Skip to main content

A Gut Reaction: Aging Affect Gut-Associated Immunity

  • Chapter
Microbiology and Aging

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saltzman JR, Russell TM. The aging gut: nutritional issues. Gastroenterol Clin North Am 1998;27:309–324.

    CAS  PubMed  Google Scholar 

  2. Wolf JL, Rubin DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, Fields BN. Intestinal M cells: a pathway for entry of reovirus into the host. Science 1981;212:471–472.

    CAS  PubMed  Google Scholar 

  3. Kraehenbuhl J-P, Neutra MR. Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 2000;16:301–332.

    CAS  PubMed  Google Scholar 

  4. Shreedhar VK, Kelsall BL, Neutra MR. Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell areas of Peyer's patches. Infect Immun 2003;71:504–509.

    CAS  PubMed  Google Scholar 

  5. Kelsall BL, Strober W. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer's patch. J Exp Med 1996;183:237–247.

    CAS  PubMed  Google Scholar 

  6. Iwasaki A, Kelsall BL. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein MIP-3α, MIP-3β, and secondary lymphoid organ chemokine. J Exp Med 2000;191:1381–1393.

    CAS  PubMed  Google Scholar 

  7. Zhao X, Sato A, Dela Cruz CS, Lineham M, Luegering A, Kucharzik T, Shirakawa A-K, Marquez G, Farber JM, Williams I, Iwasaki A. CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer's patch CD11b+ dendritic cells. J Immunol 2003;171:2797–2803.

    CAS  PubMed  Google Scholar 

  8. Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Essential Cell Biology, 2nd ed. London: Garland Science, 2004;711:722.

    Google Scholar 

  9. Macpherson AJ, Smith K. Mesenteric lymph nodes at the center of immune anatomy. J Exp Med 2006;203:497–500.

    CAS  PubMed  Google Scholar 

  10. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionaary forces shaping microbial diversity in the human intestine. Cell 2006;124:837–848.

    CAS  PubMed  Google Scholar 

  11. Simon GL, Gorbach SL. Intestinal flora in health and disease. Gastroenterology 1984;86: 174–193.

    CAS  PubMed  Google Scholar 

  12. Sterzl J, Silverstein AM. Developmental aspects of immunity. Adv Immunol 1967;6:337–459.

    CAS  PubMed  Google Scholar 

  13. Cebra JJ, Jiang H-Q, Sterzl J, Tlaskalova-Hogenova H. The role of mucosal microbiota in the development and maintenance of the mucosal immune system. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee J, eds. Mucosal Immunology, 2nd ed. New York: Academic Press, 1999, pp. 267–280.

    Google Scholar 

  14. Moreau M, Ducluzeau R, Guy-Grand D, Muller MA. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun 1978;21:532–539.

    CAS  PubMed  Google Scholar 

  15. Leidy J. On the existence of entophyta in healthy animals as a natural condition. Proc Acad Natl Sci Phila 1849;4:225–233.

    Google Scholar 

  16. Klaasen HLBM, Van den Heijden PJ, Stock W, Poelma FGJ, Koopman JP, Van den Brink ME, Bakker MH, Eling WMC, Beynen AC. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect Immun 1993;61:303–306.

    CAS  PubMed  Google Scholar 

  17. Tyrer P,Foxwell AR, Cripps AW, Apicella MA, Kyd JM. Microbial pattern recognition receptors mediate M-cell uptake of a Gram-negative bacterium. Infect Immun 2006;74:625–631.

    CAS  PubMed  Google Scholar 

  18. Yamanaka T, Straumfors A, Morton HC, Fausa O, Brandtzaeg P, Farstad IN. M cell pockets of human Peyer's patches are specialized extensions of germinal centers. Eur J Immunol 2001;31:107–116.

    CAS  PubMed  Google Scholar 

  19. Yamanaka T, Helgeland L, Farstad IN, Fukushima H, Midtvedt T, Brandtzaeg P. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches. J Immunol 2003;170:816–822.

    CAS  PubMed  Google Scholar 

  20. Borghesi C, Bertelli E, Regoli M, Nicoletti C. Modifications of the FAE by short term exposure to a non-intestinal bacterium. J Pathol 1996;180:326–332.

    CAS  PubMed  Google Scholar 

  21. Man AL, Prieto-Garcia ME, Nicoletti C. Improving M cell mediated transport across mucosal barriers: do certain bacteria hold the keys? Immunology 2004;113:15–22.

    CAS  PubMed  Google Scholar 

  22. Neutra MR, Phillips TL, Mayer EL, Fishkind DJ. Transport of membrane-bound macromo-lecules by M cells in the FAE of rabbit Peyer's patches. Cell Tissue Res 1987;247:536–546.

    Google Scholar 

  23. Meng G, Wei X, Wu X, Sellers MT, Decker JM, Moldoveanu Z, Orenstein JM, Graham MF, Kappes JC, Mestecky J, Shaw GM, Smith PD. Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat Med 2002;8:150–156.

    CAS  PubMed  Google Scholar 

  24. Gebert A. The role of M cells in the protection of mucosal membrane. Histochem Cell Biol 1997;108:455–470.

    CAS  PubMed  Google Scholar 

  25. Finzi G, Cornaggia M, Capella C, Fiocca R, Bosi F, Solcia E, Samloff IM. Cathepsin E in follicle-associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing. Histochemistry 1993;99:201–211.

    CAS  PubMed  Google Scholar 

  26. Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 1994;180:15–23.

    CAS  PubMed  Google Scholar 

  27. Perdomo JL, Cavaillon JM, Huerre M, Ohayon H, Gounon P, Sansonetti PJ. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med 1994;180:1307–1319.

    CAS  PubMed  Google Scholar 

  28. Grutzkau A, Hanski C, Hahn H, Riecken EO. Invasion of Peyer's patch: a common mechanism shared by Yersinia enterocolitica and other entero-invasive bacteria. Gut 1990;3: 1011–1015.

    Google Scholar 

  29. Meynell HM, Thomas NW, James PS, Holland J, Taussig MJ, Nicolletti C. Up-regulation of microsphere transport across the follicle-associated epithelium of Peyer's patch by exposure to S. pneumoniae R36a. FASEB J 1999;13:611–619.

    CAS  PubMed  Google Scholar 

  30. Borghesi C, Taussig MJ, Nicoletti C. Rapid appearance of M cells after microbial challenge is restricted at the periphery of the follicle-associated epithelium of Peyer's patch. Lab Invest 1999;79:1391–1410.

    Google Scholar 

  31. Gebert A, Steinmetz I, Fassbender S, Wendlandt KH. Antigen transport in Peyer's patches: increased uptake by constant numbers of M cells. Am J Pathol 2004;64:65–72.

    Google Scholar 

  32. Neutra MR, Pringault E, Kraehenbuhl JP. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol 1996;14:275–300.

    CAS  PubMed  Google Scholar 

  33. Chieppa M, Rescigno M, Huang AY, Germain RN. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 2006;203:2841–2852.

    CAS  PubMed  Google Scholar 

  34. Evans EA, Calderwood DA. Forces and bond dynamics in cell adhesion. Science 2007;316:1148–1153.

    CAS  PubMed  Google Scholar 

  35. Mitic LL, Van Itallie CM, Anderson JM. Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol 2000;279:G250–G254.

    CAS  PubMed  Google Scholar 

  36. Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 2004;286:C1213–C1228.

    CAS  PubMed  Google Scholar 

  37. Connolly JL, Rodgers SE, Clarke P, Ballard DW, Kerr LD, Tyler KL, Dermody TS. Reovirus-induced apoptosis requires activation of transcription factor NFkB. J Virol 2000;74: 2981–2989.

    CAS  PubMed  Google Scholar 

  38. Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 1999;147:195–204.

    PubMed  Google Scholar 

  39. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. Interferon-γ and tumor necrosis factor-α synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 2005;166:409–419.

    CAS  PubMed  Google Scholar 

  40. Utech M, Ivanov AI, Samarin SN, Bruewer M, Turner JR, Mrsny RJ, Parkos CA, Nusrat A. Mechanism of IFN-β-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 2005;16:5040–5050.

    CAS  PubMed  Google Scholar 

  41. Clark E, Hoare C, Tanianis-Hughes J, Carlson GL, Warhurst G. Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology 2005;128:1258–1267.

    CAS  PubMed  Google Scholar 

  42. Moriez R, Salvador-Cartier C, Theodoru V, Fioramonti J, Eutamene H, Bueno L. Myosin light chaín kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol 2005;167:1071–1079.

    CAS  PubMed  Google Scholar 

  43. Cunliffe RN, Mahida YR. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol 2004;75:49–58.

    CAS  PubMed  Google Scholar 

  44. Mowat A McI. The role of antigen recognition and suppressor cells in mice with oral tolerance to ovalbumin. Immunology 1985;56:253–260.

    CAS  PubMed  Google Scholar 

  45. Mowat AM. Dendritic cells and immune responses to orally administered antigens. Vaccine 2005;23:1797–1799.

    CAS  PubMed  Google Scholar 

  46. Husby S, Mestecky J, Moldoveanu Z, Holland S, Elson CO. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J Immunol 1994;152:4663–4670.

    CAS  PubMed  Google Scholar 

  47. Macpherson AJ, Smith K. Mesenteric lymph nodes at the center of immune anatomy. J Exp Med 2006;203:497–500.

    CAS  PubMed  Google Scholar 

  48. Mowat AM, Weiner HL. Oral tolerance: physiological basis and clinical applications. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienestock J, McGhee JR, eds. Mucosal Immunology, 2nd ed. New York: Academic Press, 1999, pp. 587–618.

    Google Scholar 

  49. Kato H, Fujihashi K, Kato R, Yuki Y, McGhee JR. Oral tolerance revisited: prior oral tolerization abrogates cholera toxin-induced mucosal IgA responses. J Immunol 2001;166:3114–3121.

    CAS  PubMed  Google Scholar 

  50. Strobel S, Ferguson A. Persistence of oral tolerance in mice fed ovalbumin is different for humoral and cell-mediated immune responses. Immunology 1987;60:317–318.

    CAS  PubMed  Google Scholar 

  51. Ke Y, Kapp JA. Oral antigen inhibits priming of CD8+ CTL, CD4+ T cells and antibody responses while activating CD8+ suppressor T cells. J Immunol 1996;156:916–921.

    CAS  PubMed  Google Scholar 

  52. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 1994;91:6688–6694.

    CAS  PubMed  Google Scholar 

  53. Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo VK, Weiner HL. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 1995;376:177–180.

    CAS  PubMed  Google Scholar 

  54. Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, Forster R, Pabst O. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 2006;203:519–527.

    CAS  PubMed  Google Scholar 

  55. Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 2004;4:1019–1025.

    CAS  PubMed  Google Scholar 

  56. Spahn TW, Fontana A, Faria AM, Slavin AJ, Eugster HP, Zhang X, Koni PA, Ruddle NH, Flavell RA, Rennert PD, Weiner HL. Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. Eur J Immunol 2001;31:1278–1287.

    CAS  PubMed  Google Scholar 

  57. Spahn TW, Weiner HL, Rennert PD, Lugering N, Fontana A, Domschke W, Kucharzik T. Eur J Immunol 2002;32:1109–1113.

    CAS  PubMed  Google Scholar 

  58. Kraus TA, Brimnes J, Muong C, Liu J-H, Moran TM, Tappenden KA, Boros P, Mayer L. Induction of mucosal tolerance in Peyer's patch-deficient, ligated small bowel loops. J Clin Invest 2005;115:2234–2243.

    CAS  PubMed  Google Scholar 

  59. Shreedhar VK, Kelsall BL, Neutra MR. Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell area of Peyer's patches. Infect Immun 2003;71:504–509.

    CAS  PubMed  Google Scholar 

  60. Milling SW, Yrlid U, Jenkins C, Richards CM, Williams NA, Mac Pherson G, Regulation of intestinal immunity: effects of the oral adjuvant Escherichia coli heat-labile enterotoxin on migrating dendritic cells. Eur J Immunol 2007;37:87–99.

    CAS  PubMed  Google Scholar 

  61. Jang MH, Sougawa N, Tonaka T, Hirata T, Hiroi T, Tohya K, Guo Z, Umemoto E, Ebisuno Y, Yang BG, Seoh JY, Lipp M, Kiyono H, Miyasaka M. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 2006;176:803–810.

    CAS  PubMed  Google Scholar 

  62. Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA. γδ lymphocytes regulate the induction of oral tolerance. J Immunol 1997;158:3610–3618.

    CAS  PubMed  Google Scholar 

  63. Sun J-B, Holmgren J, Czerkinsky C. Cholera toxin B subunit: an efficient transmucosal carrier-delivery system for induction of peripheral immunological tolerance. Proc Natl Acad Sci USA 1994;91:10795–10799.

    CAS  PubMed  Google Scholar 

  64. Groux H, O'Garra A, Bigler M, Rouleau M,Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T cell subset inhibits antigen-specific T cell responses and prevents colitis. Nature 1997; 389:737–742.

    CAS  PubMed  Google Scholar 

  65. Kamanaka M, Kim ST, Wan YY, Sutterwala FS, Lara-Tejero M, Galan JE, Harhaj E, Flavell RA. Expression of interleukin-10 intestinal lymphocytes detected by an interleukin-10 receptor knockin tiger mouse. Immunity 2006;25:941–952.

    CAS  PubMed  Google Scholar 

  66. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol 2005;6:353–360.

    CAS  PubMed  Google Scholar 

  67. Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 2005;102:5126–5131.

    CAS  PubMed  Google Scholar 

  68. Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4(+) CD25(+) T regulatory cells. Nat Immunol 2003;4:337–342.

    CAS  PubMed  Google Scholar 

  69. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057–1061.

    CAS  PubMed  Google Scholar 

  70. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4(+) CD25(+) regulatory T cells. Nat Immunol 2003;4:330–336.

    CAS  PubMed  Google Scholar 

  71. Chen WJ, Jin W, Hardegen N, Lei K, Li L, Marinos N, McGrady G, Wahl SM. Conversion of peripheral CD4+ CD25− naïve T cells to CD4+ CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med 2003;198:1875–1886.

    CAS  PubMed  Google Scholar 

  72. Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, Protschka M, Galle PR, Neurath MF, Blessing M. Cutting edge: TGF-β signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+ CD25+ T cells. J Immunol 2004; 173:6526–6531.

    CAS  PubMed  Google Scholar 

  73. Li MO, wan YY, Flavell RA. T cell-produced transforming growth factor-beta 1 controls T cell tolerance and regulates T1- and Th 17-cell differentiation. Immunity 2007;26(5):579–591.

    CAS  PubMed  Google Scholar 

  74. Liu S-J, Tsai J-P, Shen C-R, Sher Y-P, Hsieh C-L, Yeh Y-C, Chou A-H, Chang S-R, Hsiao K-N, Yu F-W, Chen H-W. Induction of a distinct CD8 Tnc 17 subset by transforming growth factor-β and interleukin-6. J Leukoc Biol 2007;82(2):354–360.

    CAS  PubMed  Google Scholar 

  75. Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 2007;117:1119–1127.

    CAS  PubMed  Google Scholar 

  76. Barnard JA, Warwick GJ, Gold LI. Localization of transforming growth factor beta isoforms in the normal murine small intestine and colon. Gastroenterology 1993;105:67–73.

    CAS  PubMed  Google Scholar 

  77. Rumbo M, Anderle P, Didierlaurent A, Sierro F, Debard N, Sirard J-C, Finike D, Kraehenbuhl J-P. How the gut links innate and adaptive immunity. Ann NY Acad Sci 2004;1029:16–21.

    CAS  PubMed  Google Scholar 

  78. Garside P, Millington O, Smith KM. The anatomy of mucosal immune responses. Ann NY Acad Sci 2004;1029:9–15.

    CAS  PubMed  Google Scholar 

  79. Baecher-Allan C, Wolf E, Hafler DA. MHC Class II expression identifies functionally distinct human regulatory T cells. J Immunol 2006;176:4622–4631.

    CAS  PubMed  Google Scholar 

  80. Chang CH, Hong SC, Hughes CC, Janeway CA Jr, Flavell RA. CIITA activates the expression of MHC class II genes in mouse T cells. Int Immunol 1995;7:1515–1518.

    CAS  PubMed  Google Scholar 

  81. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20: 197–216.

    CAS  PubMed  Google Scholar 

  82. Germain RN. An innately interesting decade of research in immunology. Nat Med 2004; 10:1307–1320.

    CAS  PubMed  Google Scholar 

  83. Cario E, Brown D, Mckee M, Lynch-Devaney K, Gerken G, Podolsky DK. Commensal-associated molecular patterns induce selective Toll-like receptor trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 2002;160:165–173.

    CAS  PubMed  Google Scholar 

  84. Bambou JC, Giraud A, Menard S, Begue B, Rakotobe S, Heyman M, Taddei F, Cerf-Bensussan N, Gaboriau-Routhiau V. In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem 2004;279:42984–42992.

    CAS  PubMed  Google Scholar 

  85. Chabot S, Wagner JS, Farrant S, Neutra MR. TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. J Immunol 2006;176:4275–4283.

    CAS  PubMed  Google Scholar 

  86. Goodnow CC. Discriminating microbe from self suffers a double toll. Science 2006; 312:1606–1608.

    PubMed  Google Scholar 

  87. Otte J-M, Cario E, Podolsky D. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 2004;126:1054–1070.

    CAS  PubMed  Google Scholar 

  88. Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam D. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 2006;176:3070–3079.

    CAS  PubMed  Google Scholar 

  89. Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K, Nast CC, Lechago J, Xu R, Naiki Y, Soliman A, Arditi M, Abreu MT. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 2005;288:G1055–G1065.

    CAS  PubMed  Google Scholar 

  90. Cunliffe RN, Mahida YR. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol 2004;75:49–58.

    CAS  PubMed  Google Scholar 

  91. Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol 2004;4:953–964.

    CAS  PubMed  Google Scholar 

  92. Mahida YR, Cunliffe RN. Defensins and mucosal protection. Novartis Found Symp 2004;263:71–77.

    CAS  PubMed  Google Scholar 

  93. Mani R, Cady SD, Tang M, Waring AJ, Lehrer RI, Hong M. Membrane-dependent oligo-meric structure and pore formation of a β-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Proc Natl Acad Sci USA 2006;103:16242–16247.

    CAS  PubMed  Google Scholar 

  94. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999;286:525–528.

    CAS  PubMed  Google Scholar 

  95. De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O. LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000;192:1069–1074.

    Google Scholar 

  96. Steel A, Nussberger S, Romero MF, Boron WF, Boyd CA, Hediger MA. Stoichiometry and pH dependence of rabbit proton-dependent oligopeptide transporter PepT1. J Physiol 1997;498:563–569.

    CAS  PubMed  Google Scholar 

  97. Charrier L, Merlin D. The oligopeptide transporter hPepT1: gateway to the innate immune response. Lab Invest 2006;86:538–546.

    CAS  PubMed  Google Scholar 

  98. Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006;313:1126–1130.

    CAS  PubMed  Google Scholar 

  99. Hagemann RF, Sigdestad CP, Lesher S. A quantitative description of the intestinal epithelium of the mouse. Am J Anat 1970;129:41–52.

    CAS  PubMed  Google Scholar 

  100. Li YQ, Roberts SA, Paulus U, Loeffler M, Potten CS. The crypt cycle in mouse small intestinal epithelium. J Cell Sci 1994;107:3271–3279.

    CAS  PubMed  Google Scholar 

  101. Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Talor GA, Plusa SM, Needham S, Greaves LC, Kirkwood TBL, Turnbull DM. Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 2003;112:1351–1360.

    CAS  PubMed  Google Scholar 

  102. Schon EA. Tales from the crypt. J Clin Invest 2003;112:1312–1316.

    CAS  PubMed  Google Scholar 

  103. Greaves LC, Preston SL, Tadrous PJ, Talor RW, Barron MJ, Oukrif D, Leedham SJ, Deheragoda M, Sasieni P, Novelli MR, Jankowski JAZ, Turnbull DM, Wright NA, McDonald SAC. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci USA 2006;103:714–719.

    CAS  PubMed  Google Scholar 

  104. Park HS, Goodlad RA, Wright NA. Crypt fission in the small intestine and colon: a mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol 1995;147:1416–1427.

    CAS  PubMed  Google Scholar 

  105. Knight KL, Winstead CR. Organization and expression of genes encoding IgA heavy chain, polymeric immunoglobulin, and J chain. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd ed. New York: Academic Press, 1999, pp. 153–162.

    Google Scholar 

  106. Mostov K, Kaetzel CS. Immunoglobulin transport and the polymeric immunoglobulin receptor. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd ed. New York: Academic Press, 1999, pp. 181–211.

    Google Scholar 

  107. Hempen PM, Phillips KM, Conway PS, Sandoval KH, Schneeman TA, Wu H-J, Kaetzel CS. Transcriptional regulation of the human polymeric Ig receptor gene: analysis of basal promoter elements. J Immunol 2002;169:1912–1921.

    CAS  PubMed  Google Scholar 

  108. Scheeman TA, Bruno MEC, Schjerven H, Johansen F-E, Chady L, Kaetzel CS. Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses. J Immunol 2005;175:376–384.

    Google Scholar 

  109. Mazanec MB, Kaetzel CS, Lamm ME, Fletcher D, Nedrud JG. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci USA 1992;89:6901–6905.

    CAS  PubMed  Google Scholar 

  110. Mazanec MB, Coudret CL, Fleetcher DR. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglultinin monoclonal antibodies. J Virol 1995;69:1339–1343.

    CAS  PubMed  Google Scholar 

  111. Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthesy B, Neutra MR. Selective adherence of IgA to murine Peyer's patch M cells: evidence for a novel IgA receptor. J Immunol 2002;169:1844–1851.

    CAS  PubMed  Google Scholar 

  112. Rey J, Garin N, Speertini F, Corthesy B. Targeting of secretory IgA to Peyer's patch dendritic and T cells after transport by intestinal M cells. J Immunol 2004;172:3026–3033.

    CAS  PubMed  Google Scholar 

  113. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318–1322.

    CAS  PubMed  Google Scholar 

  114. Mestecky J, Russell MW, Elson CO. Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut 1999;44:2–5.

    CAS  PubMed  Google Scholar 

  115. Russell MW, Mansa B. Complement-fixing properties of human IgA antibodies: alternative pathway complement activation by plastic-bound, but not by specific antigen-bound IgA. Scand J Immunol 1989;30:175–183.

    CAS  PubMed  Google Scholar 

  116. Lefrancois L, Puddington L. Basic aspects of intraepithelial lymphocyte immunobiology. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd ed. New York: Academic Press, 1999, pp. 413–428.

    Google Scholar 

  117. Lambolez F, Kronenberg M, Cheroutre H. Thymic differentiation of TCR alpha beta (+) CD8 alpha alpha (+) IELs. Immunol Rev 2007;215:178–188.

    CAS  PubMed  Google Scholar 

  118. Mora JR, Iwata M, Eksteen B, Song S-Y, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P, Rajewsky K, Adams DA, von Andrian UH. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 2006;314:1157–1160.

    CAS  PubMed  Google Scholar 

  119. Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001;293:253–256.

    CAS  PubMed  Google Scholar 

  120. Andrew EM, Newton DJ, Dalton JE, Egan CE, Goodwin SJ, Tramonti D, Scott P, Carding SR. Delineation of the function of a major ̃δ T cell subset during infection. J Immunol 2005;175:1741–1750.

    CAS  PubMed  Google Scholar 

  121. Newton DJ, Andrew EM, Dalton JE, Mears R, Carding SR. Identification of novel ̃δ T-cell subsets following bacterial infection in the absence of V ̃ 1+ T cells: homeostatic control of ̃δ T-cell responses to pathogen infection by V ̃ 1+ T cells. Infect Immun 2006;74:1097–1105.

    CAS  PubMed  Google Scholar 

  122. Russano AM, Bassotti G, Agea E, Bistoni O, Mazzochi A, Morelli A, Porcelli SA, Spinozzi F. CD1-restricted recognition of exogenous and self-lipid antigens by duodenal ̃δ + T lymphocytes. J Immunol 2007;178:3620–3626.

    CAS  PubMed  Google Scholar 

  123. Mengel J, Cardillo F, Aroeira LS, Williams O, Vaz NM. Anti-̃δ T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunol Lett 1995;48:97–102.

    CAS  PubMed  Google Scholar 

  124. Saito H, Kanamori Y, Takemori T, Nariuchi H, Kubota E, Takahashi-Iwanaga H, Iwanaga T, Ishikawa H. Generation of intestinal T cells from progenitors residing in gut cryptopaatches. Science 1998;280:275–278.

    CAS  PubMed  Google Scholar 

  125. Yu Q, Tang C, Xun S, Yajima T, Takeda K, Yoshikai Y. MyD88-dependent signaling for IL-15 production plays an important role in maintenance of CD8αα TCRαβ and TCR̃δ intestinal intraepithelial lymphocytes. J Immunol 2006;176:6180–6185.

    CAS  PubMed  Google Scholar 

  126. Schluns KS, Nowak EC, Cabrera-Hernandez A, Puddington L, Lefrancois L, Aguida HL. Distinct cell types control lymphoid subset development by means of IL-15 and IL-15 receptor α expression. Proc Natl Acad Sci USA 2004;101:5616–5621.

    CAS  PubMed  Google Scholar 

  127. Rocha B, von Boehmer H, Guy-Grand D. Selection of intraepithelial lymphocytes with CD8α/α co-receptors by self-antigen in the murine gut. Proc Natl Acad Sci USA 1992;89: 5336–5340

    CAS  PubMed  Google Scholar 

  128. Lin T, Yoshida H, Matsuzaki G, Guehler SR, Nomoto K, Barrett TA, Green DR. Auto-specific ̃δ thymocytes that escape negative selection find sanctuary in the intestine. J Clin Invest 1999;104:1297–1305.

    CAS  PubMed  Google Scholar 

  129. Leishman AJ, Naidenko OV, Attinger A, Konig F, Lena CJ, Xiong Y, Chang H-C, Reinherz E, Kronenberg M, Cheroutre H. T cell responses modulated through interaction between CD8 and the nonclassical MHC Class I molecule, TL. Science 2001;294:1936–1939.

    CAS  PubMed  Google Scholar 

  130. Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000;288:2222–2226.

    CAS  PubMed  Google Scholar 

  131. Suzuki K, Meek B, Doi Y, Honjo T, Fagarasan S. Two distinctive pathways for recruitment of naive and primed IgM+ B cells to the gut lamina propria. Proc Natl Acad Sci USA 2005;102:2482–2486.

    CAS  PubMed  Google Scholar 

  132. Bergqvist P, Gardby E, Stennson A, Bemark M, Lycke NY. Gut IgA class switch recombination in the absence of CD40 does not occur in lamina propria and is independent of germinal centers. J Immunol 2006;177:7772–7783.

    CAS  PubMed  Google Scholar 

  133. Shikina T, Hiroi T, Iwatanik K, Jang MH, Fukuyama S, Tamura M, Kubo T, Ishikawa H, Kiyono H. IgA class switch occurs in the organized nasopharynx – and gut – associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol 204;172:6259–6264.

    Google Scholar 

  134. Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004;303:1662–1665.

    CAS  PubMed  Google Scholar 

  135. Thurnheer MC, Zuercher AW, Cebra JJ, Bos NA. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J Immunol 2003;170:4564–4571.

    CAS  PubMed  Google Scholar 

  136. Li YQ, Roberts SA, Paulus U, Locffler M, Potten CS. The crypt cycle in mouse small intestinal epithelium. J Cell Sci 1994;107:33271–3279.

    Google Scholar 

  137. Berg RD, Bacterial translocation from the gastrointestinal tract. In: Paul PS, Francis DH, eds. Mechanisms in the Pathogenesis of Enteric Diseases 2. New York: Plenum Press, 1999, pp. 11–30.

    Google Scholar 

  138. Daniels CK, Schmucker DL, Bazin H, Jones AL. Immunoglobulin A receptor of rat small intestinal enterocytes is unaffected by aging. Gastroenterology 1988;94:1432–1439.

    CAS  PubMed  Google Scholar 

  139. Taylor LD, Daniels CK, Schmucker DL. Aging compromises gastrointestinal mucosal immune response in the rhesus monkey. Immunology 1992;75:614–618.

    CAS  PubMed  Google Scholar 

  140. Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 2002;169:4697–4701.

    CAS  PubMed  Google Scholar 

  141. van Duin D, Mohanaty S, Thomas V, Ginter S, Montgomery RR, Fikrig E, Allore HG, Medzhitov R, Shaw AC. Age-associated defect in human TLR-function. J Immunol 2007;178:970–975.

    PubMed  Google Scholar 

  142. Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, Hartmann T, Fassbeender K. Innate immune receptor expression in normal brain aging. Neuroscience 2007;146:248–254.

    CAS  PubMed  Google Scholar 

  143. Lin T, Matsuzaki G, Kenai H, Nomoto K. Extrathymic and thymic origin of IEL: are most IEL in euthymic mice derived from the thymus? Immunol Cell Biol 1995;73:469–473.

    CAS  PubMed  Google Scholar 

  144. Lefrancois L, Le Corre R, Mayo J, Bluestone JA, Goodman T. Extrathymic selection of TCR gamma delta + T cells by class II major histocompatibilitty complex molecules. Cell 1990;63:333–340.

    CAS  PubMed  Google Scholar 

  145. Bandeira A, Itohara S, Bonneville M, Burlen-Defranoux O, Mota-Santos T, Coutinho A, Tonegawa S. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta. Proc Natl Acad Sci USA 1991;88:43–47.

    CAS  PubMed  Google Scholar 

  146. Kanameri T, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, Ishikawa H. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1 + lympho-hemopoietic progenitors develop. J Exp Med 1996;184:1449–1459.

    Google Scholar 

  147. Locke NR, Stankovic S, Funda DP, Harrison LC. TCR ̃δ intraepithelial lymphocytes are required for self-tolerance. J Immunol 2006;176:6553–6559.

    CAS  PubMed  Google Scholar 

  148. Kato H, Fujihashi K, Kato R, Dohi T, Fujihashi K, Hagiwara Y, Kataoka K, Kobayashi R, McGhee JR. Lack of oral tolerance in aging is due to sequential loss of Peyer's patch cell interactions. Int Immunol 2003;15:145–158.

    CAS  PubMed  Google Scholar 

  149. Fujihashi K, McGhee JR. Mucosal immunity and tolerance in the elderly. Mech Ageing Dev 2004;125:889–898.

    CAS  PubMed  Google Scholar 

  150. Wakabayashi A, Utsuuyama M, Hosodda T, Sato K, Takahashi H, Hirokawa K. Induction of immunological tolerance by oral, but not intravenous and intraportal, administration of ovalbumin and the difference between young and old mice. J Nutr Health Aging 2006;10:183–191.

    CAS  PubMed  Google Scholar 

  151. Yu Q, Tang C, Xun S, Yajima T, Takeda K, Yoshikai Y. MyD88-dependenet signaling for IL-15 production plays an important role in maintenance of CD8αα TCRαβ and TCR̃δ intestinal intraepithelial lymphocytes. J Immunol 2006;176:6180–6185.

    CAS  PubMed  Google Scholar 

  152. Martin F, Kearney JF. B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 2001;13:195–201.

    CAS  PubMed  Google Scholar 

  153. Berland R, Wortis HH. Origins and functions of B1 cells with notes on the role of CD5. Annu Rev Immunol 22002;20:253–300.

    Google Scholar 

  154. Weksler ME. Changes in the B-cell repertoire with age. Vaccine 2000;18:1624–1628.

    CAS  PubMed  Google Scholar 

  155. Zheng B, Han S, Takahashi Y, Kelsoe G. Immunosenescence and germinal center reaction. Immunol Rev 1997;160:63–77.

    CAS  PubMed  Google Scholar 

  156. Lebman DA, Lee FD, Coffman RL. Mechanism for transforming growth factor beta and IL-2 enhancement of IgA expression in lipopolysaccharide-stimulated B cell cultures. J Immunol 1990;144:952–959.

    CAS  PubMed  Google Scholar 

  157. Kim PH, Kagnoff MF. Transforming growth factor β 1 increases IgA isotype switching at the clonal level. J Immunol 1990;145:3773–3778.

    CAS  PubMed  Google Scholar 

  158. He B, Xu W, Santini PA, Polydorides AD, Chir A, Estrella J, Shan M, Chadburn A, Villanacci V, Plebani A, Knowles DM, Rescigno M, Cerrutti A. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 2007;26:812–826.

    CAS  PubMed  Google Scholar 

  159. Kaminski DA, Stavnezer J. Enhanced IgA class switching in marginal zone and B1 B cells relative to follicular/B2 B cells. J Immunol 2006;177:6025–6029.

    CAS  PubMed  Google Scholar 

  160. Benahmed M, Meresse B, Arnulf B, Barbe U, Mention JJ, Verkarre V, Allez M, Cellier C, Hermine O, Cerf-Bensussan N. Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology 2007;132: 994–1008.

    CAS  PubMed  Google Scholar 

  161. Rogerson BJ, Harris DP, Swain SL, Burgess DO. Germinal center B cells in Peyer's patches of aged mice exhibit a normal activation phenotype and highly mutated IgM genes. Mech Ageing Dev 2003;124:155–165.

    CAS  PubMed  Google Scholar 

  162. Williams GT, Jolly CJ, Kohler J, Neuberger MS. The contribution of somatic hypermutation to the diversity of serum immunoglobulin: dramatic increase with age, Immunity 2000;13:409–417.

    CAS  PubMed  Google Scholar 

  163. Ha S, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, Fagarasan S. Regulation of B1 cell migration by signals through Toll-like receptors. J Exp Med 2006;203:2541–2550.

    CAS  PubMed  Google Scholar 

  164. Park S-R, Kim H-A, Chun S-K, Park J-B, Kim P-H. Mechanisms underlying the effects of LPS and activation-induced cytidine deaminase on IgA isotype expression. Mol Cells 2005;19:445–451.

    CAS  PubMed  Google Scholar 

  165. Shockett P, Stavnezer J. Effect of cytokines on switching to IgA and alpha germline transcripts in the B lymphoma 1.29mu. Transforming growth factor-beta activates transcription of the unrearranged C alpha gene. J Immunol 1991;147:4374–4383.

    CAS  PubMed  Google Scholar 

  166. van Vlasselaer P, Punnonen J, deVries JE. Transforming growth factor-beta directs IgA switching in human B cells. J Immunol 1992;148:2062–2067.

    PubMed  Google Scholar 

  167. Koide N, Morikawa A, Ito H, Sugiyama T, Hassan F, Islam S, Tumurkhuu G, Mori I, Yoshida T, Yokochi T. Defective responsiveness of CD5+ B1 cells to lipopolysaccharide in cytokine production. J Endotoxin Res 2006;12:346–351.

    CAS  PubMed  Google Scholar 

  168. Borghesi L, Hsu L-Y, Miller JP, Anderson M, Herzenberg L, Herzenberg L, Schlissel MS, Allman D, Gerstein RM. B lineage-specific regulation of V (D) J recombinase activity is established in common lymphoid progenitors. J Exp Med 2004;199:491–502.

    CAS  PubMed  Google Scholar 

  169. Miller JP, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol 2003;171:2326–2330.

    CAS  PubMed  Google Scholar 

  170. Ansel KM, Harris RBS, Cyster JG. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 2002;16:67–76.

    CAS  PubMed  Google Scholar 

  171. Ishikawa S, Sato T, Abe M, Nagai S, Onai N, Yoneyama H, Zhang Y, Suzuki T, Hashimoto S, Shirai T, Lipp M, Matsushima K. Aberrant high expression of B lymphocyte chemokine (BLC/CXCL13) by CD11b+ CD11c+ dendritic cells in murine lupus and preferential chemotaxis of B1 cells toward BLC. J Exp Med 2001;193:1393–1402.

    CAS  PubMed  Google Scholar 

  172. Ito T, Ishikawa S, Sato T, Akadegawa K, Yurino H, Kitabatake M, Hontsu S, Ezaki T, Kimura H, Maatsushima K. Defective B1 cell homing to the peritoneal cavity and preferential recruitment of B1 cells in the target organs in a murine model for systemic lupus erythematosus. J Immunol 2004;172:3628–3634.

    CAS  PubMed  Google Scholar 

  173. Kroese FG, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol 1989;1:75–86.

    CAS  PubMed  Google Scholar 

  174. Moon B, Takaki S, Miyake K, Takatsu K. The role of IL-5 for mature B-1 cells in homeostatic proliferation, cell survival, and Ig production. J Immunol 2004;172:6020–6029.

    CAS  PubMed  Google Scholar 

  175. Poupon V, Cerf-Bensussan N. Adhesion molecules on mucosal lymphocytes. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd ed. New York: Academic Press, 1999, pp. 523–540.

    Google Scholar 

  176. Butcher EC. Lymphocyte homing and intestinal immunity. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd ed. New York: Academic Press, 1999, pp. 507–522.

    Google Scholar 

  177. Pabst O, Ohl L, Wendland M, Wurbel M-A, Kremmer E, Malissen B, Foster R. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J Exp Med 2004;199:411–416.

    CAS  PubMed  Google Scholar 

  178. Lazarus NH, Kunkel EJ, Johnston B, Wilson E, Youngman KR, Butcher EC. A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J Immunol 2003;170:3799–3805.

    CAS  PubMed  Google Scholar 

  179. Hieshima K, Kawasaki Y, Hanamoto H, Nakayama T, Nagakubo D, Kanamaru A, Hoshie O. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J Immunol 2004;173:3668–3675.

    CAS  PubMed  Google Scholar 

  180. Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K, Guo Z, Umemoto E, Ebisuno Y, Yang B-G, Seoh J-Y, Lipp M, Kiyono H, Miyasaka M. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 2006;176:803–810.

    CAS  PubMed  Google Scholar 

  181. Kobayashi H, Miura S, Nagata H, Tsuzuki Y, Hokari R, Ogino T, Watanabe C, Azuma T, Ishii H. In situ demonstration of dendritic cell migration from rat intestine to mesenteric lymph nodes: relationships to maturation and role of chemokines. J Leukoc Biol 2004;75:434–442.

    CAS  PubMed  Google Scholar 

  182. Yrlid U, Milling SWF, Miller JL, Cartland S, Jenkins CD, MacPherson GG. Regulation of intestinal dendritic cell migration and activation by plasmacytoid dendritic cells, TNFα and type 1 IFNs after feeding a TLR7/8 ligand. J Immunol 2006;176:5205–5212.

    CAS  PubMed  Google Scholar 

  183. Kroese FGM, Ammerlaan WAM, Kantor AB. Evidence that intestinal IgA plasma cells in μ, κ transgenic mice are derived from B-1 (Ly – 1B) cells. Int Immunol 1993;5:1317–1325.

    CAS  PubMed  Google Scholar 

  184. Thurnheer MC, Zuercher AW, Cebra JJ, Bos NA. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J Immunol 2003;170:4564–4571.

    CAS  PubMed  Google Scholar 

  185. Ishikawa S, Sato T, Abe M, Nagai S, Onai N, Yoneyama H, Zhang Y, Suzuki T, Hashimoto S, Shirai T, Lipp M, Matsushima K. Aberrant high expression of B lymphocyte chemokine (BLC/CXCL13) by CD11b+ CD11c+ dendritic cells in murine lupus and preferential chemotaxis of B1 cells towards BLC. J Exp Med 2001;193:1393–1402.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Albright, J.F., Albright, J.W. (2009). A Gut Reaction: Aging Affect Gut-Associated Immunity. In: Percival, S.L. (eds) Microbiology and Aging. Humana Press. https://doi.org/10.1007/978-1-59745-327-1_9

Download citation

Publish with us

Policies and ethics