Skip to main content

VEGF and PDGF Receptors: Biologic Relevance and Clinical Approaches to Inhibition

  • Chapter
Renal Cell Carcinoma

Abstract

The dependence of tumor growth on the development of a neovasculature is well established. One of the best studied angiogenic factor is vascular endothelial growth factor (VEGF). VEGF belongs to a family of homodimeric glycoproteins that bind to three different VEGF receptor (VEGFR) tyrosine kinases in an overlapping pattern. VEGFRs share regulatory mechanisms with other well-characterized receptor tyrosine kinases, such as the platelet-derived growth factor receptor (PDGFR). These mechanisms include receptor dimerization and activation of tyrosine kinase, as well as creation of docking sites for signal transducers to direct cellular function including cell migration, survival, and proliferation. Tumor biology studies, drug development, and clinical studies have established VEGFR and PDGFR as validated drug targets. Well-interconnected preclinical and clinical efforts are necessary for the continued development of this exciting process. This chapter will review the biological role of VEGFR and PDGFR signal transduction and the interplay between the different receptors as it relates to kidney cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285(21):1182–6.

    PubMed  CAS  Google Scholar 

  2. Folkman J. What is the evidence that tumors are angiogenesis dependent?. J Natl Cancer Inst 1990;82(1):4–6.

    PubMed  CAS  Google Scholar 

  3. Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 1994;79(2):185–8.

    PubMed  CAS  Google Scholar 

  4. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3(6):401–10.

    PubMed  CAS  Google Scholar 

  5. Ellis LM, Liu W, Ahmad SA, et al. Overview of angiogenesis: biologic implications for antiangiogenic therapy. Semin Oncol 2001;28(5 Suppl 16):94–104.

    PubMed  CAS  Google Scholar 

  6. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9(6):669–76.

    PubMed  CAS  Google Scholar 

  7. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005;23(5):1011–27.

    PubMed  CAS  Google Scholar 

  8. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003;314(1):15–23.

    PubMed  Google Scholar 

  9. Rini BI, Small EJ. Biology and clinical development of vascular endothelial growth factor-targeted therapy in renal cell carcinoma. J Clin Oncol 2005;23(5):1028–43.

    PubMed  CAS  Google Scholar 

  10. Lam JS, Shvarts O, Leppert JT, Figlin RA, Belldegrun AS. Renal cell carcinoma 2005: new frontiers in staging, prognostication and targeted molecular therapy. J Urol 2005;173(6):1853–62.

    PubMed  Google Scholar 

  11. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219(4587):983–5.

    PubMed  CAS  Google Scholar 

  12. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161(2):851–8.

    PubMed  CAS  Google Scholar 

  13. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 2005;169(4):681–91.

    PubMed  CAS  Google Scholar 

  14. Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 2002;12(1):13–9.

    PubMed  CAS  Google Scholar 

  15. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92(6):735–45.

    PubMed  CAS  Google Scholar 

  16. Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 2001;98(22):12677–82.

    PubMed  CAS  Google Scholar 

  17. Karkkainen MJ, Petrova T V. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 2000;19(49):5598–605.

    PubMed  CAS  Google Scholar 

  18. Matsumoto T, Claesson-Welsh L. VEGF receptor signal transduction. Sci STKE 2001;2001(112):RE21.

    PubMed  CAS  Google Scholar 

  19. Christinger HW, Fuh G, de Vos AM, Wiesmann C. The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1. J Biol Chem 2004;279(11):10382–8.

    PubMed  CAS  Google Scholar 

  20. Fuh G, Li B, Crowley C, Cunningham B, Wells JA. Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem 1998;273(18):11197–204.

    PubMed  CAS  Google Scholar 

  21. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993;90(22):10705–9.

    PubMed  CAS  Google Scholar 

  22. Ebos JM, Bocci G, Man S, et al. A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma. Mol Cancer Res 2004;2(6):315–26.

    PubMed  CAS  Google Scholar 

  23. Hughes DC. Alternative splicing of the human VEGFGR-3/FLT4 gene as a consequence of an integrated human endogenous retrovirus. J Mol Evol 2001;53(2):77–9.

    PubMed  CAS  Google Scholar 

  24. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003;9(6):677–84.

    PubMed  CAS  Google Scholar 

  25. Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA. Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res 2003;9(13):4641–52.

    PubMed  CAS  Google Scholar 

  26. Takahashi A, Sasaki H, Kim SJ, et al. Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res 1994;54(15):4233–7.

    PubMed  CAS  Google Scholar 

  27. Harris AL. Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2(1):38–47.

    PubMed  CAS  Google Scholar 

  28. Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 2002;8(4 Suppl):S62–S67.

    PubMed  CAS  Google Scholar 

  29. Nicol D, Hii SI, Walsh M, et al. Vascular endothelial growth factor expression is increased in renal cell carcinoma. J Urol 1997;157(4):1482–6.

    PubMed  CAS  Google Scholar 

  30. Igarashi H, Esumi M, Ishida H, Okada K. Vascular endothelial growth factor overexpression is correlated with von Hippel–Lindau tumor suppressor gene inactivation in patients with sporadic renal cell carcinoma. Cancer 2002;95(1):47–53.

    PubMed  CAS  Google Scholar 

  31. Na X, Wu G, Ryan CK, Schoen SR, di'Santagnese PA, Messing EM. Overproduction of vascular endothelial growth factor related to von Hippel–Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol 2003;170(2 Pt 1):588–92.

    PubMed  CAS  Google Scholar 

  32. Fox SB, Turley H, Cheale M, et al. Phosphorylated KDR is expressed in the neoplastic and stromal elements of human renal tumours and shuttles from cell membrane to nucleus. J Pathol 2004;202(3):313–20.

    PubMed  CAS  Google Scholar 

  33. Tsuchiya N, Sato K, Akao T, et al. Quantitative analysis of gene expressions of vascular endothelial growth factor-related factors and their receptors in renal cell carcinoma. Tohoku J Exp Med 2001;195(2):101–13.

    PubMed  CAS  Google Scholar 

  34. Lam JS, Leppert JT, Yu H, et al. Expression of the vascular endothelial growth factor family in tumor dissemination and disease free survival in clear cell renal cell carcinoma. J Clin Oncol 2005;23(Suppl.):387s.

    Google Scholar 

  35. Leppert JT, Lam JS, Yu H, et al. Targeting the vascular endothelial growth factor pathway in renal cell carcinoma, a tissue array based analysis. J Clin Oncol 2005;23 (Suppl.):386s.

    Google Scholar 

  36. Gerber HP, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 1997;272(38):23659–67.

    PubMed  CAS  Google Scholar 

  37. Nilsson I, Rolny C, Wu Y, et al. Vascular endothelial growth factor receptor-3 in hypoxia-induced vascular development. FASEB J 2004;18(13):1507–15.

    PubMed  CAS  Google Scholar 

  38. Dixelius J, Makinen T, Wirzenius M, et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem 2003;278(42):40973–9.

    PubMed  CAS  Google Scholar 

  39. Zeng H, Zhao D, Yang S, Datta K, Mukhopadhyay D. Heterotrimeric G alpha q/G alpha 11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phospho-rylation in vascular permeability factor/VEGF signaling. J Biol Chem 2003;278(23):20738–45.

    PubMed  CAS  Google Scholar 

  40. Gallicchio M, Mitola S, Valdembri D, et al. Inhibition of vascular endothelial growth factor receptor 2-mediated endothelial cell activation by Axl tyrosine kinase receptor. Blood 2005;105(5):1970–6.

    PubMed  CAS  Google Scholar 

  41. Guo DQ, Wu LW, Dunbar JD, et al. Tumor necrosis factor employs a protein-tyrosine phos-phatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 2000;275(15):11216–21.

    PubMed  CAS  Google Scholar 

  42. Jekely G, Sung HH, Luque CM, Rorth P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev Cell 2005;9(2):197–207.

    PubMed  CAS  Google Scholar 

  43. Singh AJ, Meyer RD, Band H, Rahimi N. The carboxyl terminus of VEGFR-2 is required for PKC-mediated down-regulation. Mol Biol Cell 2005;16(4):2106–18.

    PubMed  CAS  Google Scholar 

  44. Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995;376(6535):66–70.

    PubMed  CAS  Google Scholar 

  45. Fong GH, Zhang L, Bryce DM, Peng J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 1999;126(13):3015–25.

    PubMed  CAS  Google Scholar 

  46. Clark DE, Smith SK, He Y, et al. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod 1998;59(6):1540–8.

    PubMed  CAS  Google Scholar 

  47. Maynard SE, Min J Y, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclamp-sia. J Clin Invest 2003;111(5):649–58.

    PubMed  CAS  Google Scholar 

  48. Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG, Bautch VL. Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 2002;99(7):2397–407.

    PubMed  CAS  Google Scholar 

  49. Rahimi N, Dayanir V, Lashkari K. Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothe-lial cells. J Biol Chem 2000;275(22):16986–92.

    PubMed  CAS  Google Scholar 

  50. Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor (VPF)/vascular endothe-lial growth factor (VEGF) receptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem 2001;276(29):26969–79.

    PubMed  CAS  Google Scholar 

  51. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 1998;95(16):9349–54.

    PubMed  CAS  Google Scholar 

  52. Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002;417(6892):954–8.

    PubMed  CAS  Google Scholar 

  53. Hattori K, Heissig B, Wu Y, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 2002;8(8):841–9.

    PubMed  CAS  Google Scholar 

  54. Sawano A, Iwai S, Sakurai Y, et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 2001;97(3):785–91.

    PubMed  CAS  Google Scholar 

  55. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996;87(8):3336–43.

    PubMed  CAS  Google Scholar 

  56. Clauss M, Weich H, Breier G, et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 1996;271(30):17629–34.

    CAS  Google Scholar 

  57. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?. Nat Rev Cancer 2002;2(11):826–35.

    PubMed  CAS  Google Scholar 

  58. Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 2001;61(3):1207–13.

    PubMed  CAS  Google Scholar 

  59. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothe-lial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7(11):1194–201.

    PubMed  CAS  Google Scholar 

  60. Luttun A, Tjwa M, Carmeliet P. Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann NY Acad Sci 2002;979:80–93.

    PubMed  CAS  Google Scholar 

  61. Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M. A unique signal trans-duction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 1995;10(1):135–47.

    PubMed  CAS  Google Scholar 

  62. Shibuya M, Seetharam L, Ishii Y, et al. Possible involvement of VEGF-FLT tyrosine kinase receptor system in normal and tumor angiogenesis. Princess Takamatsu Symp 1994;24:162–70.

    PubMed  CAS  Google Scholar 

  63. Yamane A, Seetharam L, Yamaguchi S, et al. A new communication system between hepato-cytes and sinusoidal endothelial cells in liver through vascular endothelial growth factor and Flt tyrosine kinase receptor family (Flt-1 and KDR/Flk-1). Oncogene 1994;9(9):2683–90.

    PubMed  CAS  Google Scholar 

  64. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994;269(43):26988–95.

    PubMed  CAS  Google Scholar 

  65. Sawano A, Takahashi T, Yamaguchi S, Shibuya M. The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. Biochem Biophys Res Commun 1997;238(2):487–91.

    PubMed  CAS  Google Scholar 

  66. Ito N, Wernstedt C, Engstrom U, Claesson-Welsh L. Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J Biol Chem 1998;273(36):23410–8.

    PubMed  CAS  Google Scholar 

  67. Gille H, Kowalski J, Yu L, et al. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidyli-nositol 3'-kinase activation and endothelial cell migration. EMBO J 2000;19(15):4064–73.

    PubMed  CAS  Google Scholar 

  68. Autiero M, Luttun A, Tjwa M, Carmeliet P. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revas-cularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 2003;1(7):1356–70.

    PubMed  CAS  Google Scholar 

  69. Huang K, Andersson C, Roomans GM, Ito N, Claesson-Welsh L. Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers. Int J Biochem Cell Biol 2001;33(4):315–24.

    PubMed  CAS  Google Scholar 

  70. Roberts DM, Kearney JB, Johnson JH, Rosenberg MP, Kumar R, Bautch VL. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am J Pathol 2004;164(5):1531–5.

    PubMed  CAS  Google Scholar 

  71. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7(5):575–83.

    PubMed  CAS  Google Scholar 

  72. Autiero M, Waltenberger J, Communi D, et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003;9(7):936–43.

    PubMed  CAS  Google Scholar 

  73. Eichmann A, Corbel C, Le Douarin NM. Segregation of the embryonic vascular and hemo-poietic systems. Biochem Cell Biol 1998;76(6):939–46.

    PubMed  CAS  Google Scholar 

  74. Ziegler BL, Valtieri M, Porada GA, et al. KDR receptor: a key marker defining hematopoietic stem cells. Science 1999;285(5433):1553–8.

    PubMed  CAS  Google Scholar 

  75. Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 1995;55(23):5687–92.

    PubMed  CAS  Google Scholar 

  76. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogen-esis in Flk-1-deficient mice. Nature 1995;376(6535):62–6.

    PubMed  CAS  Google Scholar 

  77. Dougher M, Terman BI. Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 1999;18(8):1619–27.

    PubMed  CAS  Google Scholar 

  78. Wu LW, Mayo LD, Dunbar JD, et al. VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor. J Biol Chem 2000;275(9):6059–62.

    PubMed  CAS  Google Scholar 

  79. Warner AJ, Lopez-Dee J, Knight EL, Feramisco JR, Prigent SA. The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells. Biochem J 2000;347(Pt 2):501–9.

    PubMed  CAS  Google Scholar 

  80. Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/ Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001;20(11):2768–78.

    PubMed  CAS  Google Scholar 

  81. Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998;273(46):30336–43.

    CAS  Google Scholar 

  82. Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999;399(6736):597–601.

    PubMed  CAS  Google Scholar 

  83. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999;399(6736):601–5.

    PubMed  CAS  Google Scholar 

  84. Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 1999;18(13):2221–30.

    PubMed  CAS  Google Scholar 

  85. Meadows KN, Bryant P, Pumiglia K. Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 2001;276(52):49289–98.

    PubMed  CAS  Google Scholar 

  86. Shu X, Wu W, Mosteller RD, Broek D. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 2002;22(22):7758–68.

    PubMed  CAS  Google Scholar 

  87. Kroll J, Waltenberger J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 1997;272(51):32521–7.

    PubMed  CAS  Google Scholar 

  88. Eriksson A, Cao R, Roy J, et al. Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability. Circulation 2003;107(11):1532–8.

    PubMed  CAS  Google Scholar 

  89. Matsumoto T, Bohman S, Dixelius J, et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 2005;24(13):2342–53.

    PubMed  CAS  Google Scholar 

  90. Zeng H, Sanyal S, Mukhopadhyay D. Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J Biol Chem 2001;276(35):32714–9.

    PubMed  CAS  Google Scholar 

  91. Lamalice L, Houle F, Jourdan G, Huot J. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 2004;23(2):434–45.

    PubMed  CAS  Google Scholar 

  92. Issbrucker K, Marti HH, Hippenstiel S, et al. p38 MAP kinase – a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. FASEB J 2003;17(2):262–4.

    PubMed  Google Scholar 

  93. Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated ang-iogenesis. J Cell Biol 2002;156(1):149–60.

    PubMed  CAS  Google Scholar 

  94. McMullen ME, Bryant PW, Glembotski CC, Vincent PA, Pumiglia KM. Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J Biol Chem 2005;280(22):20995–1003.

    PubMed  CAS  Google Scholar 

  95. Rousseau S, Houle F, Landry J, Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997;15(18):2169–77.

    PubMed  CAS  Google Scholar 

  96. Abedi H, Zachary I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 1997;272(24):15442–51.

    PubMed  CAS  Google Scholar 

  97. Qi JH, Claesson-Welsh L. VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res 2001;263(1):173–82.

    PubMed  CAS  Google Scholar 

  98. Le Boeuf F, Houle F, Huot J. Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 2004;279(37):39175–85.

    PubMed  Google Scholar 

  99. Hart MJ, Callow MG, Souza B, Polakis P. IQGAP1, a calmodulin-binding protein with a ras-GAP-related domain, is a potential effector for cdc42Hs. EMBO J 1996;15(12):2997–3005.

    PubMed  CAS  Google Scholar 

  100. Yamaoka-Tojo M, Ushio-Fukai M, Hilenski L, et al. IQGAP1, a novel vascular endothelial growth factor receptor binding protein, is involved in reactive oxygen species–dependent endothelial migration and proliferation. Circ Res 2004;95(3):276–83.

    PubMed  CAS  Google Scholar 

  101. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999;4(6):915–24.

    PubMed  CAS  Google Scholar 

  102. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 1992;267(9):6093–8.

    PubMed  CAS  Google Scholar 

  103. Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999;126(21):4895–902.

    PubMed  CAS  Google Scholar 

  104. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002;129(20):4797–806.

    PubMed  CAS  Google Scholar 

  105. Carmeliet P, Lampugnani MG, Moons L, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogen-esis. Cell 1999;98(2):147–57.

    PubMed  CAS  Google Scholar 

  106. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 1998;140(4):947–59.

    PubMed  CAS  Google Scholar 

  107. Behzadian MA, Windsor LJ, Ghaly N, Liou G, Tsai NT, Caldwell RB. VEGF-induced para-cellular permeability in cultured endothelial cells involves urokinase and its receptor. FASEB J 2003;17(6):752–4.

    PubMed  CAS  Google Scholar 

  108. Henderson BR, Fagotto F. The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep 2002;3(9):834–9.

    PubMed  CAS  Google Scholar 

  109. Pajusola K, Aprelikova O, Pelicci G, Weich H, Claesson-Welsh L, Alitalo K. Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. Oncogene 1994;9(12):3545–55.

    PubMed  CAS  Google Scholar 

  110. Pajusola K, Aprelikova O, Armstrong E, Morris S, Alitalo K. Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts. Oncogene 1993;8(11):2931–7.

    PubMed  CAS  Google Scholar 

  111. Galland F, Karamysheva A, Pebusque MJ, et al. The FLT4 gene encodes a transmem-brane tyrosine kinase related to the vascular endothelial growth factor receptor. Oncogene 1993;8(5):1233–40.

    PubMed  CAS  Google Scholar 

  112. Baust C, Seifarth W, Germaier H, Hehlmann R, Leib-Mosch C. HERV-K-T47D-Related long terminal repeats mediate polyadenylation of cellular transcripts. Genomics 2000;66(1):98–103.

    PubMed  CAS  Google Scholar 

  113. Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998;282(5390):946–9.

    PubMed  CAS  Google Scholar 

  114. Hamada K, Oike Y, Takakura N, et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 2000;96(12):3793–800.

    PubMed  CAS  Google Scholar 

  115. Kaipainen A, Korhonen J, Mustonen T, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995;92(8):3566–70.

    PubMed  CAS  Google Scholar 

  116. Partanen TA, Alitalo K, Miettinen M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 1999;86(11):2406–12.

    PubMed  CAS  Google Scholar 

  117. Witmer AN, van Blijswijk BC, Dai J, et al. VEGFR-3 in adult angiogenesis. J Pathol 2001;195(4):490–7.

    PubMed  CAS  Google Scholar 

  118. Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 2000;25(2):153–9.

    PubMed  CAS  Google Scholar 

  119. Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 2001;20(17):4762–73.

    PubMed  CAS  Google Scholar 

  120. Karkkainen MJ, Alitalo K. Lymphatic endothelial regulation, lymphoedema, and lymph node metastasis. Semin Cell Dev Biol 2002;13(1):9–18.

    PubMed  CAS  Google Scholar 

  121. Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphe-dema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001;7(2):199–205.

    PubMed  CAS  Google Scholar 

  122. He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002;94(11):819–25.

    PubMed  CAS  Google Scholar 

  123. Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001;7(2):186–91.

    PubMed  CAS  Google Scholar 

  124. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7(2):192–8.

    PubMed  CAS  Google Scholar 

  125. Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002;296(5574):1883–6.

    PubMed  CAS  Google Scholar 

  126. Fournier E, Dubreuil P, Birnbaum D, Borg JP. Mutation at tyrosine residue 1337 abrogates lig-and-dependent transforming capacity of the FLT4 receptor. Oncogene 1995;11(5):921–31.

    PubMed  CAS  Google Scholar 

  127. Saharinen P, Tammela T, Karkkainen MJ, Alitalo K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 2004;25(7):387–95.

    PubMed  CAS  Google Scholar 

  128. Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004;5(1):74–80.

    PubMed  CAS  Google Scholar 

  129. Matsumura K, Hirashima M, Ogawa M, et al. Modulation of VEGFR-2-mediated endotheli-al-cell activity by VEGF-C/VEGFR-3. Blood 2003;101(4):1367–74.

    PubMed  CAS  Google Scholar 

  130. Wang JF, Zhang X, Groopman JE. Activation of vascular endothelial growth factor recep-tor-3 and its downstream signaling promote cell survival under oxidative stress. J Biol Chem 2004;279(26):27088–97.

    PubMed  CAS  Google Scholar 

  131. Korpelainen EI, Karkkainen M, Gunji Y, Vikkula M, Alitalo K. Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 1999;18(1):1–8.

    PubMed  CAS  Google Scholar 

  132. Soker S, Fidder H, Neufeld G, Klagsbrun M. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem 1996;271(10):5761–7.

    PubMed  CAS  Google Scholar 

  133. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G. Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 2000;275(24):18040–5.

    PubMed  CAS  Google Scholar 

  134. Makinen T, Olofsson B, Karpanen T, et al. Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J Biol Chem 1999;274(30):21217–22.

    PubMed  CAS  Google Scholar 

  135. Wise LM, Veikkola T, Mercer AA, et al. Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci USA 1999;96(6):3071–6.

    PubMed  CAS  Google Scholar 

  136. Miao HQ, Klagsbrun M. Neuropilin is a mediator of angiogenesis. Cancer Metastasis Rev 2000;19(1–2):29–37.

    PubMed  CAS  Google Scholar 

  137. Fuh G, Garcia KC, de Vo s AM. The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. J Biol Chem 2000;275(35):26690–5.

    PubMed  CAS  Google Scholar 

  138. Takahashi T, Nakamura F, Jin Z, Kalb RG, Strittmatter SM. Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nat Neurosci 1998;1(6):487–93.

    PubMed  CAS  Google Scholar 

  139. Miao HQ, Lee P, Lin H, Soker S, Klagsbrun M. Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J 2000;14(15):2532–9.

    PubMed  CAS  Google Scholar 

  140. Kitsukawa T, Shimono A, Kawakami A, Kondoh H, Fujisawa H. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 1995;121(12):4309–18.

    PubMed  CAS  Google Scholar 

  141. Tordjman R, Ortega N, Coulombel L, Plouet J, Romeo PH, Lemarchandel V. Neuropilin-1 is expressed on bone marrow stromal cells: a novel interaction with hematopoietic cells?. Blood 1999;94(7):2301–9.

    PubMed  CAS  Google Scholar 

  142. Gagnon ML, Bielenberg DR, Gechtman Z, et al. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: in vivo expression and antitumor activity. Proc Natl Acad Sci USA 2000;97(6):2573–8.

    PubMed  CAS  Google Scholar 

  143. Soker S. Neuropilin in the midst of cell migration and retraction. Int J Biochem Cell Biol 2001;33(4):433–7.

    PubMed  CAS  Google Scholar 

  144. Keyt BA, Berleau LT, Nguyen H V, et al. The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 1996;271(13):7788–95.

    PubMed  CAS  Google Scholar 

  145. Soker S, Gollamudi-Payne S, Fidder H, Charmahelli H, Klagsbrun M. Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem 1997;272(50):31582–8.

    PubMed  CAS  Google Scholar 

  146. Whitaker GB, Limberg BJ, Rosenbaum JS. Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J Biol Chem 2001;276(27):25520–31.

    PubMed  CAS  Google Scholar 

  147. Tessler S, Rockwell P, Hicklin D, et al. Heparin modulates the interaction of VEGF165 with soluble and cell associated flk-1 receptors. J Biol Chem 1994;269(17):12456–61.

    PubMed  CAS  Google Scholar 

  148. Chiang MK, Flanagan JG. Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors 1995;12(1):1–10.

    PubMed  CAS  Google Scholar 

  149. Gitay-Goren H, Cohen T, Tessler S, et al. Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem 1996;271(10):5519–23.

    PubMed  CAS  Google Scholar 

  150. Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 2002;85(2):357–68.

    PubMed  CAS  Google Scholar 

  151. Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol 2002;515:33–48.

    PubMed  CAS  Google Scholar 

  152. Eliceiri BP, Cheresh DA. Adhesion events in angiogenesis. Curr Opin Cell Biol 2001;13(5):563–8.

    PubMed  CAS  Google Scholar 

  153. Hall H, Hubbell JA. Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating alphavbeta3-integrin and activating VEGF-R2. Microvasc Res 2004;68(3):169–78.

    PubMed  CAS  Google Scholar 

  154. Borges E, Jan Y, Ruoslahti E. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem 2000;275(51):39867–73.

    PubMed  CAS  Google Scholar 

  155. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 1999;18(4):882–92.

    PubMed  CAS  Google Scholar 

  156. Hong YK, Lange-Asschenfeldt B, Velasco P, et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 2004;18(10):1111–3.

    PubMed  CAS  Google Scholar 

  157. Reynolds AR, Reynolds LE, Nagel TE, et al. Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in beta3-integrin-deficient mice. Cancer Res 2004;64(23):8643–50.

    PubMed  CAS  Google Scholar 

  158. Reynolds LE, Wyder L, Lively JC, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 2002;8(1):27–34.

    PubMed  CAS  Google Scholar 

  159. Carmeliet P. Integrin indecision. Nat Med 2002;8(1):14–6.

    PubMed  CAS  Google Scholar 

  160. Rahimi N, Kazlauskas A. A role for cadherin-5 in regulation of vascular endothelial growth factor receptor 2 activity in endothelial cells. Mol Biol Cell 1999;10(10):3401–7.

    PubMed  CAS  Google Scholar 

  161. Shay-Salit A, Shushy M, Wolfovitz E, et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci USA 2002;99(14):9462–7.

    PubMed  CAS  Google Scholar 

  162. Corada M, Zanetta L, Orsenigo F, et al. A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 2002;100(3):905–11.

    PubMed  CAS  Google Scholar 

  163. Zanetti A, Lampugnani MG, Balconi G, et al. Vascular endothelial growth factor induces SHC association with vascular endothelial cadherin: a potential feedback mechanism to control vascular endothelial growth factor receptor-2 signaling. Arterioscler Thromb Vasc Biol 2002;22(4):617–22.

    PubMed  CAS  Google Scholar 

  164. Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005;437(7057):426–31.

    PubMed  CAS  Google Scholar 

  165. Grazia Lampugnani M, Zanetti A, Corada M, et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/ CD148. J Cell Biol 2003;161(4):793–804.

    PubMed  Google Scholar 

  166. Calera MR, Venkatakrishnan A, Kazlauskas A. VE-cadherin increases the half-life of VEGF receptor 2. Exp Cell Res 2004;300(1):248–56.

    PubMed  CAS  Google Scholar 

  167. Ljungberg B, Jacobsen J, Haggstrom-Rudolfssson S, Rasmuson T, Lindh G, Grankvist K. Tumour vascular endothelial growth factor (VEGF) mRNA in relation to serum VEGF protein levels and tumour progression in human renal cell carcinoma. Urol Res 2003;31(5):335–40.

    PubMed  CAS  Google Scholar 

  168. Li X, Ponten A, Aase K, et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol 2000;2(5):302–9.

    PubMed  CAS  Google Scholar 

  169. Bergsten E, Uutela M, Li X, et al. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 2001;3(5):512–6.

    PubMed  CAS  Google Scholar 

  170. Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 2004;15(4):197–204.

    PubMed  CAS  Google Scholar 

  171. Betsholtz C, Johnsson A, Heldin CH, et al. cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature 1986;320(6064):695–9.

    PubMed  CAS  Google Scholar 

  172. Uutela M, Lauren J, Bergsten E, et al. Chromosomal location, exon structure, and vascular expression patterns of the human PDGFC and PDGFC genes. Circulation 2001;103(18):2242–7.

    PubMed  CAS  Google Scholar 

  173. Tallquist M, Kazlauskas A. PDGF signaling in cells and mice. Cytokine Growth Factor Rev 2004;15(4):205–13.

    PubMed  CAS  Google Scholar 

  174. Heidaran MA, Beeler JF, Yu JC, et al. Differences in substrate specificities of alpha and beta platelet-derived growth factor (PDGF) receptors. Correlation with their ability to mediate PDGF transforming functions. J Biol Chem 1993;268(13):9287–95.

    CAS  Google Scholar 

  175. Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor Rev 2004;15(4):237–54.

    PubMed  CAS  Google Scholar 

  176. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004;15(4):255–73.

    PubMed  CAS  Google Scholar 

  177. Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A. PDGF receptors as cancer drug targets. Cancer Cell 2003;3(5):439–43.

    PubMed  CAS  Google Scholar 

  178. Hermanson M, Funa K, Hartman M, et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 1992;52(11):3213–9.

    PubMed  CAS  Google Scholar 

  179. Dabrow MB, Francesco MR, McBrearty FX, Caradonna S. The effects of platelet-derived growth factor and receptor on normal and neoplastic human ovarian surface epithelium. Gynecol Oncol 1998;71(1):29–37.

    PubMed  CAS  Google Scholar 

  180. Fudge K, Wang CY, Stearns ME. Immunohistochemistry analysis of platelet-derived growth factor A and B chains and platelet-derived growth factor alpha and beta receptor expression in benign prostatic hyperplasias and Gleason-graded human prostate adenocarcinomas. Mod Pathol 1994;7(5):549–54.

    PubMed  CAS  Google Scholar 

  181. Doolittle RF, Hunkapiller MW, Hood LE, et al. Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 1983;221(4607):275–7.

    PubMed  CAS  Google Scholar 

  182. Waterfield MD, Scrace GT, Whittle N, et al. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 1983;304(5921):35–9.

    PubMed  CAS  Google Scholar 

  183. Clarke MF, Westin E, Schmidt D, et al. Transformation of NIH 3T3 cells by a human c-sis cDNA clone. Nature 1984;308(5958):464–7.

    PubMed  CAS  Google Scholar 

  184. Gazit A, Igarashi H, Chiu IM, et al. Expression of the normal human sis/PDGF-2 coding sequence induces cellular transformation. Cell 1984;39(1):89–97.

    PubMed  CAS  Google Scholar 

  185. Josephs SF, Guo C, Ratner L, Wong-Staal F. Human-proto-oncogene nucleotide sequences corresponding to the transforming region of simian sarcoma virus. Science 1984;223(4635):487–91.

    PubMed  CAS  Google Scholar 

  186. Beckmann MP, Betsholtz C, Heldin CH, et al. Comparison of biological properties and transforming potential of human PDGF-A and PDGF-B chains. Science 1988;241(4871):1346–9.

    PubMed  CAS  Google Scholar 

  187. Bywater M, Rorsman F, Bongcam-Rudloff E, et al. Expression of recombinant platelet-derived growth factor A- and B-chain homodimers in rat-1 cells and human fibroblasts reveals differences in protein processing and autocrine effects. Mol Cell Biol 1988;8(7):2753–62.

    PubMed  CAS  Google Scholar 

  188. Li H, Fredriksson L, Li X, Eriksson U. PDGF-D is a potent transforming and angiogenic growth factor. Oncogene 2003;22(10):1501–10.

    PubMed  CAS  Google Scholar 

  189. Maher EA, Furnari FB, Bachoo RM, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001;15(11):1311–33.

    PubMed  CAS  Google Scholar 

  190. Fleming TP, Saxena A, Clark WC, et al. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 1992;52(16):4550–3.

    PubMed  CAS  Google Scholar 

  191. Hermanson M, Funa K, Koopmann J, et al. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res 1996;56(1):164–71.

    PubMed  CAS  Google Scholar 

  192. Pech M, Gazit A, Arnstein P, Aaronson SA. Generation of fibrosarcomas in vivo by a retrovi-rus that expresses the normal B chain of platelet-derived growth factor and mimics the alternative splice pattern of the v-sis oncogene. Proc Natl Acad Sci USA 1989;86(8):2693–7.

    PubMed  CAS  Google Scholar 

  193. Smits A, Funa K, Vassbotn FS, et al. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin. Am J Pathol 1992;140(3):639–48.

    PubMed  CAS  Google Scholar 

  194. Wang J, Coltrera MD, Gown AM. Cell proliferation in human soft tissue tumors correlates with platelet-derived growth factor B chain expression: an immunohistochemical and in situ hybridization study. Cancer Res 1994;54(2):560–4.

    PubMed  CAS  Google Scholar 

  195. Henriksen R, Funa K, Wilander E, Backstrom T, Ridderheim M, Oberg K. Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res 1993;53(19):4550–4.

    PubMed  CAS  Google Scholar 

  196. Matei D, Chang DD, Jeng MH. Imatinib mesylate (Gleevec) inhibits ovarian cancer cell growth through a mechanism dependent on platelet-derived growth factor receptor alpha and Akt inactivation. Clin Cancer Res 2004;10(2):681–90.

    PubMed  CAS  Google Scholar 

  197. Chott A, Sun Z, Morganstern D, et al. Tyrosine kinases expressed in vivo by human prostate cancer bone marrow metastases and loss of the type 1 insulin-like growth factor receptor. Am J Pathol 1999;155(4):1271–9.

    PubMed  CAS  Google Scholar 

  198. Ustach CV, Taube ME, Hurst NJ, Jr., et al. A potential oncogenic activity of platelet-derived growth factor d in prostate cancer progression. Cancer Res 2004;64(5):1722–9.

    PubMed  CAS  Google Scholar 

  199. Beppu K, Jaboine J, Merchant MS, Mackall CL, Thiele CJ. Effect of imatinib mesylate on neuroblastoma tumorigenesis and vascular endothelial growth factor expression. J Natl Cancer Inst 2004;96(1):46–55.

    PubMed  CAS  Google Scholar 

  200. Jechlinger M, Sommer A, Moriggl R, et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Investig 2006;116(6):1561–70.

    PubMed  CAS  Google Scholar 

  201. Sjoblom T, Shimizu A, O'Brien KP, et al. Growth inhibition of dermatofibrosarcoma pro-tuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001;61(15):5778–83.

    PubMed  CAS  Google Scholar 

  202. Shamah SM, Stiles CD, Guha A. Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Mol Cell Biol 1993;13(12):7203–12.

    PubMed  CAS  Google Scholar 

  203. Strawn LM, Mann E, Elliger SS, et al. Inhibition of glioma cell growth by a truncated platelet-derived growth factor-beta receptor. J Biol Chem 1994;269(33):21215–22.

    PubMed  CAS  Google Scholar 

  204. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003;21(23):4342–9.

    PubMed  CAS  Google Scholar 

  205. Uehara H, Kim SJ, Karashima T, et al. Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst 2003;95(6):458–70.

    PubMed  CAS  Google Scholar 

  206. Garofalo A, Naumova E, Manenti L, et al. The combination of the tyrosine kinase receptor inhibitor SU6668 with paclitaxel affects ascites formation and tumor spread in ovarian carcinoma xenografts growing orthotopically. Clin Cancer Res 2003;9(9):3476–85.

    PubMed  CAS  Google Scholar 

  207. Machida S, Saga Y, Takei Y, et al. Inhibition of peritoneal dissemination of ovarian cancer by tyrosine kinase receptor inhibitor SU6668 (TSU-68). Int J Cancer 2005;114(2):224–9.

    PubMed  CAS  Google Scholar 

  208. Sirvent N, Maire G, Pedeutour F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003;37(1):1–19.

    PubMed  CAS  Google Scholar 

  209. Simon MP, Pedeutour F, Sirvent N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 1997;15(1):95–8.

    PubMed  CAS  Google Scholar 

  210. Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299(5607):708–10.

    PubMed  CAS  Google Scholar 

  211. Hirota S, Ohashi A, Nishida T, et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 2003;125(3):660–7.

    PubMed  CAS  Google Scholar 

  212. Cross NC, Reiter A. Tyrosine kinase fusion genes in chronic myeloproliferative diseases. Leukemia 2002;16(7):1207–12.

    PubMed  CAS  Google Scholar 

  213. Steer EJ, Cross NC. Myeloproliferative disorders with translocations of chromosome 5q31-35: role of the platelet-derived growth factor receptor Beta. Acta Haematol 2002;107(2):113–22.

    PubMed  CAS  Google Scholar 

  214. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003;348(13):1201–14.

    PubMed  CAS  Google Scholar 

  215. Risau W, Drexler H, Mironov V, et al. Platelet-derived growth factor is angiogenic in vivo. Growth Factors 1992;7(4):261–6.

    PubMed  CAS  Google Scholar 

  216. Oikawa T, Onozawa C, Sakaguchi M, Morita I, Murota S. Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. Biol Pharm Bull 1994;17(12):1686–8.

    PubMed  CAS  Google Scholar 

  217. Cao R, Brakenhielm E, Li X, et al. Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-alphaalpha and -alphabeta receptors. FASEB J 2002;16(12):1575–83.

    PubMed  CAS  Google Scholar 

  218. Betsholtz C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 2004;15(4):215–28.

    PubMed  CAS  Google Scholar 

  219. Roberts WG, Whalen PM, Soderstrom E, et al. Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res 2005;65(3):957–66.

    PubMed  CAS  Google Scholar 

  220. Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C. Analysis of mural cell recruitment to tumor vessels. Circulation 2002;105(1):112–7.

    PubMed  CAS  Google Scholar 

  221. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002;160(3):985–1000.

    PubMed  Google Scholar 

  222. Apte SM, Fan D, Killion JJ, Fidler IJ. Targeting the platelet-derived growth factor receptor in antivascular therapy for human ovarian carcinoma. Clin Cancer Res 2004;10(3):897–908.

    PubMed  CAS  Google Scholar 

  223. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Investig 2003;112(8):1142–51.

    PubMed  CAS  Google Scholar 

  224. Guo P, Hu B, Gu W, et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 2003;162(4):1083–93.

    PubMed  CAS  Google Scholar 

  225. Furuhashi M, Sjoblom T, Abramsson A, et al. Platelet-derived growth factor production by B16 melanoma cells leads to increased pericyte abundance in tumors and an associated increase in tumor growth rate. Cancer Res 2004;64(8):2725–33.

    PubMed  CAS  Google Scholar 

  226. Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997;277(5323):242–5.

    PubMed  CAS  Google Scholar 

  227. Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 2001;153(3):543–53.

    PubMed  CAS  Google Scholar 

  228. Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004;6(6):553–63.

    PubMed  CAS  Google Scholar 

  229. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999;284(5415):808–12.

    PubMed  CAS  Google Scholar 

  230. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003;111(9):1287–95.

    PubMed  CAS  Google Scholar 

  231. Erber R, Thurnher A, Katsen AD, et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 2004;18(2):338–40.

    PubMed  CAS  Google Scholar 

  232. Pietras K, Hanahan D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 2005;23(5):939–52.

    PubMed  CAS  Google Scholar 

  233. Hwang RF, Yokoi K, Bucana CD, et al. Inhibition of platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec) reduces growth and metastasis of human pancreatic carcinoma in an orthotopic nude mouse model. Clin Cancer Res 2003;9(17):6534–44.

    PubMed  CAS  Google Scholar 

  234. Sundberg C, Ljungstrom M, Lindmark G, Gerdin B, Rubin K. Microvascular pericytes express platelet-derived growth factor-beta receptors in human healing wounds and color-ectal adenocarcinoma. Am J Pathol 1993;143(5):1377–88.

    PubMed  CAS  Google Scholar 

  235. Ponten F, Ren Z, Nister M, Westermark B, Ponten J. Epithelial-stromal interactions in basal cell cancer: the PDGF system. J Invest Dermatol 1994;102(3):304–9.

    PubMed  CAS  Google Scholar 

  236. Bhardwaj B, Klassen J, Cossette N, et al. Localization of platelet-derived growth factor beta receptor expression in the periepithelial stroma of human breast carcinoma. Clin Cancer Res 1996;2(4):773–82.

    PubMed  CAS  Google Scholar 

  237. Lindmark G, Sundberg C, Glimelius B, Pahlman L, Rubin K, Gerdin B. Stromal expression of platelet-derived growth factor beta-receptor and platelet-derived growth factor B-chain in colorectal cancer. Lab Invest 1993;69(6):682–9.

    PubMed  CAS  Google Scholar 

  238. Kawai T, Hiroi S, Torikata C. Expression in lung carcinomas of platelet-derived growth factor and its receptors. Lab Invest 1997;77(5):431–6.

    PubMed  CAS  Google Scholar 

  239. Funa K, Papanicolaou V, Juhlin C, et al. Expression of platelet-derived growth factor beta-receptors on stromal tissue cells in human carcinoid tumors. Cancer Res 1990;50(3):748–53.

    PubMed  CAS  Google Scholar 

  240. Ebert M, Yokoyama M, Kobrin MS, et al. Induction and expression of amphiregulin in human pancreatic cancer. Cancer Res 1994;54(15):3959–62.

    PubMed  CAS  Google Scholar 

  241. Fjallskog ML, Lejonklou MH, Oberg KE, Eriksson BK, Janson ET. Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res 2003;9(4):1469–73.

    PubMed  Google Scholar 

  242. Forsberg K, Valyi-Nagy I, Heldin CH, Herlyn M, Westermark B. Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB. Proc Natl Acad Sci USA 1993;90(2):393–7.

    PubMed  CAS  Google Scholar 

  243. Skobe M, Fusenig NE. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc Natl Acad Sci USA 1998;95(3):1050–5.

    PubMed  CAS  Google Scholar 

  244. Shao ZM, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 2000;19(38):4337–45.

    PubMed  CAS  Google Scholar 

  245. Reed RK, Berg A, Gjerde EA, Rubin K. Control of interstitial fluid pressure: role of beta1-integrins. Semin Nephrol 2001;21(3):222–30.

    PubMed  CAS  Google Scholar 

  246. Rodt SA, Ahlen K, Berg A, Rubin K, Reed RK. A novel physiological function for platelet-derived growth factor-BB in rat dermis. J Physiol 1996;495(Pt 1):193–200.

    PubMed  CAS  Google Scholar 

  247. Jain RK. Transport of molecules across tumor vasculature. Cancer Metastasis Rev 1987;6(4):559–93.

    PubMed  CAS  Google Scholar 

  248. Pietras K, Ostman A, Sjoquist M, et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res 2001;61(7):2929–34.

    PubMed  CAS  Google Scholar 

  249. Pietras K, Rubin K, Sjoblom T, et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 2002;62(19):5476–84.

    PubMed  CAS  Google Scholar 

  250. Pietras K, Stumm M, Hubert M, et al. STI571 enhances the therapeutic index of epothilone B by a tumor-selective increase of drug uptake. Clin Cancer Res 2003;9(10 Pt 1):3779–87.

    PubMed  CAS  Google Scholar 

  251. van Oosterom AT, Judson I, Verweij J, et al. Safety and efficacy of imatinib (STI571) in met-astatic gastrointestinal stromal tumours: a phase I study. Lancet 2001;358(9291):1421–3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lam, J.S., Figlin, R.A., Belldegrun, A.S. (2009). VEGF and PDGF Receptors: Biologic Relevance and Clinical Approaches to Inhibition. In: Bukowski, R.M., Figlin, R.A., Motzer, R.J. (eds) Renal Cell Carcinoma. Humana Press. https://doi.org/10.1007/978-1-59745-332-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-332-5_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-737-2

  • Online ISBN: 978-1-59745-332-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics