Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem J 2005;388(1):75–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Raciborska DA, Trimble WS, Charlton MP. Presynaptic protein interactions in vivo: evidence from botulinum A, C, D and E action at frog neuromuscular junction. Eur J Neurosci 1998;10(8):2617–2628.

    Article  CAS  PubMed  Google Scholar 

  130. Stewart BA, Mohtashami M, Trimble WS, Boulianne GL. SNARE proteins contribute to calcium cooperativity of synaptic transmission. Proc Natl Acad Sci U S A 2000;97(25): 13955–13960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hua Y, Scheller RH. Three SNARE complexes cooperate to mediate membrane fusion. Proc Natl Acad Sci U S A 2001;98(14):8065–8070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Keller JE, Cai F, Neale EA. Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 2004;43(2):526–532.

    Article  CAS  PubMed  Google Scholar 

  133. Almers W, Tse FW. Transmitter release from synapses: does a preassembled fusion pore initiate exocytosis? Neuron 1990;4(6):813–818.

    Article  CAS  PubMed  Google Scholar 

  134. Ungermann C, Sato K, Wickner W. Defining the functions of trans-SNARE pairs. Nature 1998;396(6711):543–548.

    Article  CAS  PubMed  Google Scholar 

  135. Spruce AE, Breckenridge LJ, Lee AK, Almers W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 1990;4(5):643–654.

    Article  CAS  PubMed  Google Scholar 

  136. Monck JR, Fernandez JM. The fusion pore and mechanisms of biological membrane fusion. Curr Opin Cell Biol 1996;8(4):524–533.

    Article  CAS  PubMed  Google Scholar 

  137. Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 2001;409 (6820):581–588.

    Article  CAS  PubMed  Google Scholar 

  138. Israel M, Morel N, Lesbats B, Birman S, Manaranche R. Purification of a presynaptic membrane protein that mediates a calcium-dependent translocation of acetylcholine. Proc Natl Acad Sci U S A 1986;83(23):9226–9230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Peters C, Mayer A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 1998;396(6711):575–580.

    Article  CAS  PubMed  Google Scholar 

  140. Hiesinger PR, Fayyazuddin A, Mehta SQ, et al. The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 2005;121(4):607–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Weber T, Parlati F, McNew JA, et al. SNAREpins are functionally resistant to disruption by NSF and alphaSNAP. J Cell Biol 2000;49(5):1063–1072.

    Article  Google Scholar 

  142. Klyachko VA, Jackson MB. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 2002;418(6893):89–92.

    Article  CAS  PubMed  Google Scholar 

  143. Giaever G, Chu AM, Ni L, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002;418(6896):387–391.

    Article  CAS  PubMed  Google Scholar 

  144. Chanturiya A, Chernomordik LV, Zimmerberg J. Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc Natl Acad Sci U S A 1997;94(26):14423–14428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Otter-Nilsson M, Hendriks R, Pecheur-Huet E, Hoekstra D, Nilsson T. Cytosolic ATPases, p97 and NSF, are sufficient to mediate rapid membrane fusion. EMBO J 1999;18(8): 2074–2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rizo J, Chen X, Araç D. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol 2006;16(7):339–350.

    Article  CAS  PubMed  Google Scholar 

  147. Brugger B, Nickel W, Weber T, et al. Putative fusogenic activity of NSF is restricted to a lipid mixture whose coalescence is also triggered by other factors. EMBO J 2000;19(6):1272–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang B, Gonzalez LJ, Prekeris R, Steegmaier M, Advani RJ, Scheller RH. SNARE interactions are not selective. Implications for membrane fusion specificity. J Biol Chem 1999;274(9):5649–5653.

    Article  CAS  PubMed  Google Scholar 

  149. Tsui MM, Banfield DK. Yeast Golgi SNARE interactions are promiscuous. J Cell Sci 2000;113(1):145–152.

    CAS  PubMed  Google Scholar 

  150. Fasshauer D, Antonin W, Margittai M, Pabst S, Jahn R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J Biol Chem 1999;274(22):15440–15446.

    Article  CAS  PubMed  Google Scholar 

  151. Parlati F, Varlamov O, Paz K, et al. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc Natl Acad Sci U S A 2002;99(8): 5424–5429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. McNew JA, Parlati F, Fukuda R, et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 2000;407(6801):153–159.

    Article  CAS  PubMed  Google Scholar 

  153. Scales SJ, Chen YA, Yoo BY, Patel SM, Doung YC, Scheller RH. SNAREs contribute to the specificity of membrane fusion. Neuron 2000;26(2):457–464.

    Article  CAS  PubMed  Google Scholar 

  154. Hunt JM, Bommert K, Charlton MP, et al. A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 1994;12(6):1269–1279.

    Article  CAS  PubMed  Google Scholar 

  155. de Wit H, Cornelisse LN, Toonen RF, Verhage M. Docking of secretory vesicles is syntaxin dependent. PLoS ONE 2006;1(1):e126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Toonen RF, Kochubey O, de Wit H, et al. Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J 2006;25(16):3725–3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ohara-Imaizumi M, Fujiwara T, Nakamichi Y, et al. Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 2007;177(4):695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sztul E, Lupashin V. Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 2006;290(1):C11–26.

    Article  CAS  PubMed  Google Scholar 

  159. Whyte JR, Munro S. Vesicle tethering complexes in membrane traffic. J Cell Sci 2002;115(13):2627–2637.

    CAS  PubMed  Google Scholar 

  160. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001;2(2):107–117.

    Article  CAS  PubMed  Google Scholar 

  161. Waters MG, Pfeffer SR. Membrane tethering in intracellular transport. Curr Opin Cell Biol 1999;11(4):453–459.

    Article  CAS  PubMed  Google Scholar 

  162. Guo W, Sacher M, Barrowman J, Ferro-Novick S, Novick P. Protein complexes in transport vesicle targeting. Trends Cell Biol 2000;10(6):251–255.

    Article  CAS  PubMed  Google Scholar 

  163. Wiederkehr A, Du Y, Pypaert M, Ferro-Novick S, Novick P. Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol Biol Cell 2003;14(12):4770–4782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Finger FP, Hughes TE, Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 1998;92(4):559–571.

    Article  CAS  PubMed  Google Scholar 

  165. VanRheenen SM, Cao X, Lupashin VV, Barlowe C, Waters MG. Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J Cell Biol 1998;141(5): 1107–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wiederkehr A, De Craene JO, Ferro-Novick S, Novick P. Functional specialization within a vesicle tethering complex: bypass of a subset of exocyst deletion mutants by Sec1p or Sec4p. J Cell Biol 2004;167(5):875–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Novick P, Medkova M, Dong G, Hutagalung A, Reinisch K, Grosshans B. Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis. Biochem Soc Trans 2006;34(5):683–686.

    Article  CAS  PubMed  Google Scholar 

  168. Borisovska M, Zhao Y, Tsytsyura Y, et al. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J 2005;24(12):2114–2126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bhattacharya S, Stewart BA, Niemeyer BA, et al. Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability. Proc Natl Acad Sci U S A 2002;99(21):13867–13872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sorensen JB, Nagy G, Varoqueaux F, et al. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 2003;114(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  171. Holt M, Varoqueaux F, Wiederhold K, et al. Identification of SNAP-47, a novel Qbc-SNARE with ubiquitous expression. J Biol Chem 2006;281(25):17076–17083.

    Article  CAS  PubMed  Google Scholar 

  172. Fujiwara T, Mishima T, Kofuji T, et al. Analysis of knock-out mice to determine the role of HPC-1/syntaxin 1A in expressing synaptic plasticity. J Neurosci 2006;26(21):5767–5776.

    Article  CAS  PubMed  Google Scholar 

  173. Liu Y, Barlowe C. Analysis of Sec22p in endoplasmic reticulum/Golgi transport reveals cellular redundancy in SNARE protein function. Mol Biol Cell 2002;13(9):3314–3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fischer von Mollard G, Stevens TH. The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell 1999;10 (6):1719–1732.

    Article  CAS  PubMed  Google Scholar 

  175. Darsow T, Rieder SE, Emr SD. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 1997;138b (11):517–529.

    Article  Google Scholar 

  176. Burgess RW, Deitcher DL, Schwarz TL. The synaptic protein syntaxin1 is required for cel-lularization of Drosophila embryos. J Cell Biol 1997;138(4):861–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Betz A, Okamoto M, Benseler F, Brose N. Direct interaction of the rat unc-13 homologue Munc13–1 with the N terminus of syntaxin. J Biol Chem 1997;272(4):2520–2526.

    Article  CAS  PubMed  Google Scholar 

  178. Richmond JE, Weimer RM, Jorgensen EM. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 2001;412(6844):338–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Scales SJ, Hesser BA, Masuda ES, Scheller RH. Amisyn, a novel syntaxin-binding protein that may regulate SNARE complex assembly. J Biol Chem 2002;277(31):28271–28279.

    Article  CAS  PubMed  Google Scholar 

  180. Masuda ES, Huang BC, Fisher JM, Luo Y, Scheller RH. Tomosyn binds t-SNARE proteins via a VAMP-like coiled coil. Neuron 1998;21(3):479–480.

    Article  CAS  PubMed  Google Scholar 

  181. Lao G, Scheuss V, Gerwin CM, et al. Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly. Neuron 2000;25(1):191–201.

    Article  CAS  PubMed  Google Scholar 

  182. Fisher RJ, Pevsner J, Burgoyne RD. Control of fusion pore dynamics during exocytosis by Munc18. Science 2001;291(5505):875–878.

    Article  CAS  PubMed  Google Scholar 

  183. Latham CF, Lopez JA, Hu SH, et al. Molecular dissection of the munc18c/syntaxin4 interaction: implications for regulation of membrane trafficking. Traffic 2006;7(10):1408–1419.

    Article  CAS  PubMed  Google Scholar 

  184. Hu SH, Latham CF, Gee CL, James DE, Martin JL. Structure of the Munc18c/Syntaxin4 N-peptide complex defines universal features of the N-peptide binding mode of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 2007;104(21):8773–8778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Togneri J, Cheng YS, Munson M, Hughson FM, Carr CM. Specific SNARE complex binding mode of the Sec1/Munc-18 protein, Sec1p. Proc Natl Acad Sci U S A 2006;103 (47):17730–17735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sabatini BL, Regehr WG. Timing of neurotransmission at fast synapses in the mammalian brain. Nature 1996;384(6605):170–172.

    Article  CAS  PubMed  Google Scholar 

  187. Flanagan JJ, Barlowe C. Cysteine-disulfide cross-linking to monitor SNARE complex assembly during endoplasmic reticulum-Golgi transport. J Biol Chem 2006;281 (4):2281–2288.

    Article  CAS  PubMed  Google Scholar 

  188. Starai VJ, Thorngren N, Fratti RA, Wickner W. Ion regulation of homotypic vacuole fusion in Saccharomyces cerevisiae. J Biol Chem 2005;280(17):16754–16762.

    Article  CAS  PubMed  Google Scholar 

  189. McMahon HT, Missler M, Li C, Südhof TC. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 1995;83(1):111–119.

    Article  CAS  PubMed  Google Scholar 

  190. Perin MS, Fried VA, Mignery GA, Jahn R, Südhof TC. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 1990;345(6272):260–263.

    Article  CAS  PubMed  Google Scholar 

  191. Giraudo CG, Eng WS, Melia TJ, Rothman JE. A clamping mechanism involved in SNARE-dependent exocytosis. Science 2006;313(5787):676–680.

    Article  CAS  PubMed  Google Scholar 

  192. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Südhof TC. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 2006;126(6):1175–1187.

    Article  CAS  PubMed  Google Scholar 

  193. Schaub JR, Lu X, Doneske B, Shin YK, McNew JA. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat Struct Mol Biol 2006;13(8):748–750.

    Article  CAS  PubMed  Google Scholar 

  194. Melia TJ. Putting the clamps on membrane fusion: How complexin sets the stage for calcium-mediated exocytosis. FEBS Lett 2007;581(11):2131–2139.

    Article  CAS  PubMed  Google Scholar 

  195. Bracher A, Kadlec J, Betz H, Weissenhorn W. X-ray structure of a neuronal complexin-SNARE complex from squid. J Biol Chem 2002;277(29):26517–26523.

    Article  CAS  PubMed  Google Scholar 

  196. Chen X, Tomchick DR, Kovrigin E, et al. Three-Dimensional Structure of the Complexin/ SNARE Complex. Neuron 2002;33(3):397–409.

    Article  CAS  PubMed  Google Scholar 

  197. Bai J, Wang CT, Richards DA, Jackson MB, Chapman ER. Fusion Pore Dynamics Are Regulated by Synaptotagmin t-SNARE Interactions. Neuron 2004;41(6):929–942.

    Article  CAS  PubMed  Google Scholar 

  198. Fernandez-Chacon R, Konigstorfer A, Gerber SH, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001;410(6824):41–49.

    Article  CAS  PubMed  Google Scholar 

  199. Chapman ER. Synaptotagmin: A Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 2002;3(7):498–508.

    Article  CAS  PubMed  Google Scholar 

  200. Davis AF, Bai J, Fasshauer D, Wolowick MJ, Lewis JL, Chapman ER. Kinetics of synapto-tagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 1999;24(4):363–376.

    Article  CAS  PubMed  Google Scholar 

  201. Brose N, Petrenko AG, Südhof TC, Jahn R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 1992;256(5059):1021–1025.

    Article  CAS  PubMed  Google Scholar 

  202. Bennett MK, Calakos N, Kreiner T, Scheller RH. Synaptic vesicle membrane proteins interact to form a multimeric complex. J Cell Biol 1992;116(3):761–775.

    Article  CAS  PubMed  Google Scholar 

  203. Chapman ER, Hanson PI, An S, Jahn R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem 1995;270(40):23667–23671.

    Article  CAS  PubMed  Google Scholar 

  204. Schiavo G, Stenbeck G, Rothman JE, Söllner TH. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci U S A 1997;94(3):997–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Reim K, Mansour M, Varoqueaux F, et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 2001;104(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  206. Tucker WC, Weber T, Chapman ER. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 2004;304(5669):435–438.

    Article  CAS  PubMed  Google Scholar 

  207. Mahal LK, Sequeira SM, Gureasko JM, Söllner TH. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J Cell Biol 2002;158 (2):273–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Enfu Hui and Edwin R. Chapman for providing versions of Figures 3.1 and 3.3. Thanks also to Winfried Weissenhorn, Dirk Fasshauer, and Reinhard Jahn for allowing us to use and modify their images for Figure 3.1. Michael Ailion, Eric Bend, M. Wayne Davis, and Robert Hobson were instrumental in reading early versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik M. Jorgensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Palfreyman, M.T., Jorgensen, E.M. (2008). Roles of SNARE Proteins in Synaptic Vesicle Fusion. In: Wang, ZW. (eds) Molecular Mechanisms of Neurotransmitter Release. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-481-0_3

Download citation

Publish with us

Policies and ethics