Skip to main content

Abstract

Maintaining the health and fitness of astronauts is essential to the successful exploration of space. Consequently, the development of methods (i.e., countermeasures) designed to minimize potential adverse clinical effects of space flight depends on an understanding of the physiological mechanisms that underlie human adaptation to microgravity. However, uncontrolled conditions and mission logistics associated with spaceflight present significant limitations to the scientific study of human physiology in the space environment. Although no one model precisely simulates the actual space environment, the quantitative as well as qualitative comparisons of space physiology with the 6ℴ head-down bed rest (HDBR) model are striking. Selective comparisons presented in this chapter demonstrate distinct qualitative and quantitative similarities in the underlying physiology of body fluids, cardiovascular and autonomic functions, muscle, bone, and metabolism in humans between HDBR and space. Because of these similarities, the use of the HDBR model has provided critical direction for the investigation of space physiology that otherwise could not be addressed adequately in the space environment. HDBR has proven to be one of the most effective and valuable models for assessing the effects of prolonged exposure to microgravity on human physiological functions by inducing physical and physiological changes similar to those that occur when humans are exposed to the actual environment of space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kakurin LI, Lobachik VI, Mikhailov VM, Yu AS. Antiorthostatic hypokinesia as a method of weightlessness simulation. Aviat Space Environ Med 1976;47:1083–1086.

    PubMed  CAS  Google Scholar 

  2. Buckey JC Jr, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Yancy CW, Meyer D, Blomqvist CG. Central venous pressure in space. J Appl Physiol 1996;81:19–25.

    PubMed  Google Scholar 

  3. Convertino VA. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity. Med Sci Sports Exerc 1996;28:45–52.

    Google Scholar 

  4. Convertino VA. Neuromuscular aspects in development of exercise countermeasures. Physiologist 1991;34:S125–S128.

    PubMed  CAS  Google Scholar 

  5. Convertino VA. Exercise and adaptation to microgravity environments. In: Fregly MJ, Blatteis CM, Eds. Handbook of Physiology: Environmental Physiology. III. The Gravitational Environment, Vol. 1. New York: Oxford University Press, 1995:815–843.

    Google Scholar 

  6. Convertino VA, Doerr DF, Ludwig DA, Vernikos J. Effect of simulated microgravity on cardiopulmonary baroreflex control of forearm vascular resistance. Am J Physiol Regul Integr Comp Physiol 1994;266:R1962–R1969.

    CAS  Google Scholar 

  7. Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist CG, Zerwekh JE, Peshock RM, Weatherall PT, Levine BD. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol 2001;91:645–653.

    PubMed  CAS  Google Scholar 

  8. Convertino VA. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: Comparison of groundbased and space flight data. J Gravit Physiol 1998;5:P87–P90.

    Google Scholar 

  9. Fritsch-Yelle JM, Charles JB, Jones MM, Beightol LA, Eckberg DL. Spaceflight alters autonomic regulation of arterial pressure in humans. J Appl Physiol 1994;77:1776–1783.

    PubMed  CAS  Google Scholar 

  10. Crandall CG, Engelke KA, Pawelczyk JA, Raven PB, Convertino VA. Power spectral analysis and time based analysis of heart rate variability following 15 days of simulated microgravity exposure in humans. Aviat Space Environ Med 1994;65:1105–1109.

    PubMed  CAS  Google Scholar 

  11. Cooke WH, Convertino VA. Sympathetic nervous system and space flight. Acta Astronaut 2007;60:223–233.

    Article  Google Scholar 

  12. Edgerton VR, Zhou M-Y, Ohira Y, Klitgaard H, Jiang B, Bell G, Harris B, Saltin B, Gollnick PD, Roy RR, Day MK, Greenisen M. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol 1995;78:1733–1739.

    PubMed  CAS  Google Scholar 

  13. Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL W, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, Fitts RH. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol (Lond) 1999;516:915–930.

    Article  CAS  Google Scholar 

  14. Stein TP, Leskiw MJ, Schluter MD, Hoyt RW, Lane HW, Gretebeck RE, LeBlanc AD. Energy expenditure and balance during spaceflight on the space shuttle. Am J Physiol Regul Integr Comp Physiol 1999;45:R1739–R1748.

    Google Scholar 

  15. Giangregorio L, Blimkie CJR. Skeletal adaptations to alterations in weight-bearing activity. A comparison of models of disuse osteoporosis. Sports Med 2002;32:459–476.

    Article  PubMed  Google Scholar 

  16. Buckey JC Jr, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, Gaffney FA, Blomqvist CG. Orthostatic tolerance after spaceflight. J Appl Physiol 1996;81:7–18.

    PubMed  Google Scholar 

  17. Convertino VA, Bisson R, Bates R, Goldwater D, Sandler H. Effects of antiorthostatic bedrest on the cardiorespiratory responses to exercise. Aviat Space Environ Med 1981;52:251–255.

    PubMed  CAS  Google Scholar 

  18. Trappe T, Trappe S, Lee G, Widrick J, Fitts R, Costill D. Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J Appl Physiol 2006;100:951–957.

    Article  PubMed  Google Scholar 

  19. Convertino VA, Cooke WH. Evaluation of cardiovascular risks of spaceflight does not support the NASA bioastronautics critical path roadmap. Aviat Space Environ Med 2005; 76:869–876.

    PubMed  Google Scholar 

  20. Fischer CL, Johnson PC, Berry CA. Red blood cell and plasma volume changes in manned spaceflight. JAMA 1967;200:579–583.

    Article  PubMed  CAS  Google Scholar 

  21. Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, Alexandre C. Effects of 1-and 6-month spaceflight on bone mass and biochemistry in two humans. Bone 1997;20:547–551.

    Article  PubMed  CAS  Google Scholar 

  22. LeBlanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 1990;5:843–850.

    Article  PubMed  CAS  Google Scholar 

  23. Vico L, Collet P, Guignandon A, Lafage-Proust M-H, Thomas T, Rehailia M, Alexandre C. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 2000;355:1607–1611.

    Article  PubMed  CAS  Google Scholar 

  24. Zerwekh JE, Rumi LA, Gottschalk F, Pak CYC. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 1998;13:1594–1601.

    Article  PubMed  CAS  Google Scholar 

  25. Smith SM, Wastney ME, Morukov BV, Larina IM, Nyquist LE, Abrams SA, Taran EN, Shih C-Y, Nillen JL, Davis-Street JE, Rice BL, Lane HW. Calcium metabolism before, during, and after a 3-mo spaceflight: Kinetic and biochemical changes. Am J Physiol Regul Integr Comp Physiol 1999;277:R1–R10.

    CAS  Google Scholar 

  26. LeBlanc A, Schneider V, Spector E, Evans H, Rowe R, Lane H, Demers L, Lipton A. Calcium absorption, endogenous excretion, and endocrine changes during and after long-term bed rest. Bone 1995;16:301S–304S.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Convertino, V.A., Rickards, C.A. (2008). Human Models of Space Physiology. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_48

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics