Skip to main content

Myocardial Perfusion Using First-Pass Gadolinium-Enhanced Cardiac Magnetic Resonance

  • Chapter
Cardiovascular Magnetic Resonance Imaging

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 2291 Accesses

Abstract

Although cardiovascular magnetic resonance (CMR) can image myocardial perfusion with many methods, first-pass perfusion studies using gadolinium contrast have the highest signal-to-noise ratio and most extensive published experience. This chapter focuses primarily on the basic principles and clinical applications of first-pass myocardial perfusion studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klocke FJ, Simonetti OP, Judd RM, et al. Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation 2001;104:2412–2416.

    Article  PubMed  CAS  Google Scholar 

  2. Lee DC, Simonetti OP, Harris KR, et al. Magnetic resonance vs radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 2004;110:58–65.

    Article  PubMed  Google Scholar 

  3. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000;101:1379–1383.

    PubMed  CAS  Google Scholar 

  4. Al-Saadi N, Nagel E, Gross M, et al. Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 2000;36:1557–1564.

    Article  PubMed  CAS  Google Scholar 

  5. Nagel E, Klein C, Paetsch I, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003;108:432–437.

    Article  PubMed  Google Scholar 

  6. Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 1998;25:73–84.

    Article  PubMed  CAS  Google Scholar 

  7. Larsson HB, Fritz-Hansen T, Rostrup E, et al. Myocardial perfusion modeling using MRI. Magn Reson Med 1996;35:716–726.

    Article  PubMed  CAS  Google Scholar 

  8. Wang L, Jerosch-Herold M, Jacobs DR Jr, et al. Coronary risk factors and myocardial perfusion in asymptomatic adults: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 2006;47:565–572.

    Article  PubMed  Google Scholar 

  9. Christian TF, Rettmann DW, Aletras AH, et al. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232:677–684.

    Article  PubMed  Google Scholar 

  10. Epstein FH, London JF, Peters DC, et al. Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction. Magn Reson Med 2002;47:482–491.

    Article  PubMed  Google Scholar 

  11. Cullen JH, Horsfield MA, Reek CR, et al. A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 1999;33:1386–1394.

    Article  PubMed  CAS  Google Scholar 

  12. Jerosch-Herold M, Hu X, Murthy NS, et al. Time delay for arrival of MR contrast agent in collateral-dependent myocardium. IEEE Trans Med Imaging 2004;23:881–890.

    Article  PubMed  Google Scholar 

  13. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 2001;103:2230–2235.

    PubMed  CAS  Google Scholar 

  14. Ishida N, Sakuma H, Motoyasu M, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology 2003;229:209–216.

    Article  PubMed  Google Scholar 

  15. Ingkanisorn WP, Kwong RY, Bohme NS, et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol 2006;47:1427–1432.

    Article  PubMed  Google Scholar 

  16. Klem I, Heitner JF, Shah DJ, et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 2006;47:1630–1638.

    Article  PubMed  Google Scholar 

  17. Plein S, Greenwood JP, Ridgway JP, et al. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol 2004;44:2173–2181.

    Article  PubMed  Google Scholar 

  18. Lauerma K, Virtanen KS, Sipila LM, et al. Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 1997;96:2859–2867.

    PubMed  CAS  Google Scholar 

  19. Lauerma K, Niemi P, Hanninen H, et al. Multimodality MR imaging assessment of myocardial viability: combination of first-pass and late contrast enhancement to wall motion dynamics and comparison with FDG PET-initial experience. Radiology 2000;217:729–736.

    PubMed  CAS  Google Scholar 

  20. Sensky PR, Samani NJ, Horsfield MA, et al. Restoration of myocardial blood flow following percutaneous coronary balloon dilatation and stent implantation: assessment with qualitative and quantitative contrast-enhanced magnetic resonance imaging. Clin Radiol 2002;57:593–599.

    Article  PubMed  CAS  Google Scholar 

  21. Taylor AJ, Al-Saadi N, Abdel-Aty H, et al. Elective percutaneous coronary intervention immediately impairs resting microvascular perfusion assessed by cardiac magnetic resonance imaging. Am Heart J 2006;151:891 e891–e897.

    Article  PubMed  Google Scholar 

  22. Sandstede JJ, Lipke C, Beer M, et al. Analysis of first-pass and delayed contrast-enhancement patterns of dysfunctional myocardium on MR imaging: use in the prediction of myocardial viability. AJR Am J Roentgenol 2000;174:1737–1740.

    PubMed  CAS  Google Scholar 

  23. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–1453.

    Article  PubMed  CAS  Google Scholar 

  24. Van Hoe L, Vanderheyden M. Ischemic cardiomyopathy: value of different MRI techniques for prediction of functional recovery after revascularization. AJR Am J Roentgenol 2004;182:95–100.

    PubMed  Google Scholar 

  25. Kostler H, Ritter C, Lipp M, et al. Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 2004;52:296–299.

    Article  PubMed  Google Scholar 

  26. Hsu LY, Rhoads KL, Holly JE, et al. Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging 2006;23:315–322.

    Article  PubMed  Google Scholar 

  27. Gatehouse PD, Elkington AG, Ablitt NA, et al. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging 2004;20:39–45.

    Article  PubMed  Google Scholar 

  28. Fenchel M, Helber U, Kramer U, et al. Detection of regional myocardial perfusion deficit using rest and stress perfusion MRI: a feasibility study. AJR Am J Roentgenol 2005;185:627–635.

    PubMed  Google Scholar 

  29. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97:765–772.

    PubMed  CAS  Google Scholar 

  30. Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980;47:201–207.

    PubMed  CAS  Google Scholar 

  31. Gallagher KP, Matsuzaki M, Koziol JA, et al. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 1984;247(5, pt 2):H727–H738.

    PubMed  CAS  Google Scholar 

  32. Arai AE, Pantely GA, Anselone CG, et al. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 1991;69:1458–1469.

    PubMed  CAS  Google Scholar 

  33. Selvanayagam JB, Jerosch-Herold M, Porto I, et al. Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment. Circulation 2005;112:3289–3296.

    Article  PubMed  Google Scholar 

  34. Rodrigues de Avila LF, Fernandes JL, Rochitte CE, et al. Perfusion impairment in patients with normal-appearing coronary arteries: identification with contrast-enhanced MR imaging. Radiology 2006;238:464–472.

    Article  PubMed  Google Scholar 

  35. Taskiran M, Fritz-Hansen T, Rasmussen V, et al. Decreased myocardial perfusion reserve in diabetic autonomic neuropathy. Diabetes 2002;51:3306–3310.

    Article  PubMed  CAS  Google Scholar 

  36. Panting JR, Gatehouse PD, Yang GZ, et al. Echo-planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with thallium SPECT. J Magn Reson Imaging 2001;13:192–200.

    Article  PubMed  CAS  Google Scholar 

  37. Okuda S, Tanimoto A, Satoh T, et al. Evaluation of ischemic heart disease on a 1.5 T scanner: combined first-pass perfusion and viability study. Radiat Med 2005;23:230–235.

    PubMed  Google Scholar 

  38. Sakuma H, Suzawa N, Ichikawa Y, et al. Diagnostic accuracy of stress first-pass contrast-enhanced myocardial perfusion MRI compared with stress myocardial perfusion scintigraphy. AJR Am J Roentgenol 2005;185:95–102.

    PubMed  Google Scholar 

  39. Plein S, Radjenovic A, Ridgway JP, et al. Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding vs conventional angiography. Radiology 2005;235:423–430.

    Article  PubMed  Google Scholar 

  40. Takase B, Nagata M, Kihara T, et al. Whole-heart dipyridamole stress first-pass myocardial perfusion MRI for the detection of coronary artery disease. Jpn Heart J 2004;45:475–486.

    Article  PubMed  Google Scholar 

  41. Paetsch I, Foll D, Langreck H, et al. Myocardial perfusion imaging using OMNISCAN: a dose finding study for visual assessment of stress-induced regional perfusion abnormalities. J Cardiovasc Magn Reson 2004;6:803–809.

    Article  PubMed  Google Scholar 

  42. Paetsch I, Jahnke C, Wahl A, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004;110:835–842.

    Article  PubMed  CAS  Google Scholar 

  43. Wolff SD, Schwitter J, Coulden R, et al. Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 2004;110:732–737.

    Article  PubMed  CAS  Google Scholar 

  44. Thiele H, Plein S, Breeuwer M, et al. Color-encoded semiautomatic analysis of multi-slice first-pass magnetic resonance perfusion: comparison to tetrofosmin single photon emission computed tomography perfusion and X-ray angiography. Int J Cardiovasc Imaging 2004;20:371–384;discussion 385–377.

    Article  PubMed  Google Scholar 

  45. Bunce NH, Reyes E, Keegan J, et al. Combined coronary and perfusion cardiovascular magnetic resonance for the assessment of coronary artery stenosis. J Cardiovasc Magn Reson 2004;6:527–539.

    Article  PubMed  Google Scholar 

  46. Doyle M, Fuisz A, Kortright E, et al. The impact of myocardial flow reserve on the detection of coronary artery disease by perfusion imaging methods: an NHLBI WISE study. J Cardiovasc Magn Reson 2003;5:475–485.

    Article  PubMed  Google Scholar 

  47. Kinoshita M, Nomura M, Harada M, et al. Myocardial perfusion magnetic resonance imaging for diagnosing coronary arterial stenosis. Jpn Heart J 2003;44:323–334.

    Article  PubMed  Google Scholar 

  48. Ibrahim T, Nekolla SG, Schreiber K, et al. Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol 2002;39:864–870.

    Article  PubMed  Google Scholar 

  49. Galinanes M, Loubani M, Sensky PR, et al. Efficacy of transmyocardial laser revascularization and thoracic sympathectomy for the treatment of refractory angina. Ann Thorac Surg 2004;78:122–128.

    Article  PubMed  Google Scholar 

  50. Laham RJ, Simons M, Pearlman JD, et al. Magnetic resonance imaging demonstrates improved regional systolic wall motion and thickening and myocardial perfusion of myocardial territories treated by laser myocardial revascularization. J Am Coll Cardiol 2002;39:1–8.

    Article  PubMed  Google Scholar 

  51. Parkka JP, Niemi P, Saraste A, et al. Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans. Magn Reson Med 2006;55:772–779.

    Article  PubMed  Google Scholar 

  52. Muehling OM, Panse P, Jerosch-Herold M, et al. Cardiac magnetic resonance perfusion imaging identifies transplant arteriopathy by a reduced endomyocardial resting perfusion. J Heart Lung Transplant 2005;24:1122–1123.

    Article  PubMed  Google Scholar 

  53. McCrohon JA, Lyne JC, Rahman SL, et al. Adjunctive role of cardiovascular magnetic resonance in the assessment of patients with inferior attenuation on myocardial perfusion SPECT. J Cardiovasc Magn Reson 2005;7:377–382.

    Article  PubMed  Google Scholar 

  54. Watzinger N, Lund GK, Saeed M, et al. Myocardial blood flow in patients with dilated cardiomyopathy: quantitative assessment with velocity-encoded cine magnetic resonance imaging of the coronary sinus. J Magn Reson Imaging 2005;21:347–353.

    Article  PubMed  Google Scholar 

  55. Hoffmann MH, Schmid FT, Jeltsch M, et al. Multislice MR first-pass myocardial perfusion imaging: impact of the receiver coil array. J Magn Reson Imaging 2005;21:310–316.

    Article  PubMed  Google Scholar 

  56. Vignaux O, Allanore Y, Meune C, et al. Evaluation of the effect of nifedipine upon myocardial perfusion and contractility using cardiac magnetic resonance imaging and tissue Doppler echocardiography in systemic sclerosis. Ann Rheum Dis 2005;64:1268–1273.

    Article  PubMed  CAS  Google Scholar 

  57. Laissy JP, Hyafil F, Feldman LJ, et al. Differentiating acute myocardial infarction from myocarditis: diagnostic value of early-and delayed-perfusion cardiac MR imaging. Radiology 2005;237:75–82.

    Article  PubMed  Google Scholar 

  58. Lund GK, Stork A, Saeed M, et al. Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 2004;232:49–57.

    Article  PubMed  Google Scholar 

  59. Taylor AJ, Al Saadi N, Abdel-Aty H, et al. Detection of acutely impaired microvascular reperfusion after infarct angioplasty with magnetic resonance imaging. Circulation 2004;109:2080–2085.

    Article  PubMed  Google Scholar 

  60. Nakajima T, Oriuchi N, Tsushima Y, et al. Noninvasive determination of regional myocardial perfusion with first-pass magnetic resonance (MR) imaging. Acad Radiol 2004;11:802–808.

    Article  PubMed  Google Scholar 

  61. Prakash A, Powell AJ, Krishnamurthy R, et al. Magnetic resonance imaging evaluation of myocardial perfusion and viability in congenital and acquired pediatric heart disease. Am J Cardiol 2004;93:657–661.

    Article  PubMed  Google Scholar 

  62. Miller S, Helber U, Brechtel K, et al. MR imaging at rest early after myocardial infarction: detection of preserved function in regions with evidence for ischemic injury and non-transmural myocardial infarction. Eur Radiol 2003;13:498–506.

    PubMed  Google Scholar 

  63. Muehling OM, Wilke N, Panse P, et al. Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol 2003;42:1054–1060.

    Article  PubMed  Google Scholar 

  64. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 2002;346:1948–1953.

    Article  PubMed  Google Scholar 

  65. Muhling OM, Dickson ME, Zenovich A, et al. Quantitative magnetic resonance first-pass perfusion analysis: inter-and intraobserver agreement. J Cardiovasc Magn Reson 2001;3:247–256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Arai, A.E., Hsu, LY. (2008). Myocardial Perfusion Using First-Pass Gadolinium-Enhanced Cardiac Magnetic Resonance. In: Kwong, R.Y. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-306-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-306-6_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-673-3

  • Online ISBN: 978-1-59745-306-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics