Skip to main content

Abstract

Somatic gene targeting in human cells has two general applications of importance and wide interest. One is the inactivation of genes (“knockouts”), a process utilized to delineate the loss-of-function phenotype(s) of a particular gene. The second application is the process of gene therapy, which involves correcting a pre-existing mutated allele(s) of a gene back to wild-type in order to ameliorate some pathological phenotype associated with the mutation. Both of these processes require a form of DNA double-strand break repair known as homologous recombination. Although bacteria and lower eukaryotes utilize homologous recombination almost exclusively, a competing process, known as nonhomologous end joining, predominates in higher eukaryotes and was presumed to prevent the use of gene targeting in human somatic cells in culture. A series of molecular and technical advances developed in the 1990s disproved this notion, but still resulted in a process that was cumbersome, labor intensive, highly inefficient, and slow. Within the past 5 years, the use of new gene delivery vectors such as recombinant adeno-associated virus and the identification of cell lines such as Nalm-6 that appear to undergo high rates of gene targeting have significantly brightened the outlook for this field and resulted in a gene delivery system that facilitates both gene knockouts and gene therapy modifications at robust levels. Thus, gene targeting in human somatic cells in culture has become not only feasible, but also relatively facile, and it harbingers a golden age for directed mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sedivy JM, Joyner A. Gene Targeting. New York: W.H. Freeman and Company, 1992.

    Google Scholar 

  2. Sorrell DA, Kolb AF. Targeted modification of mammalian genomes. Biotechnol Adv 2005;23:431–469.

    Article  PubMed  CAS  Google Scholar 

  3. Yu Y, Bradley A. Engineering chromosomal rearrangements in mice. Nat Rev Genet 2001;2:780–790.

    Article  PubMed  CAS  Google Scholar 

  4. Park F, Gow KW. Gene therapy: Future or flop. Pediatr Clin North Am 2006;53:621–638.

    Article  PubMed  Google Scholar 

  5. Cahill D, Connor B, Carney JP. Mechanisms of eukaryotic DNA double strand break repair. Front Biosci 2006;11:1958–1976.

    Article  PubMed  CAS  Google Scholar 

  6. van Veelen L, Wesoly J, Kanaar R. Biochemical and cellular aspects of homologous recombination. In: Scide W, Kow YW, Doetsch P, Eds. DNA Damage Recognition. New York: Taylor & Francis Group, 2006:581–607.

    Google Scholar 

  7. Hefferin ML, Tomkinson AE. Mechanism of DNA double-strand break repair by nonhomologous end joining. DNA Repair 2005;4:639–648.

    PubMed  CAS  Google Scholar 

  8. Sedivy JM, Vogelstein B, Liber HL, Hendrickson EA, Rosmarin A. Gene targeting in human cells without isogenic DNA. Science 1999;283:9a.

    Article  Google Scholar 

  9. Vasileva A, Jessberger R. Precise hit: Adeno-associated virus in gene targeting. Nat Rev Microbiol 2005;3:837–847.

    Article  PubMed  CAS  Google Scholar 

  10. Adachi N, So S, Iiizumi S, et al. The human pre-B cell line Nalm-6 is highly proficient in gene targeting by homologous recombination. DNA Cell Biol 2006;25:19–24.

    Article  PubMed  CAS  Google Scholar 

  11. Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S. Differential usage of nonhomologous end-joining and homologous recombination in double strand break repair. DNA Repair 2006;5: 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  12. Roth DB, Wilson JH. Relative rates of homologous and nonhomologous recombination in transfected DNA. Proc Natl Acad Sci USA 1985;82:3355–3359.

    Article  PubMed  CAS  Google Scholar 

  13. Lieber MR, Ma Y, Kefei Y, Pannicke U, Schwarz K. The mechanism of vertebrate nonhomologous DNA end joining and its role in immune system gene rearrangements. In: Scide W, Kow YW, Doetsch P, Eds. DNA Damage Recognition. New York: Taylor & Francis Group, 2006:609–627.

    Google Scholar 

  14. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51:503–512.

    Article  PubMed  CAS  Google Scholar 

  15. Lee SE, Mitchell RA, Cheng A, Hendrickson EA. Evidence for DNA-PK-dependent and-independent DNA double-strand break repair pathways in mammalian cells as a function of the cell cycle. Mol Cell Biol 1997;17:1425–1433.

    PubMed  CAS  Google Scholar 

  16. Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998;17:5497–5508.

    Article  PubMed  CAS  Google Scholar 

  17. Hendrickson EA, Huffman JL, Tainer JA. Structural aspects of Ku and the DNA-dependent protein kinase complex. In: Scide W, Kow YW, Doetsch P, Eds. DNA Damage Recognition. New York: Taylor & Francis Group, 2006:629–684.

    Google Scholar 

  18. Getts RC, Stamato TD. Absence of a Ku-like DNA end binding activity in the xrs double-strand DNA Repair-deficient mutant. J Biol Chem 1994;269:15981–15984.

    PubMed  CAS  Google Scholar 

  19. Liang F, Romanienko PJ, Weaver DT, Jeggo PA, Jasin M. Chromosomal double-strand break repair in Ku80-deficient cells. Proc Natl Acad Sci USA 1996;93:8929–8933.

    Article  PubMed  CAS  Google Scholar 

  20. Inamdar KV, Yu Y, Povirk LF. Resistance of 3’-phosphoglycolate DNA ends to digestion by mammalian DNase III. Radiat Res 2002;157:306–311.

    Article  PubMed  CAS  Google Scholar 

  21. Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: Requirement for DNA ends and association with Ku antigen. Cell 1993;72:131–142.

    Article  PubMed  CAS  Google Scholar 

  22. Suwa A, Hirakata M, Takeda Y, Jesch SA, Mimori T, Hardin JA. DNA-dependent protein kinase (Ku protein-p350 complex) assembles on double-stranded DNA. Proc Natl Acad Sci USA 1994;91:6904–6908.

    Article  PubMed  CAS  Google Scholar 

  23. DeFazio LG, Stansel RM, Griffith JD, Chu G. Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 2002;21:3192–3200.

    Article  PubMed  CAS  Google Scholar 

  24. Weterings E, Verkaik NS, Bruggenwirth HT, Hoeijmakers JH, van Gent DC. The role of DNA dependent protein kinase in synapsis of DNA ends. Nucleic Acids Res 2003;31:7238–7246.

    Article  PubMed  CAS  Google Scholar 

  25. Spagnolo L, Rivera-Calzada A, Pearl LH, Llorca O. Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Mol Cell 2006;22(4):511–519.

    Article  PubMed  CAS  Google Scholar 

  26. Moshous D, Callebaut I, de Chasseval R, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001;105:177–186.

    Article  PubMed  CAS  Google Scholar 

  27. Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002;108:781–794.

    Article  PubMed  CAS  Google Scholar 

  28. Moshous D, Callebaut I, de Chasseval R, et al. The V(D)J recombination/DNA Repair factor Artemis belongs to the metallo-beta-lactamase family and constitutes a critical developmental checkpoint of the lymphoid system. Ann NY Acad Sci 2003;987:150–157.

    Article  PubMed  CAS  Google Scholar 

  29. Critchlow SE, Bowater RP, Jackson SP. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 1997;7:588–598.

    Article  PubMed  CAS  Google Scholar 

  30. McElhinny SAN, Snowden CM, McCarville J, Ramsden DA. Ku recruits the XRCC4 ligase IV complex to DNA ends. Mol Cell Biol 2000, 20:2996–3003.

    Article  Google Scholar 

  31. Teo SH, Jackson SP. Liflp targets the DNA ligase Lig4p to sites of DNA double-strand breaks. Curr Biol 2000;10:165–168.

    Article  PubMed  CAS  Google Scholar 

  32. Li Z, Otevrel T, Gao Y, et al. The XRCC-4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 1995;83:1079–1089.

    Article  PubMed  CAS  Google Scholar 

  33. Gao Y, Frank KM, Dikkes P, et al. A critical role for DNA endjoining proteins in both lymphogenesis and neurogenesis. Cell 1998;95:891–902.

    Article  PubMed  CAS  Google Scholar 

  34. Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 2006;124:301–313.

    Article  PubMed  CAS  Google Scholar 

  35. Buck D, Malivert L, de Chasseval R, et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immuno-deficiency with microcephaly. Cell 2006;124:287–299.

    Article  PubMed  CAS  Google Scholar 

  36. Hopfner K-P. The Mrell/Rad50/Nbs1 complex. In: Scide W, Kow YW, Doetsch P, Eds. DNA Damage Recognition. New York: Taylor & Francis Group, 2006:705–721.

    Google Scholar 

  37. Moreau S, Morgan EA, Symington LS. Overlapping functions of the Saccharomyces cerevisiae Mrell, Exol and Rad27 nucleases in DNA metabolism. Genetics 2001;159:1423–1433.

    PubMed  CAS  Google Scholar 

  38. Iftode C, Daniely Y, Borowiec JA. Replication protein A (RPA): The eukaryotic SSB. Crit Rev Biochem Mol Biol 1999;34:141–180.

    Article  PubMed  CAS  Google Scholar 

  39. Kawabata M, Kawabata T, Nishibori M. Role of recA/RAD51 family proteins in mammals. Acta Med Okayama 2005;59:1–9.

    PubMed  CAS  Google Scholar 

  40. Sung P, Trujillo KM, Van Komen S. Recombination factors of Saccharomyces cerevisiae. Mutat Res 2000;451:257–275.

    PubMed  CAS  Google Scholar 

  41. Thacker J. The RAD51 gene family, genetic instability and cancer. Cancer Lett 2005;219:125–135.

    Article  PubMed  CAS  Google Scholar 

  42. Sugiyama T, Kowalczykowski SC. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem 2002;277:31663–31672.

    Article  PubMed  CAS  Google Scholar 

  43. Heyer WD, Li X, Rolfsmeier M, Zhang XP. Rad54: The Swiss Army knife of homologous recombination? Nucleic Acids Res 2006;34:4115–4125.

    Article  PubMed  CAS  Google Scholar 

  44. Solinger JA, Kiianitsa K, Heyer WD. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51: dsDNA filaments. Mol Cell 2002;10:1175–1188.

    Article  PubMed  CAS  Google Scholar 

  45. Hastings PJ, McGill C, Shafer B, Strathern JN. Ends-in vs. ends-out recombination in yeast. Genetics 1993;135:973–980.

    PubMed  CAS  Google Scholar 

  46. Sharma S, Doherty KM, Brosh RM Jr. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 2006;398:319–337.

    Article  PubMed  CAS  Google Scholar 

  47. Liu Y, Masson JY, Shah R, O’Regan P, West SC. RAD51C is required for Holliday junction processing in mammalian cells. Science 2004;303:243–246.

    Article  PubMed  CAS  Google Scholar 

  48. Liu Y, West SC. Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 2004;5:937–944.

    Article  PubMed  CAS  Google Scholar 

  49. Zheng H, Hasty P, Brenneman MA, et al. Fidelity of targeted recombination in human fibroblasts and murine embryonic stem cells. Proc Natl Acad Sci USA 1991;88:8067–8071.

    Article  PubMed  CAS  Google Scholar 

  50. Yanez RJ, Porter AC. Influence of DNA delivery method on gene targeting frequencies in human cells. Somat Cell Mol Genet 1999;25:27–31.

    Article  PubMed  CAS  Google Scholar 

  51. Yanez RJ, Porter AC. Gene targeting is enhanced in human cells overexpressing hRAD51. Gene Ther 1999;6:1282–1290.

    Article  PubMed  CAS  Google Scholar 

  52. Bunz F, Fauth C, Speicher MR, et al. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res 2002; 62:1129–1133.

    PubMed  CAS  Google Scholar 

  53. Hendrie PC, Hirata RK, Russell DW. Chromosomal integration and homologous gene targeting by replication-incompetent vectors based on the autonomous parvovirus minute virus of mice. J Virol 2003;77:13136–13145.

    Article  PubMed  CAS  Google Scholar 

  54. Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003;21:319–321.

    Article  PubMed  CAS  Google Scholar 

  55. Trobridge G, Hirata RK, Russell DW. Gene targeting by adeno-associated virus vectors is cell-cycle dependent. Hum Gene Ther 2005;16:522–526.

    Article  PubMed  CAS  Google Scholar 

  56. So S, Nomura Y, Adachi N, et al. Enhanced gene targeting efficiency by siRNA that silences the expression of the Bloom syndrome gene in human cells. Genes Cells 2006;11:363–371.

    Article  PubMed  CAS  Google Scholar 

  57. Jasin M, Elledge SJ, Davis RW, Berg P. Gene targeting at the human CD4 locus by epitope addition. Genes Dev 1990;4:157–166.

    Article  PubMed  CAS  Google Scholar 

  58. Manjunath N, Johnson RS, Staunton DE, Pasqualini R, Ardman B. Targeted disruption of CD43 gene enhances T lymphocyte adhesion. c Immunol 1993;151:1528–1534.

    CAS  Google Scholar 

  59. Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55:5187–5190.

    PubMed  CAS  Google Scholar 

  60. Grawunder U, Zimmer D, Fugmann S, Schwarz K, Lieber MR. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol Cell 1998;2:477–484.

    Article  PubMed  CAS  Google Scholar 

  61. Miyagawa K, Tsuruga T, Kinomura A, et al. A role for RAD54B in homologous recombination in human cells. EMBO J 2002;21: 175–180.

    Article  PubMed  CAS  Google Scholar 

  62. Ghosh G, Li G, Myung K, Hendrickson EA. The lethality of Ku86 loss-of-function mutations in human cells is p53-independent. Radiat Res 2007;167(1):66–79.

    Article  PubMed  CAS  Google Scholar 

  63. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 1994;265:103–106.

    Article  PubMed  CAS  Google Scholar 

  64. Li G, Nelsen C, Hendrickson EA. Ku86 is essential in human somatic cells. Proc Natl Acad Sci USA 2002;99:832–837.

    PubMed  CAS  Google Scholar 

  65. Topaloglu O, Hurley PJ, Yildirim O, Civin CI, Bunz F. Improved methods for the generation of human gene knockout and knockin cell lines. Nucleic Acids Res 2005;33:e158.

    Article  PubMed  Google Scholar 

  66. Iiizumi S, Nomura Y, So S, et al. Simple one-week method to construct gene-targeting vectors: Application to production of human knockout cell lines. Biotechniques 2006;41:311–316.

    Article  PubMed  CAS  Google Scholar 

  67. Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 1988;85:5166–5170.

    Article  PubMed  CAS  Google Scholar 

  68. Kolb AF. Genome engineering using site-specific recombinases. Cloning Stem Cells 2002;4:65–80.

    Article  PubMed  CAS  Google Scholar 

  69. Austin S, Ziese M, Sternberg N. A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 1981;25: 729–736.

    Article  PubMed  CAS  Google Scholar 

  70. Couedel C, Mills KD, Barchi M, et al. Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 2004;18:1293–1304.

    Article  PubMed  CAS  Google Scholar 

  71. Celli GB, Denchi EL, de Lange T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 2006;8:885–890.

    Article  PubMed  CAS  Google Scholar 

  72. Traverso G, Bettegowda C, Kraus J, et al. Hyper-combination and genetic instability in BLM-deficient epithelial cells. Cancer Res 2003;63:8578–8581.

    PubMed  CAS  Google Scholar 

  73. Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: Partners in checkpoint signaling. Science 2001;294:1713–1716.

    Article  PubMed  CAS  Google Scholar 

  74. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 1985;317:230–234.

    Article  PubMed  CAS  Google Scholar 

  75. Montrose-Rafizadeh C, Kole J, Bartkowski LM, et al. Gene targeting of a CFTR allele in HT29 human epithelial cells. J Cell Physiol 1997;170:299–308.

    Article  PubMed  CAS  Google Scholar 

  76. Williams SR, Ousley FC, Vitez LJ, DuBridge RB. Rapid detection of homologous recombinants in nontransformed human cells. Proc Natl Acad Sci USA 1994;91:11943–11947.

    Article  PubMed  CAS  Google Scholar 

  77. Bunz F, Dutriaux A, Lengauer C, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998;282: 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  78. Brown JP, Wei W, Sedivy JM. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 1997;277:831–834.

    Article  PubMed  CAS  Google Scholar 

  79. Rasheed S, Nelson-Rees WA, Toth EM, Arnstein P, Gardner MB. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 1974;33:1027–1033.

    Article  PubMed  CAS  Google Scholar 

  80. Geiser AG, Anderson MJ, Stanbridge EJ. Suppression of tumorigenicity in human cell hybrids derived from cell lines expressing different activated ras oncogenes. Cancer Res 1989;49:1572–1577.

    PubMed  CAS  Google Scholar 

  81. Farese RV Jr, Flynn LM, Young SG. Modification of the apolipo-protein B gene in HepG2 cells by gene targeting. J Clin Invest 1992;90:256–261.

    Article  PubMed  CAS  Google Scholar 

  82. Itzhaki JE, Gilbert CS, Porter AC. Construction by gene targeting in human cells of a “conditional” CDC2 mutant that rereplicates its DNA. Nat Genet 1997;15:258–265.

    Article  PubMed  CAS  Google Scholar 

  83. Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 1993;260:85–88.

    Article  PubMed  CAS  Google Scholar 

  84. Powell SM, Zilz N, Beazer-Barclay Y, et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992;359:235–237.

    Article  PubMed  CAS  Google Scholar 

  85. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet 1993;9:138–141.

    Article  PubMed  CAS  Google Scholar 

  86. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3s is required to prevent mitotic catastrophe after DNA damage. Nature 1999;401:616–620.

    Article  PubMed  CAS  Google Scholar 

  87. Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 2000;404:1003–1007.

    Article  PubMed  CAS  Google Scholar 

  88. Jallepalli PV, Waizenegger IC, Bunz F, et al. Securin is required for chromosomal stability in human cells. Cell 2001;105:445–457.

    Article  PubMed  CAS  Google Scholar 

  89. Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002;416: 552–556.

    Article  PubMed  CAS  Google Scholar 

  90. Yoshihara T, Ishida M, Kinomura A, et al. XRCC3 deficiency results in a defect in recombination and increased endoreduplication in human cells. EMBO J 2004;23:670–680.

    Article  PubMed  CAS  Google Scholar 

  91. Masramon L, Ribas M, Cifuentes P, et al. Cytogenetic characterization of two colon cell lines by using conventional G-banding, comparative genomic hybridization, and whole chromosome painting. Cancer Genet Cytogenet 2000;121:17–21.

    Article  PubMed  CAS  Google Scholar 

  92. Abdel-Rahman WM, Katsura K, Rens W, et al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc Natl Acad Sci USA 2001;98:2538–2543.

    Article  PubMed  CAS  Google Scholar 

  93. Myung K, Ghosh G, Fattah FJ, et al. Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol 2004;24:5050–5059.

    Article  PubMed  Google Scholar 

  94. Giannini G, Ristori E, Cerignoli F, et al. Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep 2002;3:248–254.

    Article  PubMed  CAS  Google Scholar 

  95. Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science 1994;263:1625–1629.

    Article  PubMed  CAS  Google Scholar 

  96. Liu B, Nicolaides NC, Markowitz S, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet 1995;9:48–55.

    Article  PubMed  CAS  Google Scholar 

  97. Mellon I, Rajpal DK, Koi M, Boland CR, Champe GN. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 1996;272:557–560.

    Article  PubMed  CAS  Google Scholar 

  98. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B. Role of BAX in the apoptotic response to anticancer agents. Science 2000;290: 989–992.

    Article  PubMed  CAS  Google Scholar 

  99. Chan TA, Wang Z, Dang LH, Vogelstein B, Kinzler KW. Targeted inactivation of CTNNB1 reveals unexpected effects of b-catenin mutation. Proc Natl Acad Sci USA 2002;99:8265–8270.

    Article  PubMed  CAS  Google Scholar 

  100. Uegaki K, Adachi N, So S, Iiizumi S, Koyama H. Heterozygous inactivation of human Ku70/Ku86 heterodimer does not affect cell growth, double-strand break repair, or genome integrity. DNA Repair 2006;5:303–311.

    Article  PubMed  CAS  Google Scholar 

  101. So S, Adachi N, Lieber MR, Koyama H. Genetic interactions between BLM and DNA ligase IV in human cells. J Biol Chem 2004;279:55433–55442.

    Article  PubMed  CAS  Google Scholar 

  102. Hurwitz R, Hozier J, LeBien T, et al. Characterization of a leukemic cell line of the pre-B phenotype. Int J Cancer 1979;23:174–180.

    Article  PubMed  CAS  Google Scholar 

  103. Wlodarska I, Aventin A, Ingles-Esteve J, et al. A new subtype of pre-B acute lymphoblastic leukemia with t(5;12)(q31q33;p12), molecularly and cytogenetically distinct from t(5;12) in chronic myelomonocytic leukemia. Blood 1997;89:1716–1722.

    PubMed  CAS  Google Scholar 

  104. Matheson EC, Hall AG. Assessment of mismatch repair function in leukaemic cell lines and blasts from children with acute lymphoblastic leukaemia. Carcinogenesis 2003;24:31–38.

    Article  PubMed  CAS  Google Scholar 

  105. Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science 1965;149:754–756.

    Article  PubMed  CAS  Google Scholar 

  106. Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 1992;158:97–129.

    PubMed  CAS  Google Scholar 

  107. Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87:2211–2215.

    Article  PubMed  CAS  Google Scholar 

  108. Samulski RJ, Zhu X, Xiao X, et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991;10:3941–3950.

    PubMed  CAS  Google Scholar 

  109. Lu Y. Recombinant adeno-associated virus as delivery vector for gene therapy—a review. Stem Cells Dev 2004;13:133–145.

    Article  PubMed  CAS  Google Scholar 

  110. Grieger JC, Samulski RJ. Adeno-associated virus as a gene therapy vector: Vector development, production and clinical applications. Adv Biochem Eng Biotechnol 2005;99:119–145.

    PubMed  CAS  Google Scholar 

  111. Blacklow NR, Hoggan MD, Rowe WP. Serologic evidence for human infection with adenovirus-associated viruses. J Natl Cancer Inst 1968;40:319–327.

    PubMed  CAS  Google Scholar 

  112. Buller RM, Janik JE, Sebring ED, Rose JA. Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol 1981;40:241–247.

    PubMed  CAS  Google Scholar 

  113. Rose JA, Berns KI, Hoggan MD, Koczot FJ. Evidence for a single-stranded adenovirus-associated virus genome: Formation of a DNA density hybrid on release of viral DNA. Proc Natl Acad Sci USA 1969;64:863–869.

    Article  PubMed  CAS  Google Scholar 

  114. Samulski RJ, Chang LS, Shenk T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 1987;61: 3096–3101.

    PubMed  CAS  Google Scholar 

  115. Johnson FB, Ozer HL, Hoggan MD. Structural proteins of adeno-virus-associated virus type 3. J Virol 1971;8:860–863.

    PubMed  CAS  Google Scholar 

  116. Rose JA, Maizel JV Jr, Inman JK, Shatkin AJ. Structural proteins of adenovirus-associated viruses. J Virol 1971;8:766–770.

    PubMed  CAS  Google Scholar 

  117. Lusby E, Fife KH, Berns KI. Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA. J Virol 1980;34: 402–409.

    PubMed  CAS  Google Scholar 

  118. Xiao X, Xiao W, Li J, Samulski RJ. A novel 165-base-pair terminal repeat sequence is the sole cis requirement for the adeno-associated virus life cycle. J Virol 1997;71:941–948.

    PubMed  CAS  Google Scholar 

  119. Samulski RJ, Chang LS, Shenk T. Helper-free stocks of recombinant adeno-associated viruses: Normal integration does not require viral gene expression. J Virol 1989;63:3822–3888.

    PubMed  CAS  Google Scholar 

  120. Ferrari FK, Xiao X, McCarty D, Samulski RJ. New developments in the generation of Ad-free, high-titer rAAV gene therapy vectors. Nat Med 1997;3:1295–1297.

    Article  PubMed  CAS  Google Scholar 

  121. Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998;72:2224–2232.

    PubMed  CAS  Google Scholar 

  122. Russwll DW, Hirata RK. Human gene targeting by viral vectors. Nat Genet 1998;18:325–330.

    Article  Google Scholar 

  123. Chamberlain JR, Schwarze U, Wang PR, et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 2004;303:1198–1201.

    Article  PubMed  CAS  Google Scholar 

  124. Kohli M, Rago C, Lengauer C, Kinzler KW, Vogelstein B. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res 2004;32:e3.

    Article  PubMed  Google Scholar 

  125. Itzhaki JE, Porter AC. Targeted disruption of a human interferoninducible gene detected by secretion of human growth hormone. Nucleic Acids Res 1991;19:3835–3842.

    Article  PubMed  CAS  Google Scholar 

  126. Itzhaki JE, Barnett MA, MacCarthy AB, Buckle VJ, Brown WR, Porter AC. Targeted breakage of a human chromosome mediated by cloned human telomeric DNA. Nat Genet 1992;2:283–287.

    Article  PubMed  CAS  Google Scholar 

  127. Porter AC, Itzhaki JE. Gene targeting in human somatic cells. Complete inactivation of an interferon-inducible gene. Eur J Biochem 1993;218:273–281.

    Article  PubMed  CAS  Google Scholar 

  128. Culver KW, Hsieh WT, Huyen Y, et al. Correction of chromosomal point mutations in human cells with bifunctional oligonucleotides. Nat Biotechnol 1999;17:989–993.

    Article  PubMed  CAS  Google Scholar 

  129. Kim JS, Lee C, Foxworth A, Waldman T. B-Raf is dispensable for K-Ras-mediated oncogenesis in human cancer cells. Cancer Res 2004;64:1932–1937.

    Article  PubMed  CAS  Google Scholar 

  130. Kunzelmann K, Legendre JY, Knoell DL, Escobar LC, Xu Z, Gruenert DC. Gene targeting of CFTR DNA in CF epithelial cells. Gene Ther 1996;3:859–867.

    PubMed  CAS  Google Scholar 

  131. Zhen L, King AA, Xiao Y, Chanock SJ, Orkin SH, Dinauer MC. Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci USA 1993;90:9832–9836.

    Article  PubMed  CAS  Google Scholar 

  132. Song KY, Schwartz F, Maeda N, Smithies O, Kucherlapati R. Accurate modification of a chromosomal plasmid by homologous recombination in human cells. Proc Natl Acad Sci USA 1987;84:6820–6824.

    Article  PubMed  CAS  Google Scholar 

  133. Thyagarajan B, Johnson BL, Campbell C. The effect of target site transcription on gene targeting in human cells in vitro. Nucleic Acids Res 1995;23:2784–2790.

    Article  PubMed  CAS  Google Scholar 

  134. Kim JS, Crooks H, Dracheva T, et al. Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res 2002;62:2744–2748.

    PubMed  CAS  Google Scholar 

  135. Hiyama T, Katsura M, Yoshihara T, et al. Haploinsufficiency of the Mus81-Eme1 endonuclease activates the intra-S-phase and G2/M checkpoints and promotes rereplication in human cells. Nucleic Acids Res 2006;34:880–892.

    Article  PubMed  CAS  Google Scholar 

  136. Dhar SK, Yoshida K, Machida Y, et al. Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 2001;106:287–296.

    Article  PubMed  CAS  Google Scholar 

  137. Zhou S, Buckhaults P, Zawel L, et al. Targeted deletion of Smad4 shows it is required for transforming growth factor b and activin signaling in colorectal cancer cells. Proc Natl Acad Sci USA 1998;95:2412–2416.

    Article  PubMed  CAS  Google Scholar 

  138. Hirata RK, Russell DW. Design and packaging of adeno-associated virus gene targeting vectors. J Virol 2000;74:4612–4620.

    Article  PubMed  CAS  Google Scholar 

  139. Inoue N, Dong R, Hirata RK, Russell DW. Introduction of single base substitutions at homologous chromosomal sequences by adenoassociated virus vectors. Mol Ther 2001;3:526–530.

    Article  PubMed  CAS  Google Scholar 

  140. Dang LH, Chen F, Knock SA, et al. CDX2 does not suppress tumorigenicity in the human gastric cancer cell line MKN45. Oncogene 2006;25:2048–2059.

    Article  PubMed  CAS  Google Scholar 

  141. Dang LH, Chen F, Ying C, et al. CDX2 has tumorigenic potential in the human colon cancer cell lines LOVO and SW48. Oncogene 2006;25:2264–2272.

    Article  PubMed  CAS  Google Scholar 

  142. Porteus MH, Cathomen T, Weitzman MD, Baltimore D. Efficient gene targeting mediated by adeno-associated virus and DNA doublestrand breaks. Mol Cell Biol 2003;23:3558–3565.

    Article  PubMed  CAS  Google Scholar 

  143. Liu X, Yan Z, Luo M, et al. Targeted correction of single-base-pair mutations with adeno-associated virus vectors under nonselective conditions. J Virol 2004;78:4165–4175.

    Article  PubMed  CAS  Google Scholar 

  144. Cummins JM, Rago C, Kohli M, Kinzler KW, Lengauer C, Vogelstein B. Tumour suppression: Disruption of HAUSP gene stabilizes p53. Nature 2004;428:1.

    Article  PubMed  Google Scholar 

  145. Hirata R, Chamberlain J, Dong R, Russell DW. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat Biotechnol 2002;20:735–738.

    Article  PubMed  CAS  Google Scholar 

  146. Inoue N, Hirata RK, Russell DW. High-fidelity correction of mutations at multiple chromosomal positions by adeno-associated virus vectors. J Virol 1999;73:7376–7380.

    PubMed  CAS  Google Scholar 

  147. Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration. Science 2006;312:1650–1653.

    Article  PubMed  CAS  Google Scholar 

  148. Cummins JM, Kohli M, Rago C, Kinzler KW, Vogelstein B, Bunz F. X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res 2004;64:3006–3008.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hendrickson, E.A. (2008). Gene Targeting in Human Somatic Cells. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_53

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics