Skip to main content

Uncoupling Cellular Respiration: A Link to Cancer Cell Metabolism and Immune Privilege

  • Chapter
  • First Online:
Cellular Respiration and Carcinogenesis

Abstract

Epidemiologic evidence strongly correlates suppression of maturation of the immune system to incidences of cancer. The effectiveness of chemotherapeutic agents significantly depends upon the ability of the cancer cells to express (costimulatory) molecules on their surface that can be recognized and engaged by their surrogate ligands of the immune system, thereby resulting in immune-directed cell killing. Alterations in the metabolic strategies of cancer cells (such as: the rate of glucose utilization, glucose or fatty acid oxidation, the magnitude of the membrane potential and the pH gradient across the mitochondrial membrane, and/or changes in uncoupling protein levels) can modulate the expression of some cell surface “death receptors"; thereby conferring resistance to certain cell death-inducing stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voet D, Voet J. Chapter 22: Electron Transport and Oxidative Phosphorylation. Biochemistry John Wiley & Sons, Inc. (2004).

    Google Scholar 

  2. Bhushan A, et al. Drug resistance results in alterations in expression of immune recognition molecules and failure to express Fas (CD95). Immunol Cell Biol1998; 76:350–356.

    Article  PubMed  CAS  Google Scholar 

  3. Brundtland GH. The Global Burden of Cancer In: Stewart BW, Kleihues P, eds. World cancer report. Lyon: International Agency for Research on Cancer, World Health Organization, 2003:352.

    Google Scholar 

  4. Marrack P, Kappler J. The T cell receptor. Science 1987; 238:1073–1079.

    Article  PubMed  CAS  Google Scholar 

  5. Bretscher PA, Cohn M. A theory of self-nonself discrimination. Science 1970; 169: 1042–1049.

    Article  PubMed  CAS  Google Scholar 

  6. Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Ann Rev Immunol 1993; 11:191–212.

    Article  CAS  Google Scholar 

  7. Linsley PS, et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA4. Immunity 1994; 1:793–801.

    Article  PubMed  CAS  Google Scholar 

  8. June CH, et al. The B7 and CD28 receptor families. Immunol Today 1994; 15:321–330.

    Article  PubMed  CAS  Google Scholar 

  9. Kuchroo VK, et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995; 80: 707–718.

    Article  PubMed  CAS  Google Scholar 

  10. Lanier LL, et al. CD80(B7) and CD86(B70) provide similiar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J Immunol 1995; 154: 97–105.

    PubMed  CAS  Google Scholar 

  11. Alderson MR, et al. Fas transduces activation signals in normal human T lymphocytes. J Exp Med 1993; 178:2231–2235.

    Article  PubMed  CAS  Google Scholar 

  12. Nagata S, Human autoimmune lymphoproliferative syndrome, a defect in the apoptosis-inducing Fas receptor: a lesson from the mouse model. J Hum Genet 1998; 43(1):2–8.

    Article  PubMed  CAS  Google Scholar 

  13. Desbarats J, et al. Dichotomy between naïve and memory CD4+ T cell responses to Fas (CD95) engagement. Proc Natl Acad Sci USA 1999; 96:8104–8109.

    Article  PubMed  CAS  Google Scholar 

  14. Desbarats J, Newell MK. Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 2000; 6(8):920–923.

    Article  PubMed  CAS  Google Scholar 

  15. Mavligit GM, et al. Cell-mediated immunity to human solid tumors: in vitro detection by lymphocyte blastogenic responses to cell-associated and solubilized tumor antigens. Natl Cancer Inst Monogr 1973; 37:167–176.

    PubMed  CAS  Google Scholar 

  16. Whelan M, et al. Cancer immunotherapy: an embarrassment of riches? Drug Discov Today 2003; 8(6):253–258.

    Article  PubMed  Google Scholar 

  17. Martindale D. T cell triumph: immunotherapy may have finally turned a corner. Sci Am 2003; 288(2):18–19.

    Article  Google Scholar 

  18. Tsuruo T, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 2003; 94(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  19. Newell MK, et al. Does the oxidative/glycolytic ratio determine proliferation or death in immune recognition? Ann NY Acad Sci 1999; 887:77–82.

    Article  PubMed  CAS  Google Scholar 

  20. Nagata S, Golstein P. The Fas death factor. Science 1995; 267:1449–1456.

    Article  PubMed  CAS  Google Scholar 

  21. Nagata S. Apoptosis by death factor. Cell 1997; 88:355–365.

    Article  PubMed  CAS  Google Scholar 

  22. Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv 2000; 74(2–3):281–286.

    PubMed  CAS  Google Scholar 

  23. Kataoka T, et al. Expression level of c-FLIP versus Fas determines susceptibility to Fas ligand-induced cell death in murine thymoma EL-4 cells. Exp Cell Res 2002; 273(2):256–264.

    Article  PubMed  CAS  Google Scholar 

  24. Harper M-E, et al. Characterization of a novel metabolic strategy used by drug-resistant tumor cells. FASEB J 2002;16(12):1550–1557.

    Article  PubMed  CAS  Google Scholar 

  25. Sinkovics JG, Horvath JC. Virological and immunological connotations of apoptotic and anti-apoptotic forces in neoplasia. Int J Oncol 2001; 19(3):473–488.

    PubMed  CAS  Google Scholar 

  26. Green DR, Evan GI. A matter of life and death. Cancer Cell 2002; 1(1):19–30.

    Article  PubMed  CAS  Google Scholar 

  27. Tolomeo M, Simoni D. Drug resistance and apoptosis in cancer treatment: development of new apoptosis-inducing agents active in drug resistant malignancies. Curr Med Chem Anti-Cancer Agents 2002; 2(3):387–401.

    Article  CAS  Google Scholar 

  28. Landowski TH, et al. Myeloma cells selected for resistance to CD95-mediated apoptosis are not cross-resistant to cytotoxic drugs: evidence for independent mechanisms of caspase activation. Blood 1999; 94(1):265–274.

    PubMed  CAS  Google Scholar 

  29. Venditti JM, Sheldon DR, Goldin A. Evaluation of antileukemic agents employing advanced leukemia L1210 in mice. VII. Cancer Res 1964; 24(1 Pt 1):145–210.

    PubMed  CAS  Google Scholar 

  30. Villalobos-Menuey EM. Metabolic regulation of the cellular distribution and function of Fas (CD95). Master’s thesis, University of Colorado, Colorado Springs, 2001:1–83.

    Google Scholar 

  31. Newell MK, Melamede RJ, Villalobos-Menuey E, Swartzendruber D, Trauger R, Camley RE, Crisp W. The effects of chemotherapeutics on cellular metabolism and consequent immune recognition. J Immune Based Ther Vaccines 2004; 2(1):3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karen Newell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Newell, M.K., Villalobos-Menuey, E.M., Burnett, M., Camley, R.E. (2009). Uncoupling Cellular Respiration: A Link to Cancer Cell Metabolism and Immune Privilege. In: Sarangarajan, R., Apte, S. (eds) Cellular Respiration and Carcinogenesis. Humana Press. https://doi.org/10.1007/978-1-59745-435-3_11

Download citation

Publish with us

Policies and ethics