Skip to main content

Basic Mechanisms of Pain

  • Chapter
Integrative Pain Medicine

Part of the book series: Contemporary Pain Medicine ((CPM))

Summary

Pain itself occurs in the central nervous system (CNS), while the peripheral nervous system reports on tissue damage via a mechanical event, termed nociception, characterized by the discharge of high-threshold primary afferent fibers. Neuronal responses in these peripheral fibers drive spinal cord activity and result in signals ascending to the brainstem and thalamus through spinal cord tracts. It is from the patterned activity of these ascending signals, distributed throughout a cerebral neuromatrix, that the brain assembles a feeling of pain. This may or may not be directly associated with nociceptive events occurring in peripheral tissue. Nociception can occur in peripheral tissue and not be detected as pain by the central nervous system; this typically is due to the activation of powerful inhibitory systems in the spinal cord and brainstem. Conversely, pain can be perceived in the brain in the absence of any peripheral nociception; a situation that can be fostered by a powerful facilitating system in the brainstem. The mechanisms by which these processes occur are outlined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Craig AD. Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 2003;26:1–30.

    Article  PubMed  CAS  Google Scholar 

  2. Nagasako EM, Oaklander AL, Dworkin RH. Congenital insensitivity to pain: an update. Pain 2003;101:213–219.

    Article  PubMed  Google Scholar 

  3. Chapman CR. 2005. Psychological aspects of pain: a consciousness studies perspective. In The Neurological Basis of Pain. Pappagallo M, Ed. New York: McGraw-Hill. pp. 157–167.

    Google Scholar 

  4. Loeser JD. Pain as a disease. Hdbk Clin Neurol 2006;81:11–20.

    Article  Google Scholar 

  5. Prechtl JC, Powley TL. B-afferents: a fundamental division of the nervous system mediating homeostasis? Behav Brain Sci 1990;13:289–331.

    Google Scholar 

  6. Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci 2005;6:507–520.

    Article  PubMed  CAS  Google Scholar 

  7. Kandel ER, Schwartz JH, Jessell TM. 2000. Principles of Neural Sciences. New York: Elsevier.

    Google Scholar 

  8. Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965;150:971–979.

    Article  PubMed  CAS  Google Scholar 

  9. Neumann S, Doubell TP, Leslie T, Woolf CJ. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 1996;384:360–364.

    Article  PubMed  CAS  Google Scholar 

  10. Meyer RA, Ringkamp M, Campbell JN, Raja SN. 2006. Peripheral mechanisms of cutaneous nociception. In Wall and Melzack’s Textbook of Pain. McMahon SB, Koltzenburg M, Eds. Elsevier Churchill Livingston, pp. 3–34.

    Google Scholar 

  11. Selye H. The general adaptive syndrome and the diseases of adaptation. J Clin Endocrinol 1946;6:117–173.

    Article  CAS  Google Scholar 

  12. Munger BL, Ide C. The structure and function of cutaneous sensory receptors. Arch Histol Cytol 1988;51:1–34.

    Article  PubMed  CAS  Google Scholar 

  13. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature 2001;413:203–210.

    Article  PubMed  CAS  Google Scholar 

  14. Mense S, Simons DG. 2001. Muscle pain: understanding its nature, diagnosis, and treatment. Philadelphia: Lippincott, Williams and Wilkins.

    Google Scholar 

  15. Wall PD, Woolf CJ. Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. J Physiol (Lond.) 1984;356:453–458.

    Google Scholar 

  16. 2 Alpantaki K, McLaughlin D, Karagogeos D, Hadjipavlou A, Kontakis G. Sympathetic and sensory neural elements in the tendon of the long head of the biceps. J Bone Joint Surg Am 2005;87:1580–1583.

    Article  PubMed  Google Scholar 

  17. Premkumar LS, Raisinghani M. Nociceptors in cardiovascular functions: complex interplay as a result of cyclooxygenase inhibition. Mol Pain 2006;2:26.

    Article  PubMed  CAS  Google Scholar 

  18. Bove GM, Light AR. Calcitonin gene-related peptide and peripherin immunoreactivity in nerve sheaths. Somatosens Mot Res 1995;12:49–57.

    Article  PubMed  CAS  Google Scholar 

  19. Schaible HG, Grubb BD. Afferent and spinal mechanisms of joint pain. Pain 1993;55:5–54.

    Article  PubMed  CAS  Google Scholar 

  20. Fortier LA, Nixon AJ. Distributional changes in substance P nociceptive fiber patterns in naturally osteoarthritic articulations. J Rheumatol 1997;24:524–530.

    PubMed  CAS  Google Scholar 

  21. Bielefeldt K, Gebhart GF. 2006. Visceral pain: basic mechanisms. In Wall and Melzack’s Textbook of Pain. McMahon SB, Koltzenburg M, Eds. Elsevier Churchill Livingston, pp. 721–736.

    Google Scholar 

  22. Cervero F, Jänig W. Visceral nociceptors: a new world order? Trends Neurosci 1992;15:374–378.

    Article  PubMed  CAS  Google Scholar 

  23. Cervero F. Mechanisms of acute visceral pain. Br Med Bull 1991;47:549–560.

    PubMed  CAS  Google Scholar 

  24. Sanchez del Rio M, Moskowitz MA. 2000. The trigeminal system. In The Headaches. Olesen J, Tfelt-Hansen P, Welch KMA, Eds. Baltimore: Lippincott, Williams and Wilkins, pp. 141–150.

    Google Scholar 

  25. Stilwell DL. The nerve supply of the vertebral column and its associated structures in the monkey. Anat Rec 1956;125:139–169.

    Article  PubMed  Google Scholar 

  26. Groen GJ, Baljet B, Drukker J. Nerves and nerve plexuses of the human vertebral column. Am J Anat 1990;188:282–296.

    Article  PubMed  CAS  Google Scholar 

  27. Jinkins JR, Whittermore AR, Bradley WG. The anatomic basis of vertebrogenic pain and the autonomic syndrome associated with lumbar disk extrusion. Am J Roentgenol 1989;152:1277–1289.

    CAS  Google Scholar 

  28. Willard FH. 1997. The muscular, ligamentous and neural structure of the low back and its relation to back pain. In Vleeming A, Mooney V, Snijder CJ, Dorman T, Stoeckart R, Eds. Movement, Stability and Low Back Pain. Edinburgh: Churchill Livingstone, pp. 3–35.

    Google Scholar 

  29. Levine JD, Fields HL, Basbaum AI. Peptides and the primary afferent nociceptor. J Neurosci 1993;13:2273–2286.

    PubMed  CAS  Google Scholar 

  30. Couture R, Harrisson M, Vianna RM, Cloutier F. Kinin receptors in pain and inflammation. Eur J Pharmacol 2001;429:161–176.

    Article  PubMed  CAS  Google Scholar 

  31. Schmelz M, Schmidt R, Bickel A, et al. Specific C-receptors for itch in human skin. J Neurosci 1997;17:8003–8008.

    PubMed  CAS  Google Scholar 

  32. Paus R, Schmelz M, Biro T, Steinhoff M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest 2006;116:1174–1186.

    Article  PubMed  CAS  Google Scholar 

  33. Vergnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton SJ, Grady EF, Cirino G, Gerard N, Basbaum AI, Andrade-Gordon P, Hollenberg MD, Wallace JL. Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat Med 2001;7:821–826.

    Article  PubMed  CAS  Google Scholar 

  34. Samad TA, Sapirstein A, Woolf CJ. Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol Med 2002;8:390–396.

    Article  PubMed  CAS  Google Scholar 

  35. Tokunaga A, Saika M, Senba E. 5-HT receptor subtype is involved in the terminal hyperalgesic mechanism of serotonin in the periphery. Pain 1998;76:349–355.

    Article  PubMed  CAS  Google Scholar 

  36. Sommer C. Serotonin in pain and analgesia: actions in the periphery. Mol Neurobiol 2004;30: 117–125.

    Google Scholar 

  37. Wood JN, Docherty R. Chemical activators of sensory neurons. Ann Rev Physiol 1997;59:457–482.

    Article  CAS  Google Scholar 

  38. Voilley N. Acid-sensing ion channels (ASICs): new targets for the analgesic effects of non-steroid anti-inflammatory drugs (NSAIDs). Curr Drug Targets Inflamm Allergy 2004;3:71–79.

    Article  PubMed  CAS  Google Scholar 

  39. Sato J, Perl E. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science 1991;251:1608–1610.

    Article  PubMed  CAS  Google Scholar 

  40. Jänig W. 1992. Pain and the sympathetic nervous system: pathophysiological mechanisms. In Autonomic Failure. Bannister R, Mathias CJ, Eds. Oxford: Oxford Medical Publications, pp. 231–251.

    Google Scholar 

  41. Petersen M, Zhang J, Zhang JM, LaMotte RH. Abnormal spontaneous activity and responses to norepinephrine in dissociated dorsal root ganglion cells after chronic nerve constriction. Pain 1996;67:391–397.

    Article  PubMed  CAS  Google Scholar 

  42. Perl ER. Causalgia, pathological pain, and adrenergic receptors. Proc Natl Acad Sci USA 1999;96:7664–7667.

    Article  PubMed  CAS  Google Scholar 

  43. Banik RK, Sato J, Giron R, Yajima H, Mizumura K. Interactions of bradykinin and norepinephrine on rat cutaneous nociceptors in both normal and inflamed conditions in vitro. Neurosci Res 2004b;49:421–425.

    Article  CAS  Google Scholar 

  44. Banik RK, Sato J, Giron R, Yajima H, Mizumura K. Interactions of bradykinin and norepinephrine on rat cutaneous nociceptors in both normal and inflamed conditions in vitro. Neurosci Res 2004a;49:421–425.

    Article  CAS  Google Scholar 

  45. Abdulla FA, Smith PA. Ectopic α2-adrenoceptors couple to N-type Ca2+ channels in axotomized rat sensory neurons. J Neurosci 1997;17:1633–1641.

    PubMed  CAS  Google Scholar 

  46. Tracey DJ, Cunningham JE, Romm MA. Peripheral hyperalgesia in experimental neuropathy: mediation by α2-adrenoreceptors on post-ganglionic sympathetic terminals. Pain 1995;60:317–327.

    Article  PubMed  CAS  Google Scholar 

  47. Koltzenburg M. The changing sensitivity in the life of the nociceptor. Pain Suppl 1999;6:S93–S102.

    Article  Google Scholar 

  48. Khasar SG, Green PG, Chou B, Levine JD. Peripheral nociceptive effects of α2-adrenergic receptor agonists in the rat. Neuroscience 1995;66:427–432.

    Article  PubMed  CAS  Google Scholar 

  49. Lawand NB, McNearney T, Westlund KN. Amino acid release into the knee joint: key role in nociception and inflammation. Pain 2000;86:69–74.

    Article  PubMed  CAS  Google Scholar 

  50. Davidson EM, Coggeshall RE, Carlton SM. Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test. Neuroreport 1997;8:941–946.

    Article  PubMed  CAS  Google Scholar 

  51. Liu HT, Mantyh PW, Basbaum AI. NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 1997;386:721–724.

    Article  PubMed  CAS  Google Scholar 

  52. Knotkova H, Pappagallo M. 2005. Periheral Mechanism. In The Neurological Basis of Pain. Pappagallo M, Ed. New York: McGraw-Hill, pp. 53–60.

    Google Scholar 

  53. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LH, McMahon SB, Shelton DL, Levinson AD. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 1994;76:1001–1011.

    Article  PubMed  CAS  Google Scholar 

  54. McMahon SB, Bennett DLH, Bevan S. 2006. Inflammatory mediators and modulators of pain. In Wall and Melzack’s Textbook of Pain. McMahon SB, Koltzenburg M, Eds. Elsevier Churchill Livingston, pp. 49–72.

    Google Scholar 

  55. Petty BG, Cornblath DR, Adornato BT, Chaudhry V, Flexner C, Wachsman M, Sinicropi D, Burton LE, Peroutka SJ. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol 1994;36:244–246.

    Article  PubMed  CAS  Google Scholar 

  56. McMahon SB, Cafferty WB, Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp Neurol 2005;192:444–462.

    Article  PubMed  CAS  Google Scholar 

  57. Pernow B. Substance P. Pharmacol Rev 1983;35:85–141.

    PubMed  CAS  Google Scholar 

  58. Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related polypeptide and other neuropeptides. Neuroscience 1988;24:739–768.

    Article  PubMed  CAS  Google Scholar 

  59. Maggi CA. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol 1995;45:1–98.

    Article  PubMed  CAS  Google Scholar 

  60. Schulkin J. 2003. Rethinking Homeostasis. Cambridge: The MIT Press.

    Google Scholar 

  61. Howe JF, Loeser JD, Calvin WH. Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain 1977;3:25–41.

    Article  PubMed  CAS  Google Scholar 

  62. Amir R and Devor M. Chemically mediated cross-excitation in rat dorsal root ganglia. J Neurosci 1996;16:4733–4741.

    PubMed  CAS  Google Scholar 

  63. McLachlan EM, Jänig W, Devor M, Michaelis M. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 1993;363:543–546.

    Article  PubMed  CAS  Google Scholar 

  64. Ramer MS, Bisby MA. Rapid sprouting of sympathetic axons in dorsal root ganglia of rats with a chronic constriction injury. Pain 1997;70:237–244.

    Article  PubMed  CAS  Google Scholar 

  65. Wilson P, Kitchener PD. Plasticity of cutaneous primary afferent projections to the spinal dorsal horn. Prog Neurobiol 1996;48:105–113.

    Article  PubMed  CAS  Google Scholar 

  66. Hunt SP, Rossi J. Peptide- and non-peptide-containing unmyelinated primary afferents: the parallel processing of nociceptive information. Philos Trans R Soc Lond B Biol Sci 1985;308:283–289.

    Article  PubMed  CAS  Google Scholar 

  67. Todd AJ. Anatomy and neurochemistry of the dorsal horn. Handbook of Clinical Neurology 81 (3rd Series), 2006, pp. 61–76.

    Google Scholar 

  68. Braz JM, Nassar MA, Wood JN, Basbaum AI. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 2005;47:787–793.

    Article  PubMed  CAS  Google Scholar 

  69. Cervero F. Pain and the spinal cord. Hdbk Clin Neurol 2006;81(3rd Series):77–92.

    Article  Google Scholar 

  70. Mendell LM. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp Neurol 1966;16:316–332.

    Article  PubMed  CAS  Google Scholar 

  71. Willis WD. 1979. Physiology of dorsal horn and spinal cord pathways related to pain. In Mechanisms of Pain and Analgesic Compounds. Beers RF, Bassett EG, Eds. New York: Raaven Press, pp. 143–156.

    Google Scholar 

  72. Mayer DJ, Price DD, Becker DP. Neurophysiological characterization of the anterolateral spinal cord neurons contributing to pain perception in man. Pain 1975;1:51–58.

    Article  PubMed  CAS  Google Scholar 

  73. Basbaum AI. Spinal mechanisms of acute and persistent pain. Reg Anesth Pain Med 1999;24:59–67.

    Article  PubMed  CAS  Google Scholar 

  74. Millan MJ. The induction of pain: an integrative review. Prog Neurobiol 1999;57:1–164.

    Article  PubMed  CAS  Google Scholar 

  75. Mantyh PW, DeMaster E, Malhotra A, Ghilardi JR, Rogers SD, Mantyh CR, Liu H, Basbaum AI, Vigna SR, Maggio JE, et al. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 1995;268:1629–1632.

    Article  PubMed  CAS  Google Scholar 

  76. Abbadie C, Trafton J, Liu HT, Mantyh PW, Basbaum AI. Inflammation increases the distribution of dorsal horn neurons that internalize the neurokinin-1 receptor in response to noxious and non-noxious stimulation. J Neurosci 1997;17:8049–8060.

    PubMed  CAS  Google Scholar 

  77. Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 2003;26:696–705.

    Article  PubMed  CAS  Google Scholar 

  78. Scholz J, Broom DC, Youn DH, Mills CD, Kohno T, Suter MR, Moore KA, Decosterd I, Coggeshall RE, Woolf CJ. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 2005;25: 7317–7323.

    Article  PubMed  CAS  Google Scholar 

  79. Doubell TP, Mannion RJ, Woolf CJ. Intact sciatic myelinated primary afferent terminals collaterally sprout in the adult rat dorsal horn following section of a neighbouring peripheral nerve. J Comp Neurol 1997;380:95–104.

    Article  PubMed  CAS  Google Scholar 

  80. Cook AJ, Woolf CJ, Wall PD, McMahon SB. Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature 1987;325:151–153.

    Article  PubMed  CAS  Google Scholar 

  81. Laird JM, Cervero F. A comparative study of the changes in receptive-field properties of multireceptive and nocireceptive rat dorsal horn neurons following noxious mechanical stimulation. J Neurophysiol 1989;62:854–863.

    PubMed  CAS  Google Scholar 

  82. Hylden JLK, Nahin RL, Traub RJ, Dubner R. Expansion of receptive fields of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation: the contribution of dorsal horn mechanisms. Pain 1989;37:229–243.

    Article  PubMed  CAS  Google Scholar 

  83. Grubb BD, Stiller RU, Schaible HG. Dynamic changes in the receptive field properties of spinal cord neurons with ankle input in rats with chronic unilateral inflammation in the ankle region. Exp Brain Res 1993;92:441–452.

    Article  PubMed  CAS  Google Scholar 

  84. Koerber HR, Mirnics K. Plasticity of dorsal horn cell receptive fields after peripheral nerve regeneration. J Neurophysiol 1996;75:2255–2267.

    PubMed  CAS  Google Scholar 

  85. Hoheisel U, Mense S, Simons DG, Yu XM. Appearance of new receptive fields in rat dorsal horn neurons following noxious stimulation of skeletal muscle: a model for referral of muscle pain? Neurosci Lett 1993;153:9–12.

    Article  PubMed  CAS  Google Scholar 

  86. Watkins LR, Wieseler-Frank J, Hutchinson MR, Ledeboer A, Spataro L, Milligan ED, Sloane EM, Maier SF. 2007. Neuroimmune interactions and pain: the role of immune and glial cells. In Psychoneuroimmunology. Vol. 1. Ader R, Ed. Amsterdam: Elsevier Academic Press, pp. 393–414.

    Google Scholar 

  87. Marriott DR, Wilkin GP, Wood JN. Substance P-induced release of prostaglandins from astrocytes: regional specialisation and correlation with phosphoinositol metabolism. J Neurochem 1991;56: 259–265.

    Article  PubMed  CAS  Google Scholar 

  88. Wieseler-Frank J, Maier SF, Watkins LR. Immune-to-brain communication dynamically modulates pain: physiological and pathological consequences. Brain Behav Immun 2005;19:104–111.

    Article  PubMed  CAS  Google Scholar 

  89. Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 1999;23:83–91.

    Article  PubMed  CAS  Google Scholar 

  90. Schulkin J, McEwen BS, Gold PW. Allostasis, amygdala, and anticipatory angst. Neurosci Biobehav Rev 1994;18:385–396.

    Article  PubMed  CAS  Google Scholar 

  91. McEwen BS. Mood disorders and allostatic load. Biol Psychiatry 2003;54:200–207.

    Article  PubMed  Google Scholar 

  92. Stumvoll M, Tataranni PA, Stefan N, Vozarova B, Bogardus C. Glucose allostasis. Diabetes 2003;52:903.

    Article  PubMed  CAS  Google Scholar 

  93. McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med 1998;338:171–179.

    Article  PubMed  CAS  Google Scholar 

  94. Grigg P, Schaible HG, Schmidt RF. Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J Neurophysiol 1986;55:635–643.

    PubMed  CAS  Google Scholar 

  95. He X, Proske U, Schaible HG, Schmidt RF. Acute inflammation of the knee joint in the cat alters responses of flexor motoneurons to leg movements. J Neurophysiol 1988;59:326–340.

    PubMed  CAS  Google Scholar 

  96. Sato A, Sato Y, Schmidt RF, Torigata Y. Somato-vesical reflexes in chronic spinal cats. J Auton Nerv Syst 1983;7:351–362.

    Article  PubMed  CAS  Google Scholar 

  97. Sato A. Somatovisceral reflexes. J Manipulative Physiol Ther 1995;18:597–602.

    PubMed  CAS  Google Scholar 

  98. Head H. 1920. Studies In Neurology (Vol. II). London: Henry Frowde and Hodder & Stoughton, Ltd.

    Google Scholar 

  99. Henry JA, Montuschi E. Cardiac pain referred to site of previously experienced somatic pain. Br Med J 1978;2:1605–1606.

    PubMed  CAS  Google Scholar 

  100. Carpenter MB, Sutin J. 1983. Human Neuroanatomy. Baltimore: Williams and Wilkins.

    Google Scholar 

  101. Ramon y Cajal S. 1909. Histologie du Systeme Nerveux de l’Homme et des Vertebres, (L. Azoulay, trans). Madid, (1952–1955): Instituto Ramon y Cajal del C.S.I.C.

    Google Scholar 

  102. Sugiura Y, Terui N, Hosoya Y. Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J Neurophysiol 1989;62:834–840.

    PubMed  CAS  Google Scholar 

  103. Wall PD, Bennett DL. Postsynaptic effects of long-range afferents in distant segments caudal to their entry point in rat spinal cord under the influence of picrotoxin or strychnine. J Neurophysiol 1994;72:2703–2713.

    PubMed  CAS  Google Scholar 

  104. Rees H, Sluka KA, Westlund KN, Willis WD. Do dorsal root reflexes augment peripheral inflammation? Neuroreport 1994;5:821–824.

    Article  PubMed  CAS  Google Scholar 

  105. Willis WD. Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 1999;124:395–421.

    Article  PubMed  CAS  Google Scholar 

  106. Peng YB, Wu J, Willis WD, Kenshalo DR. GABA(A) and 5-HT(3) receptors are involved in dorsal root reflexes: possible role in periaqueductal gray descending inhibition. J Neurophysiol 2001;86:49–58.

    PubMed  CAS  Google Scholar 

  107. Rees H, Sluka KA, Lu Y, Westlund KN, Willis WD. Dorsal root reflexes in articular afferents occur bilaterally in a chronic model of arthritis in rats. J Neurophysiol 1996;76:4190–4193.

    PubMed  CAS  Google Scholar 

  108. Lin Q, Wu J, Willis WD. Dorsal root reflexes and cutaneous neurogenic inflammation after intradermal injection of capsaicin in rats. J Neurophysiol 1999;82:2602–2611.

    PubMed  CAS  Google Scholar 

  109. Dostrovsky JO, Craig AD. 2006. Ascending projection systems. In Wall and Melzack’s Textbook of Pain. McMahon SB, Koltzenburg M, Eds. Elsevier Churchill Livingston, pp. 187–203.

    Google Scholar 

  110. Westlund KN. 2005. Neurophysiology of pain. In The Neurological Basis of Pain. Pappagallo M, Ed. New York: McGraw-Hill, pp. 3–19.

    Google Scholar 

  111. Dostrovsky JO. Brainstem and thalamic relays. Hdbk Clin Neurol 2006;81:127–139.

    Article  Google Scholar 

  112. Ploner M, Freund HJ, Schnitzler A. Pain affect without pain sensation in a patient with a postcentral lesion. Pain 1999;81:211–214.

    Article  PubMed  CAS  Google Scholar 

  113. Sewards TV, Sewards MA. The medial pain system: neural representations of the motivational aspect of pain. Brain Res Bull 2002;59:163–180.

    Article  PubMed  Google Scholar 

  114. Melzack R. From the gate to the neuromatrix. Pain Suppl 1999;6:S121–S126.

    Article  Google Scholar 

  115. Casey KL, Tran TD. 2006. Cortical mechanisms mediating acute and chronic pain in humans. Handbook of Clinical Neurology 81(Chapter 12), pp. 159–177.

    Google Scholar 

  116. Hofbauer RK, Rainville P, Duncan GH, and Bushnell MC. Cortical representation of the sensory dimension of pain. J Neurophysiol 2001;86:402–411.

    PubMed  CAS  Google Scholar 

  117. Friedman DP, Murray EA. Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. J Comp Neurol 1986;252: 348–373.

    Article  PubMed  CAS  Google Scholar 

  118. Craig AD. How do you feel? Introception: the sense of the physiological condition of the body. Nat Rev Neurosci 2002;3:655–666.

    PubMed  CAS  Google Scholar 

  119. Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 1996;22:229–244.

    Article  PubMed  CAS  Google Scholar 

  120. Jasmin L, Burkey AR, Granato A, Ohara PT. Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 2004;468:425–440.

    Article  PubMed  Google Scholar 

  121. Evans JM, Bey V, Burkey AR, Commons KG. Organization of endogenous opioids in the rostral agranular insular cortex of the rat. J Comp Neurol 2006;500:530–541.

    Article  CAS  Google Scholar 

  122. Schmahmann JD, Leifer D. Parietal pseudothalamic pain syndrome. Clinical features and anatomic correlates. Arch Neurol 1992;49:1032–1037.

    PubMed  CAS  Google Scholar 

  123. Greenspan JD, Winfield JA. Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum. Pain 1992;50:29–39.

    Article  PubMed  CAS  Google Scholar 

  124. Geschwind N. Disconnection syndrome in animals and man. Part I. Brain 1965;88:237–294.

    CAS  Google Scholar 

  125. Shipley MT, Geinisman Y. Anatomical evidence for convergence of olfactory, gustatory, and visceral afferent pathways in mouse cerebral cortex. Brain Res Bull 1984;12:221–226.

    Article  PubMed  CAS  Google Scholar 

  126. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 2004;303:1162–1167.

    Article  PubMed  CAS  Google Scholar 

  127. Johansen JP, Fields HL, Manning BH. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci USA 2001;98:8077–8082.

    Article  PubMed  CAS  Google Scholar 

  128. Lorenz J, Minoshima S, Casey KL. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 2003;126:1079–1091.

    Article  PubMed  CAS  Google Scholar 

  129. Neugebauer V, Li W. Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input. J Neurophysiol 2002;87:103–112.

    PubMed  Google Scholar 

  130. Schafe GE, LeDoux JE. 2004. The neural basis of fear. In The Cognitive Neurosciences. Gazzaniga MS, Ed. Cambridge, MA: A Bradford Book, MIT Press, pp. 987–1003.

    Google Scholar 

  131. Gauriau C, Bernard JF. Pain pathways and parabrachial circuits in the rat. Exp Physiol 2002;87: 251–258.

    Article  PubMed  Google Scholar 

  132. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 2000;10:220–242.

    Article  PubMed  CAS  Google Scholar 

  133. McEwen BS. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 2005;54:20–23.

    Article  PubMed  CAS  Google Scholar 

  134. Neugebauer V, Li W, Bird GC, Han JS. The amygdala and persistent pain. Neuroscientist 2004;10:221–234.

    Article  PubMed  Google Scholar 

  135. Saab CY, Willis WD. The cerebellum: organization, functions and its role in nociception. Brain Res Brain Res Rev 2003;42:85–95.

    Article  PubMed  Google Scholar 

  136. Fiez JA. Cerebellar contributions to cognition. Neuron 1996;16:13–15.

    Article  PubMed  CAS  Google Scholar 

  137. Barinaga M. The cerebellum: Movement coordinator or much more? Science 1996;272:482–483.

    Article  PubMed  CAS  Google Scholar 

  138. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain 1998;121 (Pt 4):561–579.

    Article  PubMed  Google Scholar 

  139. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004;16:367–378.

    PubMed  Google Scholar 

  140. Schott GD. From thalamic syndrome to central poststroke pain. J Neurol Neurosurg Psychiatry 1996;61:560–564.

    Article  PubMed  CAS  Google Scholar 

  141. Frese A, Husstedt IW, Ringelstein EB, Evers S. Pharmacologic treatment of central post-stroke pain. Clin J Pain 2006;22:252–260.

    Article  PubMed  CAS  Google Scholar 

  142. Yamamoto T, Katayama Y, Hirayama T, Tsubokawa T. Pharmacological classification of central post-stroke pain: comparison with the results of chronic motor cortex stimulation therapy. Pain 1997;72:5–12.

    Article  PubMed  CAS  Google Scholar 

  143. Fields HL, Basbaum AI, Heinricher MM. 2006. Central nervous system mechanisms of pain modulation. In Wall and Melzack’s Textbook of Pain. McMahon SB, Koltzenburg M, Eds. Elsevier Churchill Livingston, pp. 125–142.

    Google Scholar 

  144. Heinricher MM, Morgan MM, Tortorici V, Fields HL. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience 1994;63:279–288.

    Article  PubMed  CAS  Google Scholar 

  145. Mason P. Ventromedial medulla: pain modulation and beyond. J Comp Neurol 2005;493:2–8.

    Article  PubMed  Google Scholar 

  146. Carlson JD, Selden NR, Heinricher MM. Nocifensive reflex-related on- and off-cells in the pedunculopontine tegmental nucleus, cuneiform nucleus, and lateral dorsal tegmental nucleus. Brain Res 2005;1063:187—-194.

    Article  PubMed  CAS  Google Scholar 

  147. Behbehani MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 1995;46:575–605.

    Article  PubMed  CAS  Google Scholar 

  148. Basbaum AI, Fields HL. Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 1978;4:451–462.

    Article  PubMed  CAS  Google Scholar 

  149. Peng YB, Kenshalo DR, Gracely RH. Periaqueductal gray-evoked dorsal root reflex is frequency dependent. Brain Res 2003;976:217–226.

    Article  PubMed  CAS  Google Scholar 

  150. Amaral DG, Price JL, Pitkänen A, Carmichael ST. 1992. Anatomical organization of the primate amygdaloid complex. In The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. Aggleton JP, Ed. New York: Wiley-Liss Publications, pp. 1–66.

    Google Scholar 

  151. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995;118:279–306.

    Article  PubMed  Google Scholar 

  152. Blackburn-Munro G, Blackburn-Munro R. Pain in the brain: are hormones to blame? Trends Endocrinol Metab 2003;14:20–27.

    Article  PubMed  CAS  Google Scholar 

  153. Unruh AM. Gender variations in clinical pain experience. Pain 1996;65:123–167.

    Article  PubMed  CAS  Google Scholar 

  154. Hapidou EG, Rollman GB. Menstrual cycle modulation of tender points. Pain 1998;77:151–161.

    Article  PubMed  CAS  Google Scholar 

  155. Riley JL, Robinson ME, Wise EA, Price DD. A meta-analytic review of pain perception across the menstrual cycle. Pain 1999;81:225–235.

    Article  PubMed  Google Scholar 

  156. Mogil JS. Sex, gender and pain. Hdbk Clin Neurol 2006;81:325–342.

    Article  Google Scholar 

  157. Brynhildsen JO, Björs E, Skarsgård C, Hammar ML. Is hormone replacement therapy a risk factor for low back pain among postmenopausal women? Spine 1998;23:809–813.

    Article  PubMed  CAS  Google Scholar 

  158. LeResche L, Saunders K, Von Korff MR, Barlow W, Dworkin SF. Use of exogenous hormones and risk of temporomandibular disorder pain. Pain 1997;69:153–160.

    Article  PubMed  CAS  Google Scholar 

  159. Craft RM. Sex differences in drug- and non-drug-induced analgesia. Life Sci 2003;72:2675–2688.

    Article  PubMed  CAS  Google Scholar 

  160. Puri V, Cui L, Liverman CS, Roby KF, Klein RM, Welch KM, Berman NE. Ovarian steroids regulate neuropeptides in the trigeminal ganglion. Neuropeptides 2005;39:409–417.

    Article  PubMed  CAS  Google Scholar 

  161. Papka RE, Storey-Workley M. Estrogen receptor-alpha and -beta coexist in a subpopulation of sensory neurons of female rat dorsal root ganglia. Neurosci Lett 2002;319:71–74.

    Article  PubMed  CAS  Google Scholar 

  162. Stoffel EC, Ulibarri CM, Folk JE, Rice KC, Craft RM. Gonadal hormone modulation of mu, kappa, and delta opioid antinociception in male and female rats. J Pain 2005;6:261–274.

    Article  PubMed  CAS  Google Scholar 

  163. Amandusson Å, Hermanson O, Blomqvist A. Estrogen receptor-like immunoreactivity in the medullary and spinal dorsal horn of the female rat. Neurosci Lett 1995;196:25–28.

    Article  PubMed  CAS  Google Scholar 

  164. Dawson-Basoa M Gintzler AR. Involvement of spinal cord δ opiate receptors in the antinociception of gestation and its hormonal simulation. Brain Res 1997;757:37–42.

    Article  PubMed  CAS  Google Scholar 

  165. Papka RE, Hafemeister J, Puder BA, Usip S, Storey-Workley M. Estrogen receptor-alpha and neural circuits to the spinal cord during pregnancy. J Neurosci Res 2002;70:808–816.

    Article  PubMed  CAS  Google Scholar 

  166. Horvath G, Kekesi G. Interaction of endogenous ligands mediating antinociception. Brain Res Brain Res Rev 2006;52:69–92.

    Article  CAS  Google Scholar 

  167. Welch KM, Brandes JL, Berman NE. Mismatch in how oestrogen modulates molecular and neuronal function may explain menstrual migraine. Neurol Sci 2006;27(Suppl 2):S190–S192.

    Google Scholar 

  168. Craft RM, Morgan MM, Lane DA. Oestradiol dampens reflex-related activity of on- and off-cells in the rostral ventromedial medulla of female rats. Neuroscience 2004;125:1061–1068.

    Article  PubMed  CAS  Google Scholar 

  169. Smith YR, Stohler CS, Nichols TE, Bueller JA, Koeppe RA, Zubieta JK. Pronociceptive and antinociceptive effects of estradiol through endogenous opioid neurotransmission in women. J Neurosci 2006;26:5777–5785.

    Article  PubMed  CAS  Google Scholar 

  170. Vierck CJ, Jr. Mechanisms underlying development of spatially distributed chronic pain (fibromyalgia). Pain 2006;124:242–263.

    Article  PubMed  Google Scholar 

  171. Neugebauer V, Li W. Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol 2003;89:716–727.

    Article  PubMed  Google Scholar 

  172. Magni G, Moreschi C, Rigatti-Luchini S, Merskey H. Prospective study on the relationship between depressive symptoms and chronic musculoskeletal pain. Pain 1994;56:289–297.

    Article  PubMed  CAS  Google Scholar 

  173. Elenkov IJ, Chrousos GP. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab 1999;10:359–368.

    Article  PubMed  CAS  Google Scholar 

  174. Charmandari E, Tsigos C, Chrousos GP. Endocrinology of the stress response. Ann Rev Physiol 2005;67:259–284.

    Article  CAS  Google Scholar 

  175. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002;53:865–871.

    Article  PubMed  Google Scholar 

  176. Seeman TE, Singer BH, Rowe JW, Horwitz RI, McEwen BS. Price of adaptation—allostatic load and its health consequences. MacArthur studies of successful aging. Arch Intern Med 1997;157: 2259–2268.

    Article  PubMed  CAS  Google Scholar 

  177. Woolf CJ, Salter MW. 2006. Plasticity and pain: role of the dorsal horn. In Wall and Melzack’s Textbook of Pain. McMahon SB, Koltzenburg M, Eds. Elsevier Churchill Livingston, pp. 91–105.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Willard, F. (2008). Basic Mechanisms of Pain. In: Audette, J.F., Bailey, A. (eds) Integrative Pain Medicine. Contemporary Pain Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-344-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-344-8_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-786-0

  • Online ISBN: 978-1-59745-344-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics