Skip to main content

Tumor Suppressors p53 and TGFβ Converge to Regulate the Alpha-Fetoprotein Oncodevelopmental Tumor Marker

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume II

Abstract

Numerous clues, collected from a diverse array of studies, hinted at an intersection between p53 and TGFβ signaling in the regulation of growth arrest and tumor suppression. Now, conclusive evidence linking the two major tumor suppressor paths has been provided by multiple, independent approaches. Here, we discuss the biochemical and molecular characterization that led to the identification of p53 and TGFβ effectors, Smad and SnoN proteins, as cooperative regulators of AFP expression. Interaction of these transcription factors at a composite regulatory element of overlapping p53 and Smad binding sequences evicts the Foxa1 transactivator protein, targets histone modifiers, and alters chromatin structure. These changes in chromatin effect AFP repression during development of liver tissue and in hepatoma cells, which overexpress AFP as a tumor marker, in response to TGFβ. Our analyses of RNA-interference (RNAi)-depleted hepatoma cells and p53-null mice show that p53 and TGFβ signaling act cooperatively and that p73 partially compensates for loss of p53. We also summarize, in this chapter, studies that revealed a required intersection between p53 and TGFβ signaling in activating genes essential for Xenopus embryogenesis, as well as cell cycle arrest of tumor-derived cells. Clearly, regulation of a specific subset of genes requires both p53 and TGFβ signaling, a process likely dictated by tissue-specific expression of coactivators and repressors and modified by numerous signaling inputs. Understanding this cooperative regulatory network may offer new insights into restoration of normal cellular differentiation and tumor suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massagué J. TGF-beta signal transduction. Annu Rev Biochem 1998;67:753–791.

    Article  PubMed  Google Scholar 

  2. Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000;103(2):295–309.

    Article  PubMed  Google Scholar 

  3. Bargonetti J, Manfredi JJ. Multiple roles of the tumor suppressor p53. Curr Opin Oncol 2002; 14(1):86–91.

    Article  CAS  PubMed  Google Scholar 

  4. Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M. Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene 1999;18(34):4879–4883.

    Article  CAS  PubMed  Google Scholar 

  5. Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S. Frequency of Smad gene mutations in human cancers. Cancer Res 1997;57(13):2578–2580.

    CAS  PubMed  Google Scholar 

  6. Takebayashi-Suzuki K, Funami J. Tokumori D, et al. Interplay between the tumor suppressor p53 and TGF beta signaling shapes embryonic body axes in Xenopus. Development 2003;130(17):3929–3939.

    Article  CAS  PubMed  Google Scholar 

  7. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S. Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 2003;113(3): 301–314.

    Article  CAS  PubMed  Google Scholar 

  8. Wilkinson DS, Ogden SK, Stratton SA, et al. A direct intersection between p53 and TGF-β pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Mol Cell Biol 2005;25:1200–1212.

    Article  CAS  PubMed  Google Scholar 

  9. Tilghman SM. The structure and regulation of the alpha-fetoprotein and albumin genes. Oxf Surv Eukaryot Genes 1985;2(160):160–206.

    CAS  PubMed  Google Scholar 

  10. Abelev GI, Eraiser TL. Cellular aspects of alpha-fetoprotein reexpression in tumors. Semin Cancer Biol 1999;9:95–107.

    Article  CAS  PubMed  Google Scholar 

  11. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Gen 2001;29:117–129.

    Article  CAS  Google Scholar 

  12. Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 2005;24(37): 5742–5750.

    Article  CAS  PubMed  Google Scholar 

  13. Kluppel M, Wrana JL. Turning it up a Notch: cross-talk between TGF beta and Notch signaling. Bioessays 2005;27(2):115–118.

    Article  PubMed  Google Scholar 

  14. Attisano L, Labbe E. TGFbeta and Wnt pathway cross-talk. Cancer Metastasis Rev 2004;23(1–2):53–61.

    Article  CAS  PubMed  Google Scholar 

  15. Gerwin BI, Spillare E, Forrester K, et al. Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce their responsiveness to a negative growth factor, transforming growth factor β1. Proc Natl Acad Sci USA 1992;89:2759–2763.

    Article  CAS  PubMed  Google Scholar 

  16. Teramoto T, Kiss A, Thorgeirsson SS. Induction of p53 and Bax during TGF-beta 1 initiated apoptosis in rat liver epithelial cells. Biochem Biophys Res Commun 1998;251(1):56–60.

    Article  CAS  PubMed  Google Scholar 

  17. Rorke EA, Zhang D, Choo CK, Eckert RL, Jacobberger JW. TGF-beta-mediated cell cycle arrest of HPV16-immortalized human ectocervical cells correlates with decreased E6/E7 mRNA and increased p53 and p21 (WAF-1) expression. Exp Cell Res 2000;259(1):149–157.

    Article  CAS  PubMed  Google Scholar 

  18. Ewan KB, Henshall-Powell RL, Ravani SA, et al. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Res 2002;62(20):5627–5631.

    CAS  PubMed  Google Scholar 

  19. Muraoka RS, Dumont N, Ritter CA, et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002;109(12):1551–1559.

    CAS  PubMed  Google Scholar 

  20. Dupont S, Zacchigna L, Adorno M, et al. Convergence of p53 and TGF-beta signaling networks. Cancer Lett 2004;213(2):129–138.

    Article  CAS  PubMed  Google Scholar 

  21. Dkhissi F, Raynal S, Jullien P, Lawrence DA. Growth stimulation of murine fibroblasts by TGF-betal depends on the expression of a functional p53 protein. Oncogene 1999;18(3):703–711.

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez-Capelo A. Dual role for TGF-beta1 in apoptosis. Cytokine Growth Factor Rev 2005;16(1): 15–34.

    Article  CAS  PubMed  Google Scholar 

  23. Schuster N, Krieglstein K. Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 2002; 307(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  24. Shvarts A, Steegenga WT, Riteco N, et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 1996;15(19):5349–5357.

    CAS  PubMed  Google Scholar 

  25. Kadakia M, Brown TL, McGorry MM, Berberich SJ. MdmX inhibits Smad transactivation. Oncogene 2002;21(57):8776–8785.

    Article  CAS  PubMed  Google Scholar 

  26. Chang C-C, Lin D-Y, Fang H-I, Chen R-H, Shih H-M. Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J Biol Chem 2005;280:10,164–10,173.

    Article  CAS  PubMed  Google Scholar 

  27. Gostissa M, Morelli M, Mantovani F, et al. The transcriptional repressor hDaxx potentiates p53-dependent apoptosis. J Biol Chem 2004;279(46):48,013–48,023.

    Article  CAS  PubMed  Google Scholar 

  28. Uchida T, Takahashi K, Tatsuno K, Dhingra U, Eliason JF. Inhibition of hepatitis-B-virus core promoter by p53: implications for carcinogenesis in hepatocytes. Int J Cancer 1996;67:892–897.

    Article  CAS  PubMed  Google Scholar 

  29. Lee DK, Park SH, Yi Y, et al. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev 2001;15(4):455–466.

    Article  CAS  PubMed  Google Scholar 

  30. Ogden SK, Lee KC, Barton MC. Hepatitis B viral transactivator HBx alleviates p53-mediated repression of α-fetoprotein gene expression. J Biol Chem 2000;275:27,806–27,814.

    CAS  PubMed  Google Scholar 

  31. Tilghman SM, Belayew A. Transcriptional control of the murine albumin/α-fetoprotein locus during development. Proc Natl Acad Sci USA 1982;79(17):5254–5257.

    Article  CAS  PubMed  Google Scholar 

  32. Chen H, Egan JO, Chiu JF. Regulation and activities of alpha-fetoprotein. Crit Rev Eukaryot Gene Expr 1997;7:11–41.

    PubMed  Google Scholar 

  33. Camper SA, Tilghman SM. Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev 1989;3(4):537–546.

    Article  CAS  PubMed  Google Scholar 

  34. Vacher J, Tilghman SM. Dominant negative regulation of the mouse alpha-fetoprotein gene in adult liver. Science 1990:250(4988):1732–1735.

    Article  CAS  PubMed  Google Scholar 

  35. Um SH, Mulhall C, Alisa A, et al. Alpha-fetoprotein impairs APC function and induces their apoptosis. J Immunol 2004;173(3):1772–1778.

    CAS  PubMed  Google Scholar 

  36. Lee YH, Yun Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem 1998; 273(39):25,510–25,515.

    Article  CAS  PubMed  Google Scholar 

  37. Ogden SK, Lee KC, Wernke-Dollries K, Stratton SA, Aronow B, Barton MC. p53 targets chromatin structure alteration to repress α-fetoprotein gene expression. J Biol Chem 2001;276:42,057–42,062.

    Article  CAS  PubMed  Google Scholar 

  38. Lee KC, Crowe AJ, Barton MC. p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Mol Cell Biol 1999;19:1279–1288.

    CAS  PubMed  Google Scholar 

  39. Luo K. Ski and SnoN: negative regulators of TGF-β signaling. Curr Opin Gen Dev 2004;14:65–70.

    Article  CAS  Google Scholar 

  40. Luo K, Stroschein SL, Wang W, et al. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 1999;13(17):2196–2206.

    Article  CAS  PubMed  Google Scholar 

  41. Stroschein SL, Bonni S, Wrana JL, Luo K. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev 2001;15:2822–2836.

    CAS  PubMed  Google Scholar 

  42. Sun Y, Liu X, Ng-Eaton E, Lodish HF, Weinberg RA. SnoN and Ski protooncogenes are rapidly degraded in response to transforming growth factor beta signaling. Proc Natl Acad Sci USA 1999;96: 12,442–12,447.

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen TT, Cho K, Stratton SA, Barton MC. Transcription factor interactions and chromatin modifications associated with p53-mediated, developmental repression of the alpha-fetoprotein gene. Mol Cell Biol 2005:25(6):2147–2157.

    Article  CAS  PubMed  Google Scholar 

  44. Germain S, Howell M, Esslemont GM, Hill CS. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev 2000;14:435–451.

    CAS  PubMed  Google Scholar 

  45. Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 2002;9(2):279–289.

    Article  CAS  PubMed  Google Scholar 

  46. Cirillo LA, McPherson CE, Bossard P, et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J 1998;17(1):244–254.

    Article  CAS  PubMed  Google Scholar 

  47. McPherson CE, Horowitz R, Woodcock CL, Jiang C, Zaret KS. Nucleosome positioning properties of the albumin transcriptional enhancer. Nucleic Acids Res 1996;24(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  48. Godbout R, Ingram RS, Tilghman SM. Fine-structure mapping of the three mouse alpha-fetoprotein gene enhancers. Mol Cell Biol 1988;8(3):1169–1178.

    CAS  PubMed  Google Scholar 

  49. Godbout R, Tilghman SM. Configuration of the alpha-fetoprotein regulatory domain during development. Genes Dev 1988;2(8):949–956.

    Article  CAS  PubMed  Google Scholar 

  50. Cui R, Nguyen TT, Taube JH, Stratton SA, Feuerman MH, Barton MC. Family members p53 and p73 act together in chromatin modification and direct repression of α-fetoprotein transcription. J Biol Chem 2005;280(47):39,152–39,160.

    Article  CAS  PubMed  Google Scholar 

  51. Murphy M, Ahn J, Walker KK, et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction mSin3a. Genes Dev 1999;13:2490–2501.

    Article  CAS  PubMed  Google Scholar 

  52. Zilfou JT, Hoffman WH, Sank M, George DL, Murphy M. The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol Cell Biol 2001;21(12):3974–3985.

    Article  CAS  PubMed  Google Scholar 

  53. Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 2002;277:3247–3257.

    Article  CAS  PubMed  Google Scholar 

  54. Goumans MJ, Mummery C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 2000;44(3):253–265.

    CAS  PubMed  Google Scholar 

  55. Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999;18(5):1280–1291.

    Article  CAS  PubMed  Google Scholar 

  56. Sirard C, de la Pompa JL, Elia A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 1998;12(1):107–119.

    Article  CAS  PubMed  Google Scholar 

  57. Heyer J, Escalante-Alcalde D, Lia M, et al. Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis. Proc Natl Acad Sci USA 1999;96(22):12,595–12,600.

    Article  CAS  PubMed  Google Scholar 

  58. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 1992;356:215–221.

    Article  CAS  PubMed  Google Scholar 

  59. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T. A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 1995;10:175–180.

    Article  CAS  PubMed  Google Scholar 

  60. de Oca Luna RM, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995;378:206–208.

    Article  Google Scholar 

  61. Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995;378(6553):206–208.

    Article  CAS  PubMed  Google Scholar 

  62. Moll UM, Slade N. p63 and p73: roles in development and tumor formation. Mol Cancer Res 2004; 2(7):371–386.

    CAS  PubMed  Google Scholar 

  63. Yang A, Kanhad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998;2(3):305–316.

    Article  CAS  PubMed  Google Scholar 

  64. Irwin M, Marin MC, Phillips AC, et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 2000;407(6804):645–648.

    Article  CAS  PubMed  Google Scholar 

  65. Waltermann A, Kartasheva NN, Dobbelstein M. Differential regulation of p63 and p73 expression. Oncogene 2003;22(36):5686–5693.

    Article  CAS  PubMed  Google Scholar 

  66. Flores ER, Sengupta S, Miller JB, et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family Cancer Cell 2005;7(4):363–373.

    Article  CAS  PubMed  Google Scholar 

  67. Bissell DM, Roulot D, George J. Transforming growth factor beta and the liver. Hepatology 2001; 34(5):859–867.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao R, Duncan SA. Embryonic development of the liver. Hepatology 2005;41(5):956–967.

    Article  CAS  PubMed  Google Scholar 

  69. Schmid P, Lorenz A, Hameister H, Montenarh M. Expression of p53 during mouse embryogenesis. Development 1991;113:857–865.

    CAS  PubMed  Google Scholar 

  70. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24(17):2899–2908.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wilkinson, D.S., Barton, M.C. (2008). Tumor Suppressors p53 and TGFβ Converge to Regulate the Alpha-Fetoprotein Oncodevelopmental Tumor Marker. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics