Skip to main content

Aging and Cardiac Ischemia—Mitochondria and Free Radical Considerations

  • Chapter
Oxidative Stress in Aging

Part of the book series: Aging Medicine ((AGME))

  • 1318 Accesses

Summary

Acute myocardial infarction (MI, heart attack) kills 200,000 people annually in the United States, and the number 1 risk factor for fatal MI is age. The biological phenomenon underlying MI is ischemia-reperfusion (IR) injury, i.e., damage to tissue that occurs during and immediately after an MI. In this chapter, following a brief primer on mitochondrial ROS generation, and the underlying pathologic mechanisms of mitochondrial dysfunction in IR injury, we then break down the effects of aging on MI risk into three parts. First, changes in risk factors for MI with aging, most of which are external to the heart (e.g., atherosclerosis). Second, changes in cardiac mitochondrial function with age. Third, changes in the response of cardiac mitochondria to MI. Last, the role of mitochondria in protecting the heart from ischemia is introduced, and the possibility that increased MI risk with aging originates from a degeneration of protective signaling pathways is raised. We conclude with an outlook on the therapeutic opportunities, both current and developing, for the treatment of increased MI risk, in aged human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 1967;212(4):804–14.

    PubMed  CAS  Google Scholar 

  2. Palmer JW, Tandler B, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 1977;252(23):8731–9.

    PubMed  CAS  Google Scholar 

  3. Johnson DT, Harris RA, Blair P V, Balaban RS. Functional consequences of mitochondrial proteome heterogeneity. Am J Physiol 2007;292(2):C698–707.

    Article  CAS  Google Scholar 

  4. Johnson DT, Harris RA, French S et al. Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol 2007;292(2):C689–97.

    Article  CAS  Google Scholar 

  5. Brooks GA, Brown MA, Butz CE, Sicurello JP, Dubouchaud H. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. J Appl Physiol 1999;87(5):1713–8.

    PubMed  CAS  Google Scholar 

  6. Chatham JC. Lactate—the forgotten fuel! J Physiol 2002;542(2):333.

    Article  PubMed  CAS  Google Scholar 

  7. Brookes P. Mitochondrial production of oxidants and their role in the regulation of cellular processes. In: Gibson G, Dienel G, eds. Handbook of neurochemistry and molecular neurobiology. New York: Springer; 2007.

    Google Scholar 

  8. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem 1991;266(32):22028–34.

    PubMed  CAS  Google Scholar 

  9. Lebovitz RM, Zhang H, Vogel H et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 1996;93(18):9782–7.

    Article  PubMed  CAS  Google Scholar 

  10. Li Y, Huang TT, Carlson EJ et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995;11(4):376–81.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi E, Endoh H, Doi K. Visualization of myoglobin-facilitated mitochondrial O(2) delivery in a single isolated cardiomyocyte. Biophys J 2000;78(6):3252–9.

    Article  PubMed  CAS  Google Scholar 

  12. Chandel NS, McClintock DS, Feliciano CE et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000;275(33):25130–8.

    Article  PubMed  CAS  Google Scholar 

  13. Hoffman DL, Salter JD, Brookes PS. Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol 2007;292(1):H101–8.

    CAS  Google Scholar 

  14. Lesnefsky EJ, Hoppel CL. Oxidative phosphorylation and aging. Ageing Res Rev 2006;5(4):402–33.

    Article  PubMed  CAS  Google Scholar 

  15. Lesnefsky EJ, Hoppel CL. Ischemia-reperfusion injury in the aged heart: role of mitochondria. Arch Biochem Biophys 2003;420(2):287–97.

    Article  PubMed  CAS  Google Scholar 

  16. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol 2004;287(4):C817–33.

    Article  CAS  Google Scholar 

  17. Riess ML, Camara AK, Novalija E, Chen Q, Rhodes SS, Stowe DF. Anesthetic preconditioning attenuates mitochondrial Ca2+ overload during ischemia in guinea pig intact hearts: reversal by 5-hydroxydecanoic acid. Anesth Analg 2002;95(6):1540–6, table of contents.

    Article  PubMed  CAS  Google Scholar 

  18. Kim JS, Jin Y, Lemasters JJ. Reactive oxygen species, but not Ca2+ overloading, trigger pH-and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol 2006;290(5):H2024–34.

    CAS  Google Scholar 

  19. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995;307(1):93–8.

    PubMed  CAS  Google Scholar 

  20. Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 2002;277(38):34793–9.

    Article  PubMed  CAS  Google Scholar 

  21. Chakrabarti S, Hoque AN, Karmazyn M. A rapid ischemia-induced apoptosis in isolated rat hearts and its attenuation by the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). J Mol Cell Cardiol 1997;29(11):3169–74.

    Article  PubMed  CAS  Google Scholar 

  22. Portman MA, Panos AL, Xiao Y, Anderson DL, Ning X. HOE-642 (cariporide) alters pH(i) and diastolic function after ischemia during reperfusion in pig hearts in situ. Am J Physiol 2001;280(2):H830–4.

    CAS  Google Scholar 

  23. Ganote CE, Armstrong SC. Effects of CCCP-induced mitochondrial uncoupling and cyclosporin A on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol 2003;35(7):749–59.

    Article  PubMed  CAS  Google Scholar 

  24. Hoerter J, Gonzalez-Barroso MD, Couplan E et al. Mitochondrial uncoupling protein 1 expressed in the heart of transgenic mice protects against ischemic-reperfusion damage. Circulation 2004;110(5):528–33.

    Article  PubMed  CAS  Google Scholar 

  25. Minners J, van den Bos EJ, Yellon DM, Schwalb H, Opie LH, Sack MN. Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: support for a mitochondrial role in cardioprotection. Cardiovasc Res 2000;47(1):68–73.

    Article  PubMed  CAS  Google Scholar 

  26. Nadtochiy SM, Burwell LS, Brookes PS. Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol 2007;42:812–25.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: staccato reper-fusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 2007;115(14):1895–903.

    Article  PubMed  Google Scholar 

  28. Lucas DT, Szweda LI. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci U S A 1998;95(2):510–4.

    Article  PubMed  CAS  Google Scholar 

  29. Nadtochiy SM, Tompkins AJ, Brookes PS. Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardio-protection. Biochem J 2006;395(3):611–8.

    Article  PubMed  CAS  Google Scholar 

  30. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations. FEBS Lett 1998;424(3):155–8.

    Article  PubMed  CAS  Google Scholar 

  31. Rouslin W, Millard RW. Mitochondrial inner membrane enzyme defects in porcine myocardial ischemia. Am J Physiol 1981;240(2):H308–13.

    PubMed  CAS  Google Scholar 

  32. Rouslin W. Mitochondrial complexes I, II, III, I V, and V in myocardial ischemia and autolysis. Am J Physiol 1983;244(6):H743–8.

    PubMed  CAS  Google Scholar 

  33. Tretter L, Adam-Vizi V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of α-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 2000;20(24):8972–9.

    PubMed  CAS  Google Scholar 

  34. Tompkins AJ, Burwell LS, Digerness SB, Zaragoza C, Holman WL, Brookes PS. Mitochondrial dysfunction in cardiac ischemia-reperfusion injury: ROS from complex I, without inhibition. Biochim Biophys Acta 2006;1762(2):223–31.

    PubMed  CAS  Google Scholar 

  35. Hirsch AT, Haskal ZJ, Hertzer NR et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/ Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/ AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 2006;113(11):e463–654.

    Article  PubMed  Google Scholar 

  36. Groner JA, Joshi M, Bauer JA. Pediatric precursors of adult cardiovascular disease: noninvasive assessment of early vascular changes in children and adolescents. Pediatrics 2006;118(4):1683–91.

    Article  PubMed  Google Scholar 

  37. d'Alessio P. Aging and the endothelium. Exp Gerontol 2004;39(2):165–71.

    Article  PubMed  Google Scholar 

  38. Cohen MV, Yang XM, Downey JM. Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovasc Res 2006;70(2):231–9.

    Article  PubMed  CAS  Google Scholar 

  39. Jones SP, Bolli R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 2006;40(1):16–23.

    Article  PubMed  CAS  Google Scholar 

  40. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 1993;73(2):413–67.

    PubMed  CAS  Google Scholar 

  41. Tani M, Suganuma Y, Hasegawa H et al. Decrease in ischemic tolerance with aging in isolated perfused Fischer 344 rat hearts: relation to increases in intracellular Na+ after ischemia. J Mol Cell Cardiol 1997;29(11):3081–9.

    Article  PubMed  CAS  Google Scholar 

  42. Besse S, Tanguy S, Boucher F et al. Cardioprotection with cariporide, a sodium-proton exchanger inhibitor, after prolonged ischemia and reperfusion in senescent rats. Exp Gerontol 2004;39(9):1307–14.

    Article  PubMed  CAS  Google Scholar 

  43. Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther 2006;319(3):1405–12.

    Article  PubMed  CAS  Google Scholar 

  44. Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys 1999;372(2):399–407.

    Article  PubMed  CAS  Google Scholar 

  45. Lesnefsky EJ, Gudz TI, Moghaddas S et al. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. J Mol Cell Cardiol 2001;33(1):37–47.

    Article  PubMed  CAS  Google Scholar 

  46. Moghaddas S, Hoppel CL, Lesnefsky EJ. Aging defect at the QO site of complex III augments oxyradical production in rat heart interfibrillar mitochondria. Arch Biochem Biophys 2003;414(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  47. Moghaddas S, Stoll MS, Minkler PE, Salomon RG, Hoppel CL, Lesnefsky EJ. Preservation of cardiolipin content during aging in rat heart interfibrillar mitochondria. J Gerontol A Biol Sci Med Sci 2002;57(1):B22–8.

    PubMed  Google Scholar 

  48. Darr D, Fridovich I. Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans. Free Radic Biol Med 1995;18(2):195–201.

    Article  PubMed  CAS  Google Scholar 

  49. Fridovich I. Mitochondria: are they the seat of senescence? Aging Cell 2004;3(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  50. Rieske JS, Hansen RE, Zaugg WS. Studies on the electron transfer system. 58. Properties of a new oxidation-reduction component of the respiratory chain as studied by electron paramagnetic resonance spectroscopy. J Biol Chem 1964;239:3017–22.

    PubMed  CAS  Google Scholar 

  51. Hoppel CL, Tandler B, Parland W, Turkaly JS, Albers LD. Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J Biol Chem 1982;257(3):1540–8.

    PubMed  CAS  Google Scholar 

  52. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Age-dependent decrease in the cytochrome c oxidase activity and changes in phospholipids in rat-heart mitochondria. Arch Gerontol Geriatr 1993;16(3):263–72.

    Article  PubMed  CAS  Google Scholar 

  53. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Lett 1997;406(1–2):136–8.

    Article  PubMed  CAS  Google Scholar 

  54. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A 2002;99(3):1259–63.

    Article  PubMed  CAS  Google Scholar 

  55. Tyurin VA, Tyurina YY, Osipov AN et al. Interactions of cardiolipin and lyso-cardiolipins with cytochrome c and tBid: conflict or assistance in apoptosis. Cell Death Differ 2007;14(4):872–5.

    Article  PubMed  CAS  Google Scholar 

  56. Hansford RG, Tsuchiya N, Pepe S. Mitochondria in heart ischaemia and aging. Biochem Soc Symp 1999;66:141–7.

    PubMed  CAS  Google Scholar 

  57. Pepe S. Mitochondrial function in ischaemia and reperfusion of the ageing heart. Clin Exp Pharmacol Physiol 2000;27(9):745–50.

    Article  PubMed  CAS  Google Scholar 

  58. Brunelle JK, Bell EL, Quesada NM et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 2005;1(6):409–14.

    Article  PubMed  CAS  Google Scholar 

  59. Guzy RD, Hoyos B, Robin E et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 2005;1(6):401–8.

    Article  PubMed  CAS  Google Scholar 

  60. Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 1998;273(19):11619–24.

    Article  PubMed  CAS  Google Scholar 

  61. Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci 2005;1047:248–58.

    Article  PubMed  CAS  Google Scholar 

  62. Palmer JW, Tandler B, Hoppel CL. Heterogeneous response of subsarcolemmal heart mitochondria to calcium. Am J Physiol 1986;250(5 Pt 2):H741–8.

    PubMed  CAS  Google Scholar 

  63. Juhaszova M, Rabuel C, Zorov DB, Lakatta EG, Sollott SJ. Protection in the aged heart: preventing the heart-break of old age? Cardiovasc Res 2005;66(2):233–44.

    Article  PubMed  CAS  Google Scholar 

  64. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74(5):1124–36.

    PubMed  CAS  Google Scholar 

  65. Devlin W, Cragg D, Jacks M, Friedman H, O'Neill W, Grines C. Comparison of outcome in patients with acute myocardial infarction aged > 75 years with that in younger patients. Am J Cardiol 1995;75(8):573–6.

    Article  PubMed  CAS  Google Scholar 

  66. Riess ML, Stowe DF, Warltier DC. Cardiac pharmacological preconditioning with volatile anesthetics: from bench to bedside? Am J Physiol 2004;286(5):H1603–7.

    CAS  Google Scholar 

  67. Sniecinski R, Liu H. Reduced efficacy of volatile anesthetic preconditioning with advanced age in isolated rat myocardium. Anesthesiology 2004;100(3):589–97.

    Article  PubMed  CAS  Google Scholar 

  68. Lee TM, Su SF, Chou TF, Lee YT, Tsai CH. Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 2002;105(3):334–40.

    Article  PubMed  CAS  Google Scholar 

  69. Dela F, Kjaer M. Resistance training, insulin sensitivity and muscle function in the elderly. Essays Biochem 2006;42:75–88.

    Article  PubMed  CAS  Google Scholar 

  70. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002;277(47): 44784–90.

    Article  PubMed  CAS  Google Scholar 

  71. Kudin AP, Debska-Vielhaber G, Kunz WS. Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomed Pharmacother 2005;59(4): 163–8.

    Article  PubMed  CAS  Google Scholar 

  72. Kudin AP, Bimpong-Buta N Y, Vielhaber S, Elger CE, Kunz WS. Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 2004;279(6):4127–35.

    Article  PubMed  CAS  Google Scholar 

  73. Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J. Species-and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol 2007;292(2): C708–18.

    Article  CAS  Google Scholar 

  74. Starkov AA, Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 2003;86(5):1101–7.

    Article  PubMed  CAS  Google Scholar 

  75. Petrosillo G, Di Venosa N, Ruggiero FM et al. Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free radicals and cardiolipin. Biochim Biophys Acta 2005;1710(2–3):78–86.

    PubMed  CAS  Google Scholar 

  76. Starkov AA, Fiskum G, Chinopoulos C et al. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 2004;24(36):7779–88.

    Article  PubMed  CAS  Google Scholar 

  77. Young TA, Cunningham CC, Bailey SM. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Arch Biochem Biophys 2002;405(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  78. Barja G. Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci 1998;854:224–38.

    Article  PubMed  CAS  Google Scholar 

  79. Mansouri A, Muller FL, Liu Y et al. Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech Ageing Dev 2006;127(3):298–306.

    Article  PubMed  CAS  Google Scholar 

  80. Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 2004;279(47):49064–73.

    Article  PubMed  CAS  Google Scholar 

  81. Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980;191(2):421–7.

    PubMed  CAS  Google Scholar 

  82. Lambert AJ, Brand MD. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 2004;382(2):511–7.

    Article  PubMed  CAS  Google Scholar 

  83. Boveris A, Costa LE, Poderoso JJ, Carreras MC, Cadenas E. Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann N Y Acad Sci 2000;899:121–35.

    Article  PubMed  CAS  Google Scholar 

  84. Zoccarato F, Cavallini L, Bortolami S, Alexandre A. Succinate modulation of H2O2 release at NADH: ubiquinone oxidoreductase (complex I) in brain mitochondria. Biochem J 2007;406(1):125–9.

    Article  PubMed  CAS  Google Scholar 

  85. Battaglia V, Rossi CA, Colombatto S, Grillo MA, Toninello A. Different behavior of agmatine in liver mitochondria: inducer of oxidative stress or scavenger of reactive oxygen species? Biochim Biophys Acta 2007;1768(5):1147–53.

    Article  PubMed  CAS  Google Scholar 

  86. Sohal RS, Svensson I, Brunk UT. Hydrogen peroxide production by liver mitochondria in different species. Mech Ageing Dev 1990;53(3):209–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of P.S.B. is funded by National Institutes of Health grant HL-071158.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Brookes, P.S., Hoffman, D.L. (2008). Aging and Cardiac Ischemia—Mitochondria and Free Radical Considerations. In: Miwa, S., Beckman, K.B., Muller, F.L. (eds) Oxidative Stress in Aging. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-420-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-420-9_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-991-8

  • Online ISBN: 978-1-59745-420-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics