Skip to main content

[18F]Fluorodeoxyglucose Positron Emission Tomography Assessment of Response

  • Chapter
In Vivo Imaging of Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

During the past 10 years, positron emission tomography with the glucose analog fluorodeoxyglucose (FDG PET) has evolved from a research tool to a clinical test that is used for diagnosis and staging of a variety of malignant tumors. More recently FDG PET has been evaluated for monitoring tumor response to therapy. Most of these studies have used FDG PET after completion of therapy in order to differentiate between viable tumor and therapy-induced fibrosis. However, there are also encouraging data that FDG PET may be used to predict tumor response during therapy. This chapter summarizes the results of recent studies on treatment monitoring by FDG PET and discusses potential clinical applications. Different approaches for quantitative analysis of FDG PET studies are also reviewed, since monitoring tumor response by FDG PET frequently relies on quantifying tumor metabolic activity over time. To put the results achieved by FDG PET in a more general context, the current clinical practice of assessing tumor response and its scientific background are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 1981;47:207–214.

    Article  PubMed  CAS  Google Scholar 

  2. Moertel CG, Hanley JA. The effect of measuring error on the results of therapeutic trials in advanced cancer. Cancer 1976;38:388–394.

    Article  PubMed  CAS  Google Scholar 

  3. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205–216.

    Article  PubMed  CAS  Google Scholar 

  4. Salzer-Kuntschik M, Delling G, Beron G, Sigmund R. Morphological grades of regression in osteosarcoma after polychemotherapy—-study COSS 80. J Cancer Res Clin Oncol 1983;106(Suppl):21–24.

    Article  PubMed  Google Scholar 

  5. Junker K, Langner K, Klinke F, Bosse U, Thomas M. Grading of tumor regression in non-small cell lung cancer: Morphology and prognosis. Chest 2001;120:1584–1591.

    Article  PubMed  CAS  Google Scholar 

  6. Mandard A, Dalibard F, Mandard J, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994;73:2680–2686.

    Article  PubMed  CAS  Google Scholar 

  7. Becker K, Mueller JD, Schulmacher C, et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 2003;98:1521–1530.

    Article  PubMed  Google Scholar 

  8. Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002;20:776–790.

    Article  PubMed  Google Scholar 

  9. Wieder HA, Brucher BL, Zimmermann F, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 2004;22:900–908.

    Article  PubMed  CAS  Google Scholar 

  10. Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 2004;45:1431–1434.

    PubMed  Google Scholar 

  11. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: A feasibility study. Eur J Nucl Med 2000;27:161–169.

    Article  PubMed  CAS  Google Scholar 

  12. Stahl A, Ott K, Schwaiger M, Weber WA. Comparison of different SUV-based methods for monitoring cytotoxic therapy with FDG PET. Eur J Nucl Med Mol Imaging 2004;31:1471–1478.

    Article  PubMed  CAS  Google Scholar 

  13. Torizuka T, Clavo AC, Wahl RL. Effect of hyperglycemia on in vitro tumor uptake of tritiated FDG, thymidine, L-methionine and L-leucine. J Nucl Med 1997;38:382–386.

    PubMed  CAS  Google Scholar 

  14. Keyes JW Jr. SUV: Standard uptake or silly useless value? J Nucl Med 1995;36:1836–1839.

    PubMed  Google Scholar 

  15. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J Nucl Med 2004;45:1519–1527.

    PubMed  Google Scholar 

  16. Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: Standardized uptake values in normal tissues. J Nucl Med 2004;45:784–788.

    PubMed  CAS  Google Scholar 

  17. Young H, Baum R, Cremerius U, et al. Measurement of clinical and sublinical tumour response using F-18-fluorodeoxyglucose and positron emission tomography: Review and 1999 EORTC recommendations. Eur J Cancer 1999;35:1773–1782.

    Article  PubMed  CAS  Google Scholar 

  18. Minn H, Zasadny KR, Quint LE, Wahl RL. Lung cancer: Reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 1995;196:167–173.

    PubMed  CAS  Google Scholar 

  19. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40:1771–1777.

    PubMed  CAS  Google Scholar 

  20. Weber WA, Petersen V, Schmidt B, et al. Positron emission tomography in non-small-cell lung cancer: Prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 2003;21:2651–2657.

    Article  PubMed  CAS  Google Scholar 

  21. Yamane T, Daimaru O, Ito S, Yoshiya K, Nagata T, Uchida H. Decreased 18F-FDG uptake 1 day after initiation of chemotherapy for malignant lymphomas. J Nucl Med 2004;45:1838–1842.

    PubMed  Google Scholar 

  22. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med 2002;43:1018–1027.

    PubMed  Google Scholar 

  23. Weber W, Dick S, Reidl G, et al. Correlation between postoperative 123I-alpha-methyl-L-tyrosine uptake and survival in patients with gliomas. J Nucl Med 2001;42:1144–1150.

    PubMed  CAS  Google Scholar 

  24. Ott K, Fink U, Becker K, et al. Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: Results of a prospective trial. J Clin Oncol 2003;21:4604–4610.

    Article  PubMed  CAS  Google Scholar 

  25. Brun E, Kjellen E, Tennvall J, et al. FDG PET studies during treatment: Prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002;24:127–135.

    Article  PubMed  Google Scholar 

  26. Haberkorn U, Morr I, Oberdorfer F, et al. Fluorodeoxyglucose uptake in vitro: Aspects of method and effects of treatment with gemcitabine. J Nucl Med 1994;35:1842–1850.

    PubMed  CAS  Google Scholar 

  27. Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy [see comments]. J Nucl Med 1993;34:773–779.

    PubMed  CAS  Google Scholar 

  28. Rozental JM, Levine RL, Nickles RJ, Dobkin JA. Glucose uptake by gliomas after treatment. A positron emission tomographic study [see comments]. Arch Neurol 1989;46:1302–1307.

    PubMed  CAS  Google Scholar 

  29. Maruyama I, Sadato N, Waki A, et al. Hyperacute changes in glucose metabolism of brain tumors after stereotactic radiosurgery: A PET study. J Nucl Med 1999;40:1085–1090.

    PubMed  CAS  Google Scholar 

  30. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: Indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 2001;19:2797–2803.

    PubMed  CAS  Google Scholar 

  31. Hicks RJ, Mac Manus MP, Matthews JP, et al. Early FDG PET imaging after radical radiotherapy for non-small-cell lung cancer: Inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys 2004;60:412–418.

    Article  PubMed  Google Scholar 

  32. Jerusalem G, Beguin Y, Fassotte MF, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 1999;94:429–433.

    PubMed  CAS  Google Scholar 

  33. Zinzani PL, Fanti S, Battista G, et al. Predictive role of positron emission tomography (PET) in the outcome of lymphoma patients. Br J Cancer 2004;91:850–854.

    PubMed  CAS  Google Scholar 

  34. de Wit M, Bohuslavizki KH, Buchert R, Bumann D, Clausen M, Hossfeld DK. 18FDG PET following treatment as valid predictor for disease-free survival in Hodgkin’s lymphoma. Ann Oncol 2001;12:29–37.

    Article  PubMed  Google Scholar 

  35. Weihrauch MR, Re D, Scheidhauer K, et al. Thoracic positron emission tomography using 18Ffluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease. Blood 2001;98:2930–2934.

    Article  PubMed  CAS  Google Scholar 

  36. Mikhaeel NG, Timothy AR, O’Doherty MJ, Hain S, Maisey MN. 18-FDG PET as a prognostic indicator in the treatment of aggressive non-Hodgkin’s lymphoma-comparison with CT. Leuk Lymphoma 2000;39:543–553.

    PubMed  CAS  Google Scholar 

  37. Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: Is [18F]FDG PET a valid alternative to conventional diagnostic methods? J Clin Oncol 2001;19:414–419.

    PubMed  CAS  Google Scholar 

  38. Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood 2003;102:53–59.

    Article  PubMed  CAS  Google Scholar 

  39. Schot B, van Imhoff G, Pruim J, Sluiter W, Vaalburg W, Vellenga E. Predictive value of early 18F-fluoro-deoxyglucose positron emission tomography in chemosensitive relapsed lymphoma. Br J Haematol 2003;123:282–287.

    Article  PubMed  Google Scholar 

  40. Brucher BL, Weber W, Bauer M, et al. Neoadjuvant therapy of esophageal squamous cell carcinoma: Response evaluation by positron emission tomography. Ann Surg 2001;233:300–309.

    Article  PubMed  CAS  Google Scholar 

  41. Flamen P, Van Cutsem E, Lerut A, et al. Positron emission tomography for assessment of the response to induction chemotherapy in locally advanced esophageal cancer. Ann Oncol 2002;13:361–368.

    Article  PubMed  CAS  Google Scholar 

  42. Downey RJ, Akhurst T, Ilson D, et al. Whole body 18FDG PET and the response of esophageal cancer to induction therapy: Results of a prospective trial. J Clin Oncol 2003;21:428–432.

    Article  PubMed  Google Scholar 

  43. Swisher SG, Maish M, Erasmus JJ, et al. Utility of PET, CT, and EUS to identify pathologic responders in esophageal cancer. Ann Thorac Surg 2004;78:1152–1160; discussion 1152–1160.

    Article  PubMed  Google Scholar 

  44. Swisher SG, Erasmus J, Maish M, et al. 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer 2004;101:1776–1785.

    Article  PubMed  Google Scholar 

  45. Mac Manus MP, Hicks RJ, Matthews JP, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 2003;21:1285–1292.

    Article  PubMed  Google Scholar 

  46. Hellwig D, Graeter TP, Ukena D, Georg T, Kirsch CM, Schafers HJ. Value of F-18-fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced bronchogenic carcinoma. J Thorac Cardiovasc Surg 2004;128:892–899.

    Article  PubMed  Google Scholar 

  47. Akhurst T, Downey RJ, Ginsberg MS, et al. An initial experience with FDG PET in the imaging of residual disease after induction therapy for lung cancer. Ann Thorac Surg 2002;73:259–264; discussion 264–266.

    Article  PubMed  Google Scholar 

  48. Ryu JS, Choi NC, Fischman AJ, Lynch TJ, Mathisen DJ. FDG PET in staging and restaging non-small cell lung cancer after neoadjuvant chemoradiotherapy: Correlation with histopathology. Lung Cancer 2002;35:179–187.

    Article  PubMed  Google Scholar 

  49. Cerfolio RJ, Bryant AS, Winokur TS, Ohja B, Bartolucci AA. Repeat FDG PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg 2004;78:1903–1909; discussion 1909.

    Article  PubMed  Google Scholar 

  50. Port JL, Kent MS, Korst RJ, Keresztes R, Levin MA, Altorki NK. Positron emission tomography scanning poorly predicts response to preoperative chemotherapy in non-small cell lung cancer. Ann Thorac Surg 2004;77:254–259; discussion 259.

    Article  PubMed  Google Scholar 

  51. Grigsby PW, Siegel BA, Dehdashti F, Rader J, Zoberi I. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: Response and outcome. J Clin Oncol 2004;22:2167–2171.

    Article  PubMed  Google Scholar 

  52. Schuetze SM, Rubin BP, Vernon C, et al. Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 2005;103:339–348.

    Article  PubMed  Google Scholar 

  53. Schulte M, Brecht-Krauss D, Werner M, et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999;40:1637–1643.

    PubMed  CAS  Google Scholar 

  54. Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 2002;94:3277–3284.

    Article  PubMed  CAS  Google Scholar 

  55. Kunkel M, Forster GJ, Reichert TE, et al. Radiation response non-invasively imaged by [18F]FDG PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol 2003;39:170–177.

    Article  PubMed  Google Scholar 

  56. Kumar R, Xiu Y, Potenta S, et al. 18F-FDG PET for evaluation of the treatment response in patients with gastrointestinal tract lymphomas. J Nucl Med 2004;45:1796–1803.

    PubMed  Google Scholar 

  57. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: Initial evaluation. J Clin Oncol 1993;11:2101–2111.

    PubMed  CAS  Google Scholar 

  58. Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: A method for early therapy evaluation? J Clin Oncol 1995;13:1470–1477.

    PubMed  CAS  Google Scholar 

  59. Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: Correlation with tumor response to fluorouracil. J Clin Oncol 1996;14:700–708.

    PubMed  CAS  Google Scholar 

  60. Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002;346:92–98.

    Article  PubMed  CAS  Google Scholar 

  61. Haringhuizen A, van Tinteren H, Vaessen HF, Baas P, van Zandwijk N. Gefitinib as a last treatment option for non-small-cell lung cancer: Durable disease control in a subset of patients. Ann Oncol 2004;15:786–792.

    Article  PubMed  CAS  Google Scholar 

  62. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003;21:2237–2246.

    Article  PubMed  CAS  Google Scholar 

  63. Honkoop AH, van Diest PJ, de Jong JS, et al. Prognostic role of clinical, pathological and biological characteristics in patients with locally advanced breast cancer. Br J Cancer 1998;77:621–626.

    PubMed  CAS  Google Scholar 

  64. Smith IC, Welch AE, Hutcheon AW, et al. Positron emission tomography using [(18)F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000;18:1676–1688.

    PubMed  CAS  Google Scholar 

  65. Schelling M, Avril N, Nahrig J, et al. Positron emission tomography using [(18)F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000;18:1689–1695.

    PubMed  CAS  Google Scholar 

  66. Mankoff DA, Dunnwald LK, Gralow JR, et al. Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 2003;44:1806–1814.

    PubMed  Google Scholar 

  67. Kelsen DP, Minsky B, Smith M, et al. Preoperative therapy for esophageal cancer: A randomized comparison of chemotherapy versus radiation therapy. J Clin Oncol 1990;8:1352–1361.

    PubMed  CAS  Google Scholar 

  68. Medical_Research_Council. Surgical resection with or without preoperative chemotherapy in oesophageal cancer: A randomised controlled trial. Lancet 2002;359:1727–1733.

    Article  Google Scholar 

  69. Kelsen D. Preoperative chemoradiotherapy for esophageal cancer. J Clin Oncol 2001;19:283–285.

    PubMed  CAS  Google Scholar 

  70. Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M. Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 2001;19:305–313.

    PubMed  CAS  Google Scholar 

  71. Ajani JA, Mansfield PF, Lynch PM, et al. Enhanced staging and all chemotherapy preoperatively in patients with potentially resectable gastric carcinoma. J Clin Oncol 1999;17:2403–2411.

    PubMed  CAS  Google Scholar 

  72. Weber WA, Ott K, Becker K, et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 2001;19:3058–3065.

    PubMed  CAS  Google Scholar 

  73. Lordick F, Weber WA, Stein HJ, et al. Individualized neoadjuvant treatment strategy in adenocarcinoma of the esophago-gastric junction (AEG): Interim report on the MUNICON trial. J Clin Oncol 2004;22:328S.

    Google Scholar 

  74. Sawyers C. Targeted cancer therapy. Nature 2004;432:294–297.

    Article  PubMed  CAS  Google Scholar 

  75. Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 2002;13:444–451.

    Article  PubMed  CAS  Google Scholar 

  76. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001;411:355–365.

    Article  PubMed  CAS  Google Scholar 

  77. Van den Abbeele AD, Badawi RD. Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). Eur J Cancer 2002;38(Suppl 5):S60–S65.

    PubMed  Google Scholar 

  78. Antoch G, Kanja J, Bauer S, et al. Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med 2004;45:357–365.

    PubMed  CAS  Google Scholar 

  79. Gayed I, Vu T, Iyer R, et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 2004;45:17–21.

    PubMed  CAS  Google Scholar 

  80. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347:472–480.

    Article  PubMed  CAS  Google Scholar 

  81. Stroobants S, Goeminne J, Seegers M, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 2003;39:2012–2020.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Weber, W.A. (2007). [18F]Fluorodeoxyglucose Positron Emission Tomography Assessment of Response. In: Shields, A.F., Price, P. (eds) In Vivo Imaging of Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-341-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-341-7_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-633-7

  • Online ISBN: 978-1-59745-341-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics