Skip to main content

Obesity and the Cardiometabolic Syndrome: Impact on Chronic Kidney Disease and CVD

  • Chapter
Cardiovascular Disease in Racial and Ethnic Minorities

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The prevalence of the cardiometabolic syndrome (CMS), a cluster of cardiovascular disease (CVD) risk factors which include central obesity, dysglycemia, atherogenic dyslipidemia, hypertension (hypertension), and microalbuminuria (MAU), has increased. Obesity largely drives the dramatic increase in the incidence and prevalence of the CMS worldwide. Recently there has been increasing interest in the association between CMS, obesity, and chronic kidney disease (CKD), which is multifactorial and includes genetic as well as environmental factors. Obesity, hypertension, and dysglycemia are strongly associated with a systemic chronic low-grade inflammation, inappropriate activation of the renin–angiotensin–aldosterone system (RAAS), and increased oxidative stress. The link between RAAS activation and oxidative stress has been a subject of great interest over the past several years.

African-Americans have a greater prevalence of other cardiovascular risk factors, especially obesity and hypertension. There is a question as to whether race or ethnicity should be a significant consideration in the choice of individual antihypertensive drugs, specifically for monotherapy or the use of combination antihypertensive drug therapy. Microalbuminuria is currently recognized as an independent risk factor for progressive CKD and CVD in individuals with type 2 diabetes. Visceral obesity, which by definition is the excess fat tissue in paraintestinal and omental areas, is a feature strongly associated with the CMS and increased risk of CVD. Patients with hypertension have higher fasting and post-prandial insulin levels and evidence of insulin resistance, independent of body mass index or body fat distribution. Both insulin resistance and hypertension predispose to atherosclerosis. Hypertension is a pathophysiologic stimulus for NADPH oxidase complex activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stein CJ, Colditz GA. The epidemic of obesity. J Clin Endocrinol Metab 2004; 89: 2522–2525.

    CAS  Google Scholar 

  2. King H, Aubert RE, Herman WH. Global Burden of diabetes, 1995–2025: prevalence, numerical estimates and projections. Diabet Care 1998; 21:1414–1431.

    Article  CAS  Google Scholar 

  3. Ford ES. Prevalence of the metabolic syndrome defined by International Diabetes Federation among adults in the U.S. Diabet Care 2005; 28:2745–2749.

    Article  Google Scholar 

  4. De Ferranti SD, Gauvreau K, Ludwig DS, et al. Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey. Circulation 2004; 110:2494–2497.

    Article  PubMed  Google Scholar 

  5. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 2002; 106:3143–3421.

    Google Scholar 

  6. Hunt KJ, Rsendez RG, Williams, et al. All-cause and cardiovascular mortality among Mexican-American and Non-Hispanic white older participants in the San Antonio Heart Study-Evidence against the “Hispanic Paradox”. Am J Epidemiol 2003; 158:1048–1057.

    Article  PubMed  Google Scholar 

  7. Manrique C, Lastra G, Whaley-Connell A, et al. Hypertension and the cardiometabolic syndrome. J Clin Hypertens 2003; 7:471–476.

    Article  Google Scholar 

  8. Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and ?-cell dysfunction. Eur J Clin Invest 2002; 32:14–23.

    Article  CAS  PubMed  Google Scholar 

  9. Hanley AJG, Bowden D, Wagenknecht LE, et al. Associations of adiponectin with body fat distribution and insulin sensitivity in non-diabetic Hispanic and African Americans. J Clin Endocrinol Metab 2007; 10:2006–2614.

    Google Scholar 

  10. Tanaka H, Shiohira Y, Uezu Y, et al. Metabolic syndrome and chronic kidney disease in Okinawa, Japan. Kidney Int 2006; 69:369–374.

    Article  CAS  PubMed  Google Scholar 

  11. Kidney Disease Outcome Quality Initiative. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 2002; 39(Suppl.):S1–S246.

    Google Scholar 

  12. Boes E, Fliser D, Ritz E, et al. Apolipoprotein A-IV predicts progression of chronic kidney disease: The Mild to Moderate Kidney Disease Study. J Am Soc Nephrol 2006; 17:528–536.

    Article  CAS  PubMed  Google Scholar 

  13. Wisse BE: The inflammatory syndrome. The role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol 2004; 15:2792–2800.

    Article  CAS  PubMed  Google Scholar 

  14. El-Atat F, Aneja A, McFarlane S, et al. Obesity and hypertension. Endocrinol Metab Clin North Am 2003; 32:823–854.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng LS, Davis RC, Raffel LJ, et al. Coincident linkage of fasting plasma insulin and blood pressure to chromosome 7q in hypertensive Hispanic families. Circulation 2001; 104:1255–1260.

    Article  CAS  PubMed  Google Scholar 

  16. Cohen AJ, McCarthy DM, Stoff JS. Direct homodynamic effect of insulin in the isolated perfused kidney. Am J Physiol 1989; 257:580–585.

    Google Scholar 

  17. Catalano C, Muscelli E, Quinones, et al. Effect of insulin on systemic and renal handling of albumin in nondiabetic and NIDDM subjects. Diabetes 1997; 46:868–875.

    Article  CAS  PubMed  Google Scholar 

  18. Young BA, Johnson RJ, Alpers CE, et al. Cellular events in the evolution of diabetic nephropathy. Kidney Int 1995; 47:935–944.

    Article  CAS  PubMed  Google Scholar 

  19. Simnonson MS, Herman WH. Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin-1: cross-talk between G-protein coupled receptors and pp60c-src. J Biol Chem 1993; 268:9347–9357.

    Google Scholar 

  20. Juhan-Vague I, Alessi MC. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost 1997; 78:656–660.

    CAS  PubMed  Google Scholar 

  21. Rerolle JP, Hertig A, Nguyen G, et al. Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int 2000; 58:1841–1850.

    Article  CAS  PubMed  Google Scholar 

  22. Steinke JM, Sinaiko AR, Kramer MS, et al. The early natural history of nephropathy in type 1 diabetes. III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 2005; 54:2164–2171.

    Article  CAS  PubMed  Google Scholar 

  23. Bakris GL. Clinical importance of microalbuminuria in diabetes and hypertension. Curr Hypertens Rep 2004; 6:352–356.

    Article  PubMed  Google Scholar 

  24. Coward RJM, Welsh GI, Yang J, et al. The human glomerular podocyte is a novel target for insulin action. Diabetes 2005; 54:3095–3102.

    Article  CAS  PubMed  Google Scholar 

  25. Campbell RC. The rennin-angiotensin system: a 21st century perspective. J Am Soc Nephrol 2004; 15:1963–1964.

    Article  PubMed  Google Scholar 

  26. Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, et al. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta independent mechanism. Circulation 2005; 111:2509–2517.

    Article  CAS  PubMed  Google Scholar 

  27. Sowers JR. Hypertension, angiotensin II and oxidative stress. N Engl J Med 2002; 346:1999–2001.

    Article  PubMed  Google Scholar 

  28. Nickenig G, Harrison DG. The AT1-type angiotensin receptor in oxidative stress and atherogenesis. Part I: oxidative stress and atherogenesis. Circulation 2002; 105: 393–396.

    Article  CAS  PubMed  Google Scholar 

  29. Ushio-Fukai M, Tabg Y, Fukai T, et al. Novel role of gp91phox containing NADPH oxidase in vascular endothelial growth factor induced signaling and angiogenesis. Circ Res 2002; 91:1160–1167.

    Article  CAS  PubMed  Google Scholar 

  30. Pagano PJ, Chanock SJ, Siwik DA, Colucci WS, Clark JK. Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts. Hypertension 1998; 32:331–337

    CAS  PubMed  Google Scholar 

  31. Wang HD, Hope SK, Du Y, Quinn MT, Cayatte AJ, Cohen RA. Paracrine role of adventitial superoxide anion in spontaneous tone in the isolated rat aorta in angiotensin II-induced hypertension. Hypertension 1999; 33:1225–1232.

    CAS  PubMed  Google Scholar 

  32. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal J, Michel J. Angiotensin II stimulates endothelial vascular cell adhesion molecule – 1 via nuclear factor_B activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000; 20: 645–654.

    CAS  PubMed  Google Scholar 

  33. Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG. Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 2001; 281:H2337–H2365.

    CAS  PubMed  Google Scholar 

  34. Tchernof A, Lamarche B, Prud’Homme D, et al. The dense LDL phenotype: association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. Diabet Care 1996; 19:629–637.

    Article  CAS  Google Scholar 

  35. Banerji MA, Lebowitz J, Chaiken RL, et al. Relationship of visceral adipose tissue and glucose disposal is independent of sex in black NIDDM subjects. Am J Physiol 1997; 273:E425–32.

    CAS  PubMed  Google Scholar 

  36. Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334:952–957.

    Article  CAS  PubMed  Google Scholar 

  37. Shen DC, Sheih SM, Fuh MM, et al. Resistance to insulin stimulated-glucose uptake in patients with hypertension. J Clin Endocrinol Metab 1988; 66:580–583.

    Article  CAS  PubMed  Google Scholar 

  38. Schneider MP, Delles C, Fleischmann E, et al. Effect of elevated triglyceride levels on endothelium-dependant vasodilation in patients with hypercholesterolemia. Am J Cardiol 2003; 91:482–484.

    Article  CAS  PubMed  Google Scholar 

  39. Sniderman AD. How, when and why to use apolipoprotein B in clinical practice. Am J Cardiol 2002; 90:48i–54i.

    Article  CAS  PubMed  Google Scholar 

  40. McFarlane SI, Banerji M, Sowers JR. Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab 2001; 86:713–718.

    Article  CAS  PubMed  Google Scholar 

  41. Chen YQ, Su M, Walia RR, et al. Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J Biol Chem 1998; 273:8225–8231.

    Article  CAS  PubMed  Google Scholar 

  42. Laine H, Yki-Jarvinen H, Kirvela O, et al. Insulin resistance of glucose uptake in skeletal muscles cannot be ameliorated by enhancing endothelium-dependant blood flow in obesity. J Clin Invest 1998; 101:1156–1162.

    Article  CAS  PubMed  Google Scholar 

  43. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42:1206–1252.

    Article  CAS  PubMed  Google Scholar 

  44. Cooper R, Rotimi C. Hypertension in blacks. Am J Hypertens 1997; 10:804–812.

    Article  CAS  PubMed  Google Scholar 

  45. National Heart, Lung, and Blood Institute. Strong Heart Study Data Book: a report to American Indians communities. Bethesda, MD: National Institutes of Health, National Heart, Lung, and Blood Institute. NIH Publication No. 01–3285; 2001.

    Google Scholar 

  46. Crespo CJ, Loria CM, Burt VL. Hypertension and other cardiovascular disease risk factors among Mexican Americans, Cuban Americans, and Puerto Ricans from the Hispanic Health and Nutrition Examination Survey. Public Health Rep 1996; 111:7–10.

    PubMed  Google Scholar 

  47. Douglas JG, Bakris GL, Epstein M, Ferdinand KC, Ferrario C, Flack JM, et al. Management of high blood pressure in African Americans: consensus statement of the Hypertension in African Americans Working Group of the International Society on Hypertension in Blacks. Arch Intern Med 2003; 163:525–541.

    Article  PubMed  Google Scholar 

  48. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001; 344:3–10.

    Article  CAS  PubMed  Google Scholar 

  49. The ALLHAT Officers and Coordinators, for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288:2981–2197.

    Google Scholar 

  50. Wright Jr JT, Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA 2002; 288:2421–2431.

    Article  CAS  PubMed  Google Scholar 

  51. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 1998; 351:1755–1762.

    Article  CAS  PubMed  Google Scholar 

  52. Hansson L, Lindholm LH, Ekbom T, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity: the Swedish Trial in Old Patients With Hypertension-2 study. Lancet 1999; 354:1751–1756.

    Article  CAS  PubMed  Google Scholar 

  53. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension: final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA 1991; 265:3255–3264.

    Google Scholar 

  54. Staessen JA, Fagard R, Thijs L, et al, for the Systolic Hypertension in Europe (SYST-EUR) Trial Investigators. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. Lancet 1997; 350: 757–764.

    Article  CAS  PubMed  Google Scholar 

  55. Bakris GL. Maximizing cardiorenal benefit in the management of hypertension: achieve blood pressure goals. J Clin Hypertens (Greenwich) 1999; 1:141–147.

    Google Scholar 

  56. Kannel WB. Elevated systolic blood pressure as a cardiovascular risk factor. Am J Cardiol 2000; 85:251–255.

    Article  CAS  PubMed  Google Scholar 

  57. He J, Whelton PK. Elevated systolic blood pressure as a risk factor for cardiovascular and renal disease. J Hypertens Suppl 1999; 17:S7–S13.

    CAS  PubMed  Google Scholar 

  58. He J, Whelton PK. Elevated systolic blood pressure and risk of cardiovascular and renal disease: overview of evidence from observational epidemiologic studies and randomized controlled trials. Am Heart J 1999; 138(3, pt 2):211–219.

    Article  CAS  PubMed  Google Scholar 

  59. Saunders E, Weir MR, Kong BW, et al. A comparison of the efficacy and safety of a [beta]-blocker, a calcium channel blocker, and a converting enzyme inhibitor in hypertensive blacks. Arch Intern Med 1990; 150:1707–1713.

    Article  CAS  PubMed  Google Scholar 

  60. Materson BJ, Reda DJ, Williams D, for the Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. Lessons from combination therapy in veterans affairs studies. Am J Hypertens 1996; 9:187S–191S.

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz RS. Racial profiling in medical research. N Engl J Med 2001; 344:1392–1393.

    Article  CAS  PubMed  Google Scholar 

  62. Flack JM, Mensah GA, Ferrario CM. Using angiotensin converting enzyme inhibitors in African American hypertensives: a new approach to treating hypertension and preventing target-organ damage. Curr Med Res Opin 2000; 16:66–79.

    CAS  PubMed  Google Scholar 

  63. Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. The sixth report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC VI). Arch Intern Med 1997; 157:2413–2466.

    Google Scholar 

  64. Guidelines Subcommittee of the World Health Organization–International Society of Hypertension (WHO-ISH) Mild Hypertension Liaison Committee. World Health Organization–International Society of Hypertension guidelines for the management of hypertension. J Hypertens 1999; 17:151–183.

    Google Scholar 

  65. Richardson AD, Piepho RW. Effect of race on hypertension and antihypertensive therapy. Int J Clin Pharmacol Ther 2000; 38:75–79.

    CAS  PubMed  Google Scholar 

  66. Cushman WC, Reda DJ, Perry HM, Williams D, Abdellatif M, Materson BJ, for the Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. Regional and racial differences in response to antihypertensive medication use in a randomized controlled trial of men with hypertension in the United States. Arch Intern Med 2000; 160:825–831.

    Article  CAS  PubMed  Google Scholar 

  67. Dahlöf B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359:995–1003.

    Article  PubMed  Google Scholar 

  68. Lindholm LH, Ibsen H, Dahlöf B, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359:1004–1010.

    Article  CAS  PubMed  Google Scholar 

  69. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345:851–860.

    Article  CAS  PubMed  Google Scholar 

  70. Brenner BM, Cooper ME, De Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345:861–869.

    Article  CAS  PubMed  Google Scholar 

  71. Agodoa LY, Appel L, Bakris GL, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA 2001; 285:2719–2728.

    Article  CAS  PubMed  Google Scholar 

  72. Flack JM, Saunders E, Gradman A, et al. Antihypertensive efficacy and safety of losartan alone and in combination with hydrochlorothiazide in adult African Americans with mild to moderate hypertension. Clin Ther 2001; 23:1193–1208.

    Article  CAS  PubMed  Google Scholar 

  73. McGill JB, Reilly PA. Telmisartan plus hydrochlorothiazide versus telmisartan or hydrochlorothiazide monotherapy in patients with mild to moderate hypertension: a multicenter, randomized, double-blind, placebo-controlled, parallel-group trial. Clin Ther 2001; 23:833–850.

    Article  CAS  PubMed  Google Scholar 

  74. Weir MR, Smith DHG, Neutel JM, Bedigian MP. Valsartan alone or with a diuretic or ACE inhibitor as treatment for African American hypertensives: relation to salt intake. Am J Hypertens 2001; 14:665–671.

    Article  CAS  PubMed  Google Scholar 

  75. Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Anderson S, Arner P; for the Irbersartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001; 345:870–878.

    Article  CAS  PubMed  Google Scholar 

  76. Sica DA, Bakris GL. Type 2 diabetes: RENAAL and IDNT—the emergence of new treatment options. J Clin Hypertens (Greenwich) 2002; 4:52–57.

    Article  Google Scholar 

  77. Dahlöf B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359:995–1003.

    Article  PubMed  Google Scholar 

  78. Lindholm LH, Ibsen H, Dahlöf B, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359:1004–1010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahmed, A., Lastra, G., Manrique, C., Sowers, J.R. (2009). Obesity and the Cardiometabolic Syndrome: Impact on Chronic Kidney Disease and CVD. In: Ferdinand, K.C., Armani, A. (eds) Cardiovascular Disease in Racial and Ethnic Minorities. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-410-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-410-0_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-981-9

  • Online ISBN: 978-1-59745-410-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics