Skip to main content

Potential Role of Fascia in Chronic Musculoskeletal Pain

  • Chapter
Integrative Pain Medicine

Part of the book series: Contemporary Pain Medicine ((CPM))

Summary

Many empirically developed physical therapy techniques as well as alternative manual therapies (e.g., Rolfing, myofascial release) are aimed at treating fascia and other “unspecialized” connective tissues; however, compared with muscles, joints, and the nervous system, very little research has been devoted to the role of fascia in chronic musculoskeletal pain. One possible reason for this discrepancy is the lack of an integrative pathophysiological model linking connective tissue to known musculoskeletal pain mechanisms . This chapter examines the potential role of fascia in musculoskeletal pain, especially regarding how connective tissue remodeling may interact with other factors such as fear of movement, muscle activity patterns and central nervous system plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Langevin HM, Sherman KJ, Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med Hypotheses, 2007;68(1):74–80.

    Article  PubMed  Google Scholar 

  2. Tillman LJ, Cummings GS. 1992. Biologic Mechanisms of Connective Tissue Mutability, in Dynamics of Human Biologic Tissues Contemporary Perspectives in Rehabilitation. Volume 8. Currier DP, Nelson RM, Eds. F.A. Davis: Philadelphia, pp. 1–44.

    Google Scholar 

  3. Mow VC, Ratcliffe A. 1997. Structure and Function of Articular Cartilage and Meniscus, in Basic Orthopaedic Biomechanics. Mow VC, Hayes WC, Eds. Lippincott-Raven: Philadelphia, pp. 113–177.

    Google Scholar 

  4. Guilak F, Sah R, Setton LA. 1997. Physical Regulation of Cartilage Metabolism, in Basic Orthopaedic Biomechanics. Mow VC, Hayes WC, Eds. Lippincott-Raven: Philadelphia, pp. 179–207.

    Google Scholar 

  5. Woo S, Livesay GA, Runco TJ, Young EP. 1997. Structure and Function of Tendons and Ligaments, in Basic Orthopaedic Biomechanics. Mow VC, Hayes WC, Eds. Lippincott-Raven: Philadelphia, pp. 209–252.

    Google Scholar 

  6. Giancotti, FG, Ruoslahti E. Integrin signaling. Science 1999;285(5430):1028–1032.

    Article  PubMed  CAS  Google Scholar 

  7. Chicurel ME, Chen CS, Ingber DE. Cellular control lies in the balance of forces. Curr Opin Cell Biol 1998;10(2):23–29.

    Article  Google Scholar 

  8. Langevin HM, et al., Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo. Am J Physiol Cell Physiol 2005;288(3):C747–C756.

    Article  PubMed  CAS  Google Scholar 

  9. Langevin HM, et al. Subcutaneous tissue fibroblast cytoskeletal remodeling induced by acupuncture: Evidence for a mechanotransduction-based mechanism. J Cell Physiol, 2006;207(3):767–774.

    Article  PubMed  CAS  Google Scholar 

  10. Langevin HM, et al. Fibroblast spreading induced by connective tissue stretch involves intracellular redistribution of alpha- and beta-actin. Histochem Cell Biol 2006;125(5):487–495.

    Article  PubMed  CAS  Google Scholar 

  11. Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol 1999;18(5):417–426.

    Article  PubMed  CAS  Google Scholar 

  12. Brand RA. What do tissues and cells know of mechanics? Ann Med 1997;29(4):267–269.

    Article  PubMed  CAS  Google Scholar 

  13. Cummings GS, Tillman LJ. 1992. Remodeling of Dense Connective Tissue in Normal Adult Tissues, in Dynamics of Human Biologic Tissues Contemporary Perspectives in Rehabilitation. Volume 8. Currier DP, Nelson RM, Eds. F.A. Davis: Philadelphia, pp. 45–73.

    Google Scholar 

  14. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 2003;200(4):500–503.

    Article  PubMed  CAS  Google Scholar 

  15. Schleip R, Klingler W, Lehmann-Horn F. Active fascial contractility: Fascia may be able to contract in a smooth muscle-like manner and thereby influence musculoskeletal dynamics. Med Hypotheses 2005;65(2):273–277.

    Article  PubMed  CAS  Google Scholar 

  16. Savolainen J, Vaananen K, Vihko V, et al. Effect of immobilization on collagen synthesis in rat skeletal muscles. Am J Physiol 1987;252(5 Pt 2):R883–R888.

    PubMed  CAS  Google Scholar 

  17. Uebelhart D, Bernard J, Hartmann DJ, et al. Modifications of bone and connective tissue after orthostatic bedrest. Osteoporos Int 2000;11(1):59–67.

    Article  PubMed  CAS  Google Scholar 

  18. Williams PE, Catanese T, Lucey EG, et al. The importance of stretch and contractile activity in the prevention of connective tissue accumulation in muscle. J Anat 1988;158:109–114.

    PubMed  CAS  Google Scholar 

  19. Woo SLY, Mathews JV, Akeson WH, et al. Connective tissue response to immobility. Correlative study of biomechanical and biochemical measurements of normal and immobilized rabbit knees. Arthritis Rheum 1975;18(3): 257–264.

    Article  PubMed  CAS  Google Scholar 

  20. Akeson WH, Amiel D, Woo SL. Immobility effects on synovial joints the pathomechanics of joint contracture. Biorheology 1980;17(1–2):95–110.

    PubMed  CAS  Google Scholar 

  21. Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am, 1982;64(1):88–94.

    PubMed  CAS  Google Scholar 

  22. Lyons G, Eisenstein SM, Sweet MB. Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 1981;673(4):443–453.

    PubMed  CAS  Google Scholar 

  23. Jenkins JPR, Hickey DS, Zhu XP, et al. MR imaging of the intervertebral disc: a quantitative study. Br J Radiol 1985;58(692):705–709.

    Article  PubMed  CAS  Google Scholar 

  24. Akeson WH, Amiel D, Mechanic GL, et al. Collagen cross-linking alterations in joint contractures: changes in the reducible cross-links in periarticular connective tissue collagen after nine weeks of immobilization. Connect Tissue Res 1977;5(1):15–19.

    PubMed  CAS  Google Scholar 

  25. Akeson WH, Woo SLY, Amiel D, et al. The connective tissue response to immobility: biochemical changes in periarticular connective tissue of the immobilized rabbit knee. Clin Orthop Relat Res 1973;93:356–362.

    Article  PubMed  CAS  Google Scholar 

  26. Finsterbush, A, Friedman B. Early changes in immobilized rabbits knee joints: a light and electron microscopic study. Clin Orthop 1973;92:305–319.

    Article  PubMed  Google Scholar 

  27. Giannelli G, De Marzo A, Marinosci F, et al. Matrix metalloproteinase imbalance in muscle disuse atrophy. Histol Histopathol 2005;20(1):99–106.

    PubMed  CAS  Google Scholar 

  28. Han XY, Wang W, Myllyla R, et al., mRNA levels for alpha-subunit of prolyl 4-hydroxylase and fibrillar collagens in immobilized rat skeletal muscle. J Appl Physiol 1999;87(1):90–96.

    PubMed  CAS  Google Scholar 

  29. Kovacs EJ, DiPietro LA, Fibrogenic cytokines and connective tissue production. FASEB J 1994;8(11):854–861.

    PubMed  CAS  Google Scholar 

  30. Grodin AJ, Cantu RI. 1993. Soft Tissue Mobilization, in Rational Manual Therapies. Basmajian JV, Nyberg R, Eds. Baltimore: Williams & Wilkins, pp. xii and 484.

    Google Scholar 

  31. Leask A, Abraham DJ, TGF-beta signaling and the fibrotic response. FASEB J 2004;18(7):816–827.

    Article  PubMed  CAS  Google Scholar 

  32. Hunt TK, Banda MJ, Silver IA. Cell interactions in post-traumatic fibrosis. Ciba Found Symp 1985;114:127–149.

    PubMed  CAS  Google Scholar 

  33. Williams PE, Goldspink G. Connective tissue changes in immobilised muscle. J Anat 1984;138 (Pt 2):343–350.

    PubMed  Google Scholar 

  34. Hong CZ, Simons DG. Pathophysiologic and electrophysiologic mechanisms of myofascial trigger points. Arch Phys Med Rehabil 1998;79(7):863–872.

    Article  PubMed  CAS  Google Scholar 

  35. Bohr T. Problems with myofascial pain syndrome and fibromyalgia syndrome. Neurology 1996;46(3):593–597.

    PubMed  CAS  Google Scholar 

  36. Travell JG. 1990. Chronic myofascial pain syndromes. Mysteries of the History. In Advances in Pain Research and Therapy. Friction JR, Awad E, Eds. New York: Raven Press Ltd. pp. 129–137.

    Google Scholar 

  37. Shah JP, Phillips TM, Danoff JV, et al. An in-vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J Appl Physiol 2005.

    Google Scholar 

  38. Hurwitz EL, Morgenstern H, Yu F. Cross-sectional and longitudinal associations of low-back pain and related disability with psychological distress among patients enrolled in the UCLA Low-Back Pain Study. J Clin Epidemiol 2003;56(5):463–471.

    Article  PubMed  Google Scholar 

  39. Dionne CE. Psychological distress confirmed as predictor of long-term back-related functional limitations in primary care settings. J Clin Epidemiol 2005;58(7):714–718.

    Article  PubMed  Google Scholar 

  40. Pincus T, Burton KA, Vogel S, et al. A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine 2002;27(5):E109–E120.

    Article  PubMed  Google Scholar 

  41. Swinkels-Meewisse IEJ, Roelofs J, Oostenclorp RAB, et al. Acute low back pain: pain-related fear and pain catastrophizing influence physical performance and perceived disability. Pain 2006;120:36–43.

    Google Scholar 

  42. van Tulder MW, Koes B, Malmivaara A. Outcome of non-invasive treatment modalities on back pain: an evidence-based review. Eur Spine J 2006;15(Suppl 1):S64–S81.

    Article  PubMed  Google Scholar 

  43. Hurwitz EL, Morgenstern H, Chiao C. Effects of recreational physical activity and back exercises on low back pain and psychological distress: findings from the UCLA Low Back Pain Study. Am J Public Health 2005;95(10):1817–1824.

    Article  PubMed  Google Scholar 

  44. Grotle M, Vollestad NK, Veierod MB, et al. Fear-avoidance beliefs and distress in relation to disability in acute and chronic low back pain. Pain 2004;112(3):343–352.

    Article  PubMed  Google Scholar 

  45. Reeves NP, Cholewicki J, Milner TE. Muscle reflex classification of low-back pain. J Electromyogr Kinesiol 2005;15(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  46. Grimstone SK, Hodges PW. Impaired postural compensation for respiration in people with recurrent low back pain. Exp Brain Res 2003;151(2):218–224.

    Article  PubMed  Google Scholar 

  47. Mok, NW, Brauer SG, Hodges PW. Hip strategy for balance control in quiet standing is reduced in people with low back pain. Spine 2004;29(6):E107–E112.

    Article  PubMed  Google Scholar 

  48. Roland MO. A critical review of the evidence for a pain-spasm-pain cycle in spinal disorders. Clin Biomech 1986;1(2):102–109.

    Article  Google Scholar 

  49. Lund JP, Donga R, Widmer CG, et al. The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. Can J Physiol Pharmacol 1991;69(5): 683–694.

    PubMed  CAS  Google Scholar 

  50. Moseley GL, Nicholas MK, Hodges PW. Does anticipation of back pain predispose to back trouble? Brain 2004;127(Pt 10):2339–2347.

    Article  PubMed  Google Scholar 

  51. Willis WD, Coggeshall RE. 1991. Sensory Mechanisms of the Spinal Cord, 2nd edition. Volume XIV. New York: Plenum Press, p 575.

    Google Scholar 

  52. Koltzenburg M. The changing sensitivity in the life of the nociceptor. Pain 1999;(Suppl 6):S93–S102.

    Google Scholar 

  53. Waldmann R, Champigny G, Bassilana F, et al. A proton-gated cation channel involved in acid-sensing. Nature 1997;386(6621):173–177.

    Article  PubMed  CAS  Google Scholar 

  54. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000;288(5472): 1765–1769.

    Google Scholar 

  55. Bessou P, Laporte Y. Etude des recepteurs musculaires innerves par les fibres afferents du groupe III (fibres myelinisees fines) chez le chat. Arch Ital Biol 1961;99:293–321.

    Google Scholar 

  56. Ansel JC, Kaynard AH, Armstrong CA, et al. Skin–nervous system interactions. J Invest Dermatol 1996;106(1):198–204.

    Article  PubMed  CAS  Google Scholar 

  57. Barnard JA, Lyons RM, Moses HL. The cell biology of transforming growth factor beta. Biochim Biophys Acta 1990;1032(1):79–87.

    PubMed  CAS  Google Scholar 

  58. Sporn MB, Roberts AB. TGF-beta: problems and prospects. Cell Regul 1990;1(12):875–882.

    PubMed  CAS  Google Scholar 

  59. Ji RR, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis 2001;8(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  60. Boal RW, Gillette RG. Central neuronal plasticity, low back pain and spinal manipulative therapy. J Manipulative Physiol Ther 2004;27(5):314–326.

    Article  PubMed  Google Scholar 

  61. Coderre TJ, Katz J, Vaccarino AL, et al. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 1993;52(3):259–285.

    Article  PubMed  CAS  Google Scholar 

  62. Bolay H, Moskowitz MA. Mechanisms of pain modulation in chronic syndromes. Neurology 2002;59(5 Suppl 2):S2–S7.

    PubMed  CAS  Google Scholar 

  63. Ikeda H, Heinke B, Ruscheweyh R, et al. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 2003;299(5610):1237–1240.

    Article  PubMed  CAS  Google Scholar 

  64. Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev 2004;27(8):729–737.

    Article  PubMed  CAS  Google Scholar 

  65. Apkarian AV, Bushnell MC, Treede RD, et al. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005;9(4):463–484.

    Article  PubMed  Google Scholar 

  66. Flor H, Cortical reorganisation and chronic pain: implications for rehabilitation. J Rehabil Med 2003(41 Suppl):66–72.

    Google Scholar 

  67. Melzack R. From the gate to the neuromatrix. Pain 1999;(Suppl 6):S121–S126.

    Google Scholar 

  68. Moseley GL. A pain neuromatrix approach to patients with chronic pain. Man Ther 2003;8(3): 130–140.

    Article  PubMed  CAS  Google Scholar 

  69. Khalsa PS. Biomechanics of musculoskeletal pain: dynamics of the neuromatrix. J Electromyogr Kinesiol 2004;14(1):109–120.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Langevin, H.M. (2008). Potential Role of Fascia in Chronic Musculoskeletal Pain. In: Audette, J.F., Bailey, A. (eds) Integrative Pain Medicine. Contemporary Pain Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-344-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-344-8_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-786-0

  • Online ISBN: 978-1-59745-344-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics