Skip to main content

Growth Factors in Leydig Cell Function

  • Chapter
The Leydig Cell in Health and Disease

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Leydig cell function is predominantly controlled by gonadotropins. However, a number of intratesticular factors are known to influence Leydig cell steroidogenic function. The presence of growth factors within the testis, their effects on androgen release by the isolated Leydig cells, subnormal reproductive function in animals with disrupted growth hormone/insulin-like growth factor-I secretion, and in acromegalics as well as in Laron syndrome patients clearly indicate that growth factors play an important role in reproduction. It is possible that there might be a concerted effect of intratesticularly produced factors on testosterone secretion. Evidence presented in this chapter indicates that pituitary luteinizing hormone is absolutely essential for Leydig cell endocrine function, but growth factors are required for the full effect of luteinizing hormone on androgen secretion. Also, there are indications that a number of growth factors modify gonadotropin synthesis and release from the pituitary gland. Thus, growth factors can exert endocrine as well as paracrine/autocrine effects in controlling the pituitary and testicular functions in mammals.

Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen YD, Payne AH, Kelch KP. FSH stimulation of Leydig cell function in the hypophysectomized immature rat. Proc Soc Expt Biol Med 1976;153:473–475.

    CAS  Google Scholar 

  2. Grimek HJ, Nuti LS, Nuti KM, McShan WH. Effect of neuraminidase treatment on the biological activity of highly purified ovine FSH and LH in hypophysectomized immature male rat. Endocrinology 1976;98:105–110.

    PubMed  CAS  Google Scholar 

  3. Benahamed M, Reventes J, Tabone E, Saez JM. Cultured Sertoli cell-mediated FSH stimulatory effect on Leydig cell steroidogenesis. Am J Physiol 1985;248:E176–E181.

    Google Scholar 

  4. Vihko KK, LaPolt PS, Nishimori K, Hsueh AJ. Stimulatory effects of recombinant follicle-stimulating hormone on Leydig cell function and spermatogenesis in immature hypophysectomized rats. Endocrinology 1991;129:1926–1932.

    PubMed  CAS  Google Scholar 

  5. Russell LD, Corbin TJ, Ren HP, Amador A, Bartke A, Ghosh S. Structural changes in rat Leydig cells posthypophysectomy: a morphometric and endocrine study. Endocrinology 1992;131:498–508.

    PubMed  CAS  Google Scholar 

  6. Matikainen T, Toppari J, Vihko KK, Huhtaniemi I. Effects of recombinant human FSH in immature hypophysectomized male rats: evidence for Leydig cell-mediated action on spermatogenesis. J Endocrinol 1994;141:449–457.

    PubMed  CAS  Google Scholar 

  7. Levalle O, Zylbersztein C, Aszpis S, et al. Recombinant human follicle-stimulating hormone administration increases testosterone production in men, possibly by a Sertoli cellsecreted nonsteroid factor. J Clin Endocrinol Metab 1998;83:3973–3976.

    PubMed  CAS  Google Scholar 

  8. Phillip M, Arbelle JE, Segev Y, Parvari R. Male hypogonadism due to a mutation in the gene for the beta-subunit of folliclestimulating hormone. N Engl J Med 1998;338:1729–1732.

    PubMed  CAS  Google Scholar 

  9. Krishnamurthy H, Babu PS, Morales CR, Sairam MR. Delay in sexual maturity of the follicle-stimulating hormone receptor knockout male mouse. Biol Reprod 2001;65:522–531.

    PubMed  CAS  Google Scholar 

  10. Kumar TR. What have we learned about gonadotropin function from gonadotropin subunit and receptor knockout mice? Reproduction 2005;130:293–302.

    PubMed  CAS  Google Scholar 

  11. Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the folliclestimulating hormone receptor gene on mouse reproduction. Endocrinology 2000;141:1795–1803.

    PubMed  CAS  Google Scholar 

  12. Rubin RT, Poland RE, Tower BB. Prolactin-related testosterone secretion in normal adult men. J Clin Endocrinol Metab 1976;42:112–116.

    PubMed  CAS  Google Scholar 

  13. Hafiez AA, Philpott JE, Bartke A. The role of prolactin in the regulation of testicular function: The effect of prolactin and luteinizing hormone on 3β-HSD activity in the testes of mice and rats. J Endocrinol 1972;50:619–623.

    Google Scholar 

  14. Musto N, Hafiez AA, Bartke A. Prolactin increases 17β-hydroxysteroid dehydrogenase activity in the testis. Endocrinology 1972;91:1106–1108.

    PubMed  CAS  Google Scholar 

  15. Belanger A, Auclair C, Seguin C, Caron S, Labrie F. Prolactin stimulation of testicular steroid biosynthesis in the male rat. J Androl 1981;2:80–86.

    CAS  Google Scholar 

  16. Chandrashekar V, Bartke A. Influence of endogenous prolactin on the luteinizing hormone stimulation of testicular steroidogenesis and the role of prolactin in adult male rats. Steroids 1988;51:559–576.

    PubMed  CAS  Google Scholar 

  17. Aragona C, Bohnet HG, Friesen HG. Localization of prolactin binding in prostate and testis. Acta Endocrinol 1977;84:402–409.

    PubMed  CAS  Google Scholar 

  18. Takase M, Tsutsui K, Kawashima S. Effects of prolactin and bromocryptine on the regulation of testicular luteinizing hormone receptors in mice. J Exp Zool 1990;256:200–209.

    PubMed  CAS  Google Scholar 

  19. Massague J. Receptors for the TGF-beta family. Cell 1992;69:1067–1070.

    PubMed  CAS  Google Scholar 

  20. Massague J, Attisano L, Wrana JL. The TGF-beta family and its composite receptors. Trends Cell Biol 1994;4:172–178.

    PubMed  CAS  Google Scholar 

  21. Goddard I, Bouras M, Keramidas M, Hendrick JC, Feige JJ, Benahmed M. Transforming growth factor-beta receptor types I and II in cultured porcine leydig cells: expression and hormonal regulation. Endocrinology 2000; 141:2068–2074.

    PubMed  CAS  Google Scholar 

  22. Wrana JL, Attisano L, Carcamo J, et al. TGF beta signals through a heteromeric protein kinase receptor complex. Cell 1992;71:1003–1014.

    PubMed  CAS  Google Scholar 

  23. Chen RH, Ebner R, Derynck R. Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities. Science 1993;260:1335–1338.

    PubMed  CAS  Google Scholar 

  24. Lopez-Casillas F, Wrana JL, Massague J. Betaglycan presents ligand to the TGF beta signaling receptor. Cell 1993;73:1435–1444.

    PubMed  CAS  Google Scholar 

  25. Skinner MK, Moses HL. Transforming growth factor beta gene expression and action in the seminiferous tubule: peritubular cell-Sertoli cell interactions. Mol Endocrinol 1989;3:625–634.

    PubMed  CAS  Google Scholar 

  26. Miller DA, Lee A, Matsui Y, Chen EY, Moses HL, Derynck R. Complementary DNA cloning of the murine transforming growth factor-beta 3 (TGF beta 3) precursor and the comparative expression of TGF beta 3 and TGF beta 1 messenger RNA in murine embryos and adult tissues. Mol Endocrinol 1989;3:1926–1934.

    PubMed  CAS  Google Scholar 

  27. Watrin F, Scotto L, Assoian RK, Wolgemuth DJ. Cell lineage specificity of expression of the murine transforming growth factor beta 3 and transforming growth factor beta 1 genes. Cell Growth Differ 1991;2:77–83.

    PubMed  CAS  Google Scholar 

  28. Avallet O, Vigier M, Leduque P, Dubois PM, Saez JM. Expression and regulation of transforming growth factor-beta 1 messenger ribonucleic acid and protein in cultured porcine Leydig and Sertoli cells. Endocrinology 1994;134:2079–2087.

    PubMed  CAS  Google Scholar 

  29. Olaso R, Gautier C, Levacher C, Durand P, Saez J, Habert R. The immunohistochemical localization of transforming growth factor-beta 2 in the fetal and neonatal rat testis. Mol Cell Endocrinol 1997;126:165–172.

    PubMed  CAS  Google Scholar 

  30. Teerds KJ, Dorrington JH. Localization of transforming growth factor beta 1 and beta 2 during testicular development in the rat. Biol Reprod 1993;48:40–45.

    PubMed  CAS  Google Scholar 

  31. Avallet O, Vigier M, Perrard-Sapori MH, Saez JM. Transforming growth factor beta inhibits Leydig cell functions. Biochem Biophys Res Commun 1987;146:575–581.

    PubMed  CAS  Google Scholar 

  32. Lin T, Blaisdell J, Haskeil JF. Transforming growth factorbeta inhibits Leydig cell steroidogenesis in primary culture. Biochem Biophys Res Commun 1987;146:387–394.

    PubMed  CAS  Google Scholar 

  33. Fauser BC, Hsueh AJ. Effect of transforming growth factor-beta on human chorionic gonadotropin induced testosterone production by cultured rat testicular cells. Life Sci 1988;43:1363–1370.

    PubMed  CAS  Google Scholar 

  34. Morera AM, Cochet C, Keramidas M, Chauvin MA, de Peretti E, Benahmed M. Direct regulating effects of transforming growth factor beta on the Leydig cell steroidogenesis in primary culture. J Steroid Biochem 1988;30:443–447.

    PubMed  CAS  Google Scholar 

  35. Chuzel F, Clark AM, Avallet O, Saez JM. Transcriptional regulation of the lutropin/human choriogonadotropin receptor and three enzymes of steroidogenesis by growth factors in cultured pig Leydig cells. Eur J Biochem 1961;239:8–16.

    Google Scholar 

  36. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992;359:693–699.

    PubMed  CAS  Google Scholar 

  37. Kulkarni AB, Ward JM, Yaswen L, et al. Transforming growth factor-beta 1 null mice. An animal model for inflammatory disorders. Am J Pathol 1995; 146: 264–275.

    PubMed  CAS  Google Scholar 

  38. Shou W, Aghdasi B, Armstrong DL, et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 1998;391:489–492.

    PubMed  CAS  Google Scholar 

  39. Bassing CH, Shou W, Muir S, Heitman J, Matzuk MM, Wang XF. FKBP12 is not required for the modulation of transforming growth factor beta receptor I signaling activity in embryonic fibroblasts and thymocytes. Cell Growth Differ 1998;9:223–228.

    PubMed  CAS  Google Scholar 

  40. Chang H, Lau AL, Matzuk MM. Studying TGF-beta superfamily signaling by knockouts and knockins. Mol Cell Endocrinol 2001;180:39–46.

    PubMed  CAS  Google Scholar 

  41. Sanderson N, Factor V, Nagy P, et al. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA 1995;92:2572–2576.

    PubMed  CAS  Google Scholar 

  42. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem 1990;265:7709–7712.

    PubMed  CAS  Google Scholar 

  43. Stubbs SC, Hargreave TB, Habib FK. Localization and characterization of epidermal growth factor receptors on human testicular tissue by biochemical and immunohistochemical techniques. Endocrinol 1990; 125: 485–492.

    CAS  Google Scholar 

  44. Suarez-Quian CA, Dai MZ, Onoda M, Kriss RM, Dym M. Epidermal growth factor receptor localization in the rat and monkey testes. Biol Reprod 1989;41:921–932.

    PubMed  CAS  Google Scholar 

  45. Suarez-Quian CA, Niklinski W. Immunocytochemical localization of the epidermal growth factor receptor in mouse testis. Biol Reprod 1990;43:1087–1097.

    PubMed  CAS  Google Scholar 

  46. Sordoillet C, Chauvin MA, de Peretti E, Morera AM, Benahmed M. Epidermal growth factor directly stimulates steroidogenesis in primary cultures of porcine Leydig cells: actions and sites of action. Endocrinology 1991;128:2160–2168.

    PubMed  CAS  Google Scholar 

  47. Mullaney BP, Skinner MK. Transforming growth factor-alpha and epidermal growth factor receptor gene expression and action during pubertal development of the seminiferous tubule. Mol Endocrinol 1992;6:2103–2113.

    PubMed  CAS  Google Scholar 

  48. Ascoli M, Euffa J, Segaloff DL. Epidermal growth factor activates steroid biosynthesis in cultured Leydig tumor cells without affecting the levels of cAMP and potentiates the activation of steroid biosynthesis by choriogonadotropin and cAMP. J Biol Chem 1987;262:9196–9203.

    PubMed  CAS  Google Scholar 

  49. Manna PR, Huhtaniemi IT, Wang XJ, Eubank DW, Stocco DM. Mechanisms of epidermal growth factor signaling: regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse Leydig tumor cells. Biol Reprod 2002;67:1393–1404.

    PubMed  CAS  Google Scholar 

  50. Syed V, Khan SA, Nieschlag E. Epidermal growth factor stimulates testosterone production of human Leydig cells in vitro. J Endocrinol Invest 1991;14:93–97.

    PubMed  CAS  Google Scholar 

  51. Verhoeven G, Cailleau J. Stimulatory effects of epidermal growth factor on steroidogenesis in Leydig cells. Mol Cell Endocrinol 1986;47:99–106.

    PubMed  CAS  Google Scholar 

  52. Wang H, Segaloff DL, Ascoli M. Epidermal growth factor and phorbol esters reduce the levels of the cognate mRNA for the LH/CG receptor. Endocrinology 1991;128:2651–2653.

    PubMed  CAS  Google Scholar 

  53. Hsueh AJ, Welsh TH, Jones PB. Inhibition of ovarian and testicular steroidogenesis by epidermal growth factor. Endocrinology 1981;108:2002–2004.

    PubMed  CAS  Google Scholar 

  54. Levine E, Cupp AS, Miyashiro L, Skinner MK. Role of transforming growth factor-alpha and the epidermal growth factor receptor in embryonic rat testis development. Biol Reprod 2000;62:477–490.

    PubMed  CAS  Google Scholar 

  55. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989;58:575–606.

    PubMed  CAS  Google Scholar 

  56. Fischer S, Draper BW, Neumann CJ. The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation. Development 2003;130:3515–3524.

    PubMed  CAS  Google Scholar 

  57. Katoh Y, Katoh M. Comparative genomics on FGF7, FGF10, FGF22 orthologs, and identification of fgf25. Int J Mol Med 2005;16:767–770.

    PubMed  CAS  Google Scholar 

  58. Hajihosseini MK, Heath JK. Expression patterns of fibroblast growth factors-18 and-20 in mouse embryos is suggestive of novel roles in calvarial and limb development. Mech Dev 2002;113:79–83.

    PubMed  CAS  Google Scholar 

  59. Werner S, Duan DS, de Vries C, Peters KG, Johnson DE, Williams LT. Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol 1992;12:82–88.

    PubMed  CAS  Google Scholar 

  60. Klagsbrun M, Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell 1991;67:229–231.

    PubMed  CAS  Google Scholar 

  61. Partanen J, Makela TP, Eerola E, et al. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. Embo J 1991;10:1347–1354.

    PubMed  CAS  Google Scholar 

  62. Cancilla B, Risbridger GP. Differential localization of fibroblast growth factor receptor-1,-2,-3, and-4 in fetal, immature, and adult rat testes. Biol Reprod 1998;58:1138–1145.

    PubMed  CAS  Google Scholar 

  63. Murono EP, Washburn AL, Goforth DP, Wu N. Evidence for basic fibroblast growth factor receptors in cultured immature Leydig cells. Mol Cell Endocrinol 1992;88:39–45.

    PubMed  CAS  Google Scholar 

  64. Sordoillet C, Chauvin MA, Revol A, Morera AM, Benahmed M. Fibroblast growth factor is a regulator of testosterone secretion in cultured immature Leydig cells. Mol Cell Endocrinol 1988;58:283–286.

    PubMed  CAS  Google Scholar 

  65. Mayerhofer A, Russell LD, Grothe C, Rudolf M, Gratzl M. Presence and localization of a 30-kDa basic fibroblast growth factor-like protein in rodent testes. Endocrinology 1991;129:921–924.

    PubMed  CAS  Google Scholar 

  66. Lahr G, Mayerhofer A, Seidl K, et al. Basic fibroblast growth factor (bFGF) in rodent testis. Presence of bFGF mRNA and of a 30 kDa bFGF protein in pachytene spermatocytes. FEBS Lett 1992;302:43–46.

    PubMed  CAS  Google Scholar 

  67. Story MT, Sasse J, Kakuska D, Jacobs SC, Lawson RK. A growth factor in bovine and human testes structurally related to basic fibroblast growth factor. J Urol 1988;140:422–427.

    PubMed  CAS  Google Scholar 

  68. Ueno N, Baird A, Esch F, Ling N, Guillemin R. Isolation and partial characterization of basic fibroblast growth factor from bovine testis. Mol Cell Endocrinol 1987;49:189–194.

    PubMed  CAS  Google Scholar 

  69. Smith EP, Hall SH, Monaco L, French FS, Wilson EM, Conti M. A rat Sertoli cell factor similar to basic fibroblast growth factor increases c-fos messenger ribonucleic acid in cultured Sertoli cells. Mol Endocrinol 1989;3:954–961.

    PubMed  CAS  Google Scholar 

  70. Avallet O, Vigier M, Leduque P, Dubois PM, Saez JM. Expression and regulation of transforming growth factor-beta 1 messenger ribonucleic acid and protein in cultured porcine Leydig and Sertoli cells. Endocrinology 1994;134:2079–2087.

    PubMed  CAS  Google Scholar 

  71. Fauser BC, Baird A, Hsueh AJ. Fibroblast growth factor inhibits luteinizing hormone-stimulated androgen production by cultured rat testicular cells. Endocrinology 1988;123:2935–2941.

    PubMed  CAS  Google Scholar 

  72. Murono EP, Washburn AL, Goforth DP, Wu N. Effects of acidic fibroblast growth factor on 5-ene-3 beta-hydroxysteroid dehydrogenase-isomerase and 5 alpha-reductase activities and [125I]human chorionic gonadotrophin binding in cultured immature Leydig cells. J Steroid Biochem Mol Biol 1993;45:477–483.

    PubMed  CAS  Google Scholar 

  73. Murono EP, Washburn AL. Basic fibroblast growth factor inhibits delta 5-3 beta-hydroxysteroid dehydrogenase-isomerase activity in cultured immature Leydig cells. Biochem Biophys Res Commun 1990;168:248–253.

    PubMed  CAS  Google Scholar 

  74. Murono EP, Washburn AL. Fibroblast growth factor inhibits 5 alpha-reductase activity in cultured immature Leydig cells. Mol Cell Endocrinol 1990;68:R19–R23.

    PubMed  CAS  Google Scholar 

  75. Murono EP, Washburn AL, Goforth DP, Wu N. Biphasic effect of basic fibroblast growth factor on 125I-human chorionic gonadotropin binding to cultured immature Leydig cells. Mol Cell Endocrinol 1993;92:121–126.

    PubMed  CAS  Google Scholar 

  76. Sordoillet C, Savona C, Chauvin MA, et al. Basic fibroblast growth factor enhances testosterone secretion in cultured porcine Leydig cells: site(s) of action. Mol Cell Endocrinol 1992;89:163–171.

    PubMed  CAS  Google Scholar 

  77. Raeside JI, Bertheion MC, Sanchez P, Saez JM. Stimulation of aromatase activity in immature porcine Leydig cells by fibroblast growth factor (FGF). Biochem Biophys Res Commun 1988;151:163–169.

    PubMed  CAS  Google Scholar 

  78. Abo-Elmaksoud A, Sinowatz F. Expression and localization of growth factors and their receptors in the mammalian testis. Part I: Fibroblast growth factors and insulin-like growth factors. Anat Histol Embryol 2005;34:319–334.

    PubMed  Google Scholar 

  79. Sahni M, Raz R, Coffin JD, Levy D, Basilico C. STAT1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development 2001;128:2119–2129.

    PubMed  CAS  Google Scholar 

  80. Ohuchi H, Hori Y, Yamasaki M, et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 2000;277:643–649.

    PubMed  CAS  Google Scholar 

  81. Gill JC, Moenter SM, Tsai PS. Developmental regulation of gonadotropin-releasing hormone neurons by fibroblast growth factor signaling. Endocrinology 2004; 145:3830–3839.

    PubMed  CAS  Google Scholar 

  82. Tsai PS, Moenter SM, Postigo HR, et al. Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population. Mol Endocrinol 2005;19:225–236.

    PubMed  CAS  Google Scholar 

  83. Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 2004;15:197–204.

    PubMed  CAS  Google Scholar 

  84. Gnessi L, Emidi A, Farini D, et al. Rat Leydig cells bind platelet-derived growth factor through specific receptors and produce platelet-derived growth factor-like molecules. Endocrinology 1992; 130:2219–2224.

    PubMed  CAS  Google Scholar 

  85. Murono EP, Washburn AL. Platelet derived growth factor inhibits 5 alpha-reductase and delta 5-3 beta-hydroxysteroid dehydrogenase activities in cultured immature Leydig cells. Biochem Biophys Res Commun 1990;169:1229–1234.

    PubMed  CAS  Google Scholar 

  86. Risbridger GP. Discrete stimulatory effects of platelet-derived growth factor (PDGF-BB) on Leydig cell steroidogenesis. Mol Cell Endocrinol 1993;97:125–128.

    PubMed  CAS  Google Scholar 

  87. Loveland KL, Hedger MP, Risbridger G, Herszfeld D, De Kretser DM. Identification of receptor tyrosine kinases in the rat testis. Mol Reprod Dev 1993;36:440–447.

    PubMed  CAS  Google Scholar 

  88. Gnessi L, Basciani S, Mariani S, et al. Leydig cell loss and spermatogenic arrest in platelet-derived growth factor (PDGF)-A-deficient mice. J Cell Biol 2000;149:1019–1026.

    PubMed  CAS  Google Scholar 

  89. Hansson HA, Billig H, Isgaard J. Insulin-like growth factor I in the developing and mature rat testis: immunohistochemical aspects. Biol Reprod 1989;40:1321–1328.

    PubMed  CAS  Google Scholar 

  90. Lin T, Wang DL, Calkins JH, Guo H, Chi R, Housley PR. Regulation of insulin-like growth factor-I messenger ribonucleic acid expression in Leydig cells. Mol Cell Endocrinol 1990;73:147–152.

    PubMed  CAS  Google Scholar 

  91. Tres LL, Smith EP, Van Wyk JJ, Kierszenbaum AL. Immunoreactive sites and accumulation of somatomedin-C in rat Sertoli-spermatogenic cell co-cultures. Exp Cell Res 1986;162:33–50.

    PubMed  CAS  Google Scholar 

  92. Vannelli BG, Barni T, Orlando C, Natali A, Serio M, Balboni GC. Insulin-like growth factor-I (IGF-I) and IGF-I receptor in human testis: an immunohistochemical study. Fertil Steril 1988;49:666–669.

    PubMed  CAS  Google Scholar 

  93. Borland K, Mita M, Oppenheimer CL, et al. The actions of insulin-like growth factors I and II on cultured Sertoli cells. Endocrinology 1984; 114:240–246.

    PubMed  CAS  Google Scholar 

  94. Lin T, Haskell J, Vinson N, Terracio L. Characterization of insulin and insulin-like growth factor I receptors of purified Leydig cells and their role in steroidogenesis in primary culture: a comparative study. Endocrinology 1986;19:1641–1647.

    Google Scholar 

  95. Smith EP, Dickson BA, Chernausek SD. Insulin-like growth factor binding protein-3 secretion from cultured rat sertoli cells: dual regulation by follicle stimulating hormone and insulin-like growth factor-I. Endocrinology 1990; 127:2744–2751.

    PubMed  CAS  Google Scholar 

  96. Rappaport MS, Smith EP. Insulin-like growth factor (IGF) binding protein 3 in the rat testis: follicle-stimulating hormone dependence of mRNA expression and inhibition of IGF-I action on cultured Sertoli cells. Biol Reprod 1995;52:419–425.

    PubMed  CAS  Google Scholar 

  97. Lin T, Wang D, Nagpal ML, Shimasaki S, Ling N. Expression and regulation of insulin-like growth factor-binding protein-1,-2,-3, and-4 messenger ribonucleic acids in purified rat Leydig cells and their biological effects. Endocrinology 1993;132:1898–1904.

    PubMed  CAS  Google Scholar 

  98. Zhou J, Bondy C. Anatomy of the insulin-like growth factor system in the human testis. Fertil Steril 1993;60:897–904.

    PubMed  CAS  Google Scholar 

  99. Wood TL, Rogler LE, Czick ME, Schuller AG, Pintar JE. Selective alterations in organ sizes in mice with a targeted disruption of the insulin-like growth factor binding protein-2 gene. Mol Endocrinol 2000; 14:1472–1482.

    PubMed  CAS  Google Scholar 

  100. Bradshaw SL, Schuller AGP, Grewal A, Pintar JE. Analysis of reproductive capability in IGFBP-6 deficient mice. 81st Endocrine Society Annual Meeting. Abstract no. P2-594. San Diego, CA, 1999.

    Google Scholar 

  101. Bienvenu G, Seurin D, Greffier P, et al. Insulin-like growth factor binding protein-6 transgenic mice: postnatal growth, brain development, and reproduction abnormalities. Endocrinology 2004;145(5):2412–2420.

    PubMed  CAS  Google Scholar 

  102. Froment P, Staub C, Hembert S, et al. Reproductive abnormalities in hIGFBP-1 transgenic male mice. Endocrinology 2004;145:2080–2091.

    PubMed  CAS  Google Scholar 

  103. Naville D, Chatelain PG, Avallet O, Saez JM. Control of production of insulin-like growth factor I by pig Leydig and Sertoli cells cultured alone or together. Cell-cell interactions. Mol Cell Endocrinol 1990;70:217–224.

    PubMed  CAS  Google Scholar 

  104. Cailleau J, Vermeire S, Verhoeven G. Independent control of the production of insulin-like growth factor I and its binding protein by cultured testicular cells. Mol Cell Endocrinol 1990;69:79.

    PubMed  CAS  Google Scholar 

  105. Bartke A, Chandrashekar V, Bailey B, Zaczek D, Turyn D. Consequences of growth hormone (GH) overexpression and GH resistance. Neuropeptides 2002;36:201–208.

    PubMed  CAS  Google Scholar 

  106. Zhou J, Xu BC, Maheshwari HG, et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (The Laron mouse). Proc Natl Acad Sci 1997;94:13,215–13,220.

    CAS  Google Scholar 

  107. Baker J, Hardy MP, Zhou J, et al. Effects of an Igfl gene null mutation on mouse reproduction. Mol Endocrinol 1996;10:903–918.

    PubMed  CAS  Google Scholar 

  108. Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev 2001;22:818–835.

    PubMed  CAS  Google Scholar 

  109. Ramaley JA, Phares CK. Delay of puberty onset in females due to suppression of growth hormone. Endocrinology 1980;106:1989–1993.

    PubMed  CAS  Google Scholar 

  110. Advis JP, White SS, Ojeda SR. Activation of growth hormone short loop negative feedback delays puberty in the female rat. Endocrinology 1981;108:1343–1352.

    PubMed  CAS  Google Scholar 

  111. Arsenijevic Y, Wehrenberg WB, Conz A, Eshkol A, Sizonenko PC, Aubert ML. Growth hormone (GH) deprivation induced by passive immunization against rat GH-releasing factor delays sexual maturation in the male rat. Endocrinology 1989;124:3050–3059.

    PubMed  CAS  Google Scholar 

  112. Keene DE, Suescun MO, Bostwick MG, Chandrashekar V, Bartke A, Kopchick JJ. Puberty is delayed in male growth hormone receptor gene-disrupted mice. J Androl 2002;23:661–668.

    PubMed  CAS  Google Scholar 

  113. Chandrashekar V, Bartke A, Coschigano KT, Kopchick JJ. Pituitary and testicular function in growth hormone receptor gene knockout mice. Endocrinology 1999;140:1082–1088.

    PubMed  CAS  Google Scholar 

  114. Chandrashekar V, Bartke A, Awoniyi CA, et al. Testicular endocrine function in growth hormone receptor gene disrupted mice. Endocrinology 2001;142:3443–3450.

    PubMed  CAS  Google Scholar 

  115. Laron Z. The essential role of IGF-I: lessons from the longterm study and treatment of children and adults with Laron syndrome. J Clin Endocrinol Metab 1999;84:4397–4404.

    PubMed  CAS  Google Scholar 

  116. Laron Z. Growth hormone insensitivity (Laron syndrome). Rev Endocr Metab Disord 2002;3:347–355.

    PubMed  CAS  Google Scholar 

  117. Colao A, De Rosa M, Pivonello R, et al. Short-term suppression of GH and IGF-I levels improves gonadal function and sperm parameters in men with acromegaly. J Clin Endocrinol Metab 2002;87:4193–4197.

    PubMed  CAS  Google Scholar 

  118. Melmed S, Ho K, Klibanski A, Reichlin S, Thorner M. Clinical review 75: Recent advances in pathogenesis, diagnosis, and management of acromegaly. J Clin Endocrinol Metab 1995;80:3395–3402.

    PubMed  CAS  Google Scholar 

  119. Chandrashekar V, Bartke A. The role of growth hormone in the control of gonadotropin secretion in adult male rats. Endocrinology 1998;139:1067–1074.

    PubMed  CAS  Google Scholar 

  120. Juul A, Andersson AM, Pedersen SA, et al. Effects of growth hormone replacement therapy on IGF-related parameters and on the pituitary-gonadal axis in GH-deficient males. A doubleblind, placebo-controlled crossover study. Horm Res 1998;6:269–278.

    Google Scholar 

  121. Lackey BR, Gray SL, Henricks DM. The insulin-like growth factor (IGF) system and gonadotropin regulation: actions and interactions. Cytokine Growth Factor Rev 1999;10:201–217.

    PubMed  CAS  Google Scholar 

  122. Hiney JK, Ojeda SR, Dees WL. Insulin-like growth factor I: a possible metabolic signal involved in the regulation of female puberty. Neuroendocrinology 1991;54:420–423.

    PubMed  CAS  Google Scholar 

  123. Hiney JK, Srivastava V, Nyberg CL, Ojeda SR, Dees WL. Insulin-like growth factor I of peripheral origin acts centrally to accelerate the initiation of female puberty. Endocrinology 1996;137:3717–3728.

    PubMed  CAS  Google Scholar 

  124. Bartlett JM, Charlton HM, Robinson IC, Nieschlag E. Pubertal development and testicular function in the male growth hormone-deficient rat. J Endocrinol 1990;126:93–201.

    Google Scholar 

  125. Woods MC, Simpson MS. Pituitary control of the testis of the hypophysectomized rat. Endocrinology 1961;69:91–125.

    PubMed  CAS  Google Scholar 

  126. Swerdloff RS, Odell WD. Modulating influences of FSH, GH, and prolactin on LH-stimulated testosterone secretion. In: Troen P, Nankin HR, eds. The Testis in Normal and Infertile Men. Raven Press, New York, 1977: pp. 395–401.

    Google Scholar 

  127. Zipf WB, Payne AH, Kelch RP. Prolactin, growth hormone, and luteinizing hormone in the maintenance of testicular luteinizing hormone receptors. Endocrinology 1978;103:595–600.

    PubMed  CAS  Google Scholar 

  128. Hull KL, Harvey S. Growth hormone: roles in male reproduction. Endocrine 2000;13:243–250.

    PubMed  CAS  Google Scholar 

  129. Vickers MH, Casey PJ, Champion ZJ, Gravance CG, Breier BH. IGF-I treatment increases motility and improves morphology of immature spermatozoa in the GH-deficient dwarf (dw/dw) rat. Growth Horm IGF Res 1999;9:236–240.

    PubMed  CAS  Google Scholar 

  130. Ovesen P, Jorgensen JO, Kjaer T, Ho KK, Orskov H, Christiansen JS. Impaired growth hormone secretion and increased growth hormone-binding protein levels in subfertile males. Fertil Steril 1996;65:165–169.

    PubMed  CAS  Google Scholar 

  131. Becker AJ, Uckert S, Stief CG, et al. Serum levels of human growth hormone during different penile conditions in the cavernous and systemic blood of healthy men and patients with erectile dysfunction. Urology 2002;59:609–614.

    PubMed  Google Scholar 

  132. Ra S, Aoki H, Fujioka T, Sato F, Kubo T, Yasuda N. In vitro contraction of the canine corpus cavernosum penis by direct perfusion with prolactin or growth hormone. J Urol 1996; 156:522–525.

    PubMed  CAS  Google Scholar 

  133. Bartke A. Delayed aging in Ames dwarf mice. Relationships to endocrine function and body size. Results Probl Cell Differ 2000;29:181–202.

    PubMed  CAS  Google Scholar 

  134. Bartke A. Effects of growth hormone on male reproductive functions. J Androl 2000;21:181–188.

    PubMed  CAS  Google Scholar 

  135. Hull KL, Harvey S. GH as a co-gonadotropin: the relevance of correlative changes in GH secretion and reproductive state. J Endocrinol 2002;172:1–19.

    PubMed  CAS  Google Scholar 

  136. Chandrashekar V, Bartke A. The role of insulin-like growth factor-I in neuroendocrine function and the subsequent effects on sexual maturation: inferences from animal models. Reprod Biol 2003;3:7–28.

    PubMed  Google Scholar 

  137. Shoham Z, Conway GS, Ostergaard H, Lahlou N, Bouchard P, Jacobs HS. Cotreatment with growth hormone for induction of spermatogenesis in patients with hypogonadotropic hypogonadism. Fertil Steril 1992;57:1044–1051.

    PubMed  CAS  Google Scholar 

  138. Delemarre-van de Waal HA, van Coeverden SC, Rotteveel J. Hormonal determinants of pubertal growth. J Pediatr Endocrinol Metab 2001;14(suppl 6):1521–1526.

    Google Scholar 

  139. Clark PA, Rogol AD. Growth hormones and sex steroid interactions at puberty. Endocrinol Metab Clin North Am 1996;25: 665–681.

    PubMed  CAS  Google Scholar 

  140. Chuzel F, Clark AM, Avallet O, Saez JM. Transcriptional regulation of the lutropin/human choriogonadotropin receptor and three enzymes of steroidogenesis by growth factors in cultured pig Leydig cells. Eur J Biochem 1996;239:8–16.

    PubMed  CAS  Google Scholar 

  141. Laron Z, Sarel R. Penis and testicular size in patients with growth hormone insufficency. Acta Endocrinol (Copenh) 1970;63:625–633.

    CAS  Google Scholar 

  142. Kanzaki M, Morris PL. Growth hormone regulates steroidogenic acute regulatory protein expression and steroidogenesis in Leydig cell progenitors. Endocrinology 1999;140:1681–1686.

    PubMed  CAS  Google Scholar 

  143. Bondanelli M, Ambrosio MR, Margutti A, Franceschetti P, Zatelli MC, degli Uberti EC. Activation of the somatotropic axis by testosterone in adult men: evidence for a role of hypothalamic growth hormone-releasing hormone. Neuroendocrinology 2003;77:380–387.

    PubMed  CAS  Google Scholar 

  144. Juul A, Andersson AM, Pedersen SA, et al. Effects of growth hormone replacement therapy on IGF-related parameters and on the pituitary-gonadal axis in GH-deficient males. A doubleblind, placebo-controlled crossover study. Horm Res 1998;6: 269–278.

    Google Scholar 

  145. Crawford BA, Handelsman DJ. Recombinant growth hormone and insulin-like growth factor I do not alter gonadotrophin stimulation of the baboon testis in vivo. Eur J Endocrinol 1994;131:405–412.

    PubMed  CAS  Google Scholar 

  146. Sjogren I, Ekvarn S, Zuhlke U, et al. Lack of effects of recombinant human GH on spermatogenesis in the adult cynomolgus monkey (Macaca fascicularis). Eur J Endocrinol 1999;140:350–357.

    PubMed  CAS  Google Scholar 

  147. Awoniyi CA, Veeramachaneni DN, Roberts D, Tucker KE, Chandrashekar V, Schlaff WD. Suppression of growth hormone does not affect ongoing spermatogenesis in rats. J Androl 1999;20:102–108.

    PubMed  CAS  Google Scholar 

  148. Chandrashekar V, Bartke A. Induction of endogenous insulin-like growth factor-I secretion alters the hypothalamicpituitary-testicular function in growth hormone-deficient adult dwarf mice. Biol Reprod 1993;48:544–551.

    PubMed  CAS  Google Scholar 

  149. Matsushima M, Kuroda K, Shirai M, Ando K, Sugisaki T, Noguchi T. Spermatogenesis in Snell dwarf, little and congenitally hypothyroid mice. Int J Androl 1986;9:132–140.

    PubMed  CAS  Google Scholar 

  150. Vergara M, Smith-Wheelock M, Harper JM, Sigler R, Miller RA. Hormone-treated snell dwarf mice regain fertility but remain long lived and disease resistant. J Gerontol A Biol Sci Med Sci 2004;59(12):1244–1250.

    PubMed  Google Scholar 

  151. Korenbrot CC, Huhtaniemi IT, Weiner RI. Preputial separation as an external sign of pubertal development in the male rat. Biol Reprod 1977;17:298–303.

    PubMed  CAS  Google Scholar 

  152. Wang GM, O’Shaughnessy PJ, Chubb C, Robaire B, Hardy MP. Effects of insulin-like growth factor I on steroidogenic enzyme expression levels in mouse Leydig cells. Endocrinology 2003;144:5058–5064.

    PubMed  CAS  Google Scholar 

  153. Spiteri-Grech J, Bartlett JM, Nieschlag E. Regulation of testicular insulin-like growth factor-I in pubertal growth hormone-deficient male rats. J Endocrinol 1991; 131: 279–285.

    PubMed  CAS  Google Scholar 

  154. Carmignac DF, Bennett PA, Robinson IC. Effects of growth hormone secretagogues on prolactin release in anesthetized dwarf (dw/dw) rats. Endocrinology 1998;139:3590–3596.

    PubMed  CAS  Google Scholar 

  155. Umezu M, Kawada K, Miwa A, Ishii S, Masaki J. Pituitary and plasma levels of growth hormone (GH), follicle stimulating hormone (FSH) and luteinizing hormone (LH) in hereditary dwarf rats (rdw/rdw). Jikken Dobutsu 1991;40:511–515.

    PubMed  CAS  Google Scholar 

  156. Umezu M, Fujimura T, Sugawara S, Kagabu S. Pituitary and serum levels of prolactin (PRL), thyroid stimulating hormone (TSH) and serum thyroxine (T4) in hereditary dwarf rats (rdw/rdw). Jikken Dobutsu 1993;42:211–216.

    PubMed  CAS  Google Scholar 

  157. Ono M, Harigai T, Furudate S. Pituitary-specific transcription factor Pit-1 in the rdw rat with growth hormoneand prolactin-deficient dwarfism. J Endocrinol 1994;143:479–487.

    PubMed  CAS  Google Scholar 

  158. Chatelain PG, Sanchez P, Saez JM. Growth hormone and insulin-like growth factor I treatment increase testicular luteinizing hormone receptors and steroidogenic responsiveness of growth hormone deficient dwarf mice. Endocrinology 1991;128:1857–1862.

    PubMed  CAS  Google Scholar 

  159. Chubb C, Nolan C. Animal models of male infertility: mice bearing single-gene mutations that induce infertility. Endocrinology 1985;117:338–346.

    PubMed  CAS  Google Scholar 

  160. Chubb C. Sexual behavior and fertility of little mice. Biol Reprod 1987;37:564–569.

    PubMed  CAS  Google Scholar 

  161. Laron Z, Sarel R, and Pertzelan A. Puberty in Laron type dwarfism. Eur Jol Ped 1980;134:79–83.

    CAS  Google Scholar 

  162. Laron Z, Klinger B. Effect of insulin-like growth factor-I treatment on serum androgens and testicular and penile size in males with Laron syndrome (primary growth hormone resistance). Eur J Endocrinol 1998;138:76–180.

    Google Scholar 

  163. Kelly PA, Binart N, Lucas B, Bouchard B, Goffin V. Implications of multiple phenotypes observed in prolactin receptor knockout mice. Front Neuroendocrinol 2001;22:140–145.

    PubMed  CAS  Google Scholar 

  164. Chandrashekar V, Panici JA, Bostwick MG, Bartke A, Kopchick JJ. Effect of insulin-like growth factor-I on testicular endocrine function in growth hormone receptor gene knockout mice. Biol Reprod 2002;66(suppl l):abstract no. 117.

    Google Scholar 

  165. Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 2003;144:3799–3810.

    PubMed  CAS  Google Scholar 

  166. Bartke A, Naar EM, Johnson L, et al. Effects of expression of human or bovine growth hormone genes on sperm production and male reproductive performance in four lines of transgenic mice. J Reprod Fertil 1992;95:109–118.

    PubMed  CAS  Google Scholar 

  167. Rivera EM, Forsyth IA, Folley SJ. Lactogenic activity of mammalian growth hormones in vitro. Proc Soc Exp Biol Med 1967; 124:859–865.

    PubMed  CAS  Google Scholar 

  168. Chandrashekar V, Bartke A, Wagner TE. Endogenous human growth hormone (GH) modulates the effect of gonadotropinreleasing hormone on pituitary function and the gonadotropin response to the negative feedback effect of testosterone in adult male transgenic mice bearing human GH gene. Endocrinology 1988;123:2717–2722.

    PubMed  CAS  Google Scholar 

  169. Chandrashekar V, Bartke A. Effects of age and endogenously secreted human growth hormone on the regulation of gonadotropin secretion in female and male transgenic mice expressing the human growth hormone gene. Endocrinology 1993;132:1482–1488.

    PubMed  CAS  Google Scholar 

  170. Chandrashekar V, Bartke A, Wagner TE. Interactions of human growth hormone and prolactin on pituitary and Leydig cell function in adult transgenic mice expressing the human growth hormone gene. Biol Reprod 1991;44:135–140.

    PubMed  CAS  Google Scholar 

  171. Tang K, Bartke A, Gardiner CS, Wagner TE, Yun JS. Gonadotropin secretion, synthesis, and gene expression in human growth hormone transgenic mice and in Ames dwarf mice. Endocrinology 1993;132:2518–2524.

    PubMed  CAS  Google Scholar 

  172. Huang WJ, Yeh JY, Tsai SC, et al. Regulation of testosterone secretion by prolactin in male rats. J Cell Biochem 1999;74: 111–118.

    PubMed  CAS  Google Scholar 

  173. Chandrashekar V, Bartke A, Wagner TE. Effects of gonadotropin releasing hormone on luteinizing hormone and testosterone secretion in male transgenic mice with bovine growth hormone gene expression. Annual Meeting of The Endocrine Society. Abstract no. p 81. Washington DC, 1989.

    Google Scholar 

  174. Mayo KE, Hammer RE, Swanson LW, Brinster RL, Rosenfeld MG, Evans RM. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol Endocrinol 1988;2:606–612.

    PubMed  CAS  Google Scholar 

  175. Chandrashekar V, Bartke A. Pituitary and testicular function in adult transgenic mice expressing the human growth hormone-releasing hormone gene. Society for the Study of Reproduction 30th Annual Meeting. Abstract no. 462. Portland, OR, 1997.

    Google Scholar 

  176. Chandrashekar V, Panici J, Fink K, Bartke A. Expression of the human growth hormone-releasing hormone gene alters the endocrine function of the testis. Society for the Study of Reproduction 34th Annual Meeting. Abstract no. 255. Ottawa, ON, 2001.

    Google Scholar 

  177. de Lange WE, Verhoeff AJ, Sluiter WJ, Doorenbos H. Hypogonadism in untreated male normoprolactinaemic acromegalics. Neth J Med 1990;36:191–195.

    PubMed  Google Scholar 

  178. Colao A, De Rosa M, Pivonello R, et al. Short-term suppression of GH and IGF-I levels improves gonadal function and sperm parameters in men with acromegaly. J Clin Endocrinol Metab 2002;87:4193–4497.

    PubMed  CAS  Google Scholar 

  179. Lightman SL, Fox P, Dunne MJ. The effect of SMS 201-995, a long-acting somatostatin analogue, on anterior pituitary function in healthy male volunteers. Scand J Gastroenterol Suppl 1986;119:84–95.

    PubMed  CAS  Google Scholar 

  180. Bassetti M, Arosio M, Spada A, et al. Growth hormone and prolactin secretion in acromegaly: correlations between hormonal dynamics and immunocytochemical findings. J Clin Endocrinol Metab 1988;67:1195–1204.

    PubMed  CAS  Google Scholar 

  181. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402:656–660.

    PubMed  CAS  Google Scholar 

  182. Date Y, Murakami N, Kojima M, et al. Central effects of a novel acylated peptide, ghrelin, on growth hormone release in rats. Biochem Biophys Res Commun 2000;275:477–480.

    PubMed  CAS  Google Scholar 

  183. Date Y, Nakazato M, Murakami N, Kojima M, Kangawa K, Matsukura S. Ghrelin acts in the central nervous system to stimulate gastric acid secretion. Biochem Biophys Res Commun 2001;280:904–907.

    PubMed  CAS  Google Scholar 

  184. De Ambrogi M, Volpe S, Tamanini C. Ghrelin: central and peripheral effects of a novel peptydil hormone. Med Sci Monit 2003;9:RA217–RA224.

    PubMed  Google Scholar 

  185. Ukkola O, Poykko S. Ghrelin, growth and obesity. Ann Med 2002;34:102–108.

    PubMed  CAS  Google Scholar 

  186. Camina JP, Carreira MC, Micic D, et al. Regulation of ghrelin secretion and action. Endocrine. 2003;22:5–12.

    PubMed  CAS  Google Scholar 

  187. Williams DL, Cummings DE. Regulation of ghrelin in physiologic and pathophysiologic states. J Nutr 2005;135:1320–1325.

    PubMed  CAS  Google Scholar 

  188. Tanaka M, Hayashida Y, Nakao N, Nakai N, Nakashima K. Testis-specific and developmentally induced expression of a ghrelin gene-derived transcript that encodes a novel polypeptide in the mouse. Biochim. Biophys. Acta 2001;1522:62–65.

    PubMed  CAS  Google Scholar 

  189. Tena-Sempere M, Barreiro ML, Gonzalez LC, et al. Novel expression and functional role of ghrelin in the rat testis. Endocrinology 2002;143:717–725.

    PubMed  CAS  Google Scholar 

  190. Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans, J Clin Endocrinol Metab 2002;87:2988–2991.

    PubMed  CAS  Google Scholar 

  191. Barreiro ML, Gaytan F, Caminos JE, et al. Cellular location and hormonal regulation of ghrelin expression in rat testis, Biol Reprod 2002;67:1768–1776.

    PubMed  CAS  Google Scholar 

  192. Gaytan F, Barreiro ML, Caminos JE, et al. Expression of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in normal human testis and testicular tumors, J Clin Endocrinol Metab 2004;89:400–409.

    PubMed  CAS  Google Scholar 

  193. Tena-Sempere M. Ghrelin: novel regulator of gonadal function. J Endocrinol Invest 2005;28(5 Suppl):26–29.

    PubMed  CAS  Google Scholar 

  194. Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol 2003;23: 7973–7981.

    PubMed  CAS  Google Scholar 

  195. Bartke A, Chandrashekar V, Dominici F, et al. Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology 2003; 4:1–8.

    PubMed  CAS  Google Scholar 

  196. Bartke A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 2005;146:3718–3723.

    PubMed  CAS  Google Scholar 

  197. Laron Z. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity? Mech Ageing Dev 2005;126:305–307.

    PubMed  CAS  Google Scholar 

  198. Besson A, Salemi S, Gallati S, et al. Reduced longevity in untreated patients with isolated growth hormone deficiency. J Clin Endocrinol Metab 2003;88:3664–3667.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chandrashekar, V., Bartke, A. (2007). Growth Factors in Leydig Cell Function. In: Payne, A.H., Hardy, M.P. (eds) The Leydig Cell in Health and Disease. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-453-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-453-7_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-754-9

  • Online ISBN: 978-1-59745-453-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics