Skip to main content

Sea Urchin Embryo

A Model System for Analyzing Cellular Activities During Early Development

  • Chapter
Sourcebook of Models for Biomedical Research

Abstract

Sea urchin embryos have long been used as ideal experimental materials. In this chapter, we describe research areas to which sea urchin embryos have contributed, and the potential fields for which they may serve as a model system. The most valuable feature of sea urchin embryos is the availability of a large amount of homogeneous material, which facilitates biochemical and molecular biological approaches. The ease of gamete handling enables detailed analysis of the mechanism of fertilization, and the transparency and synchrony of fertilized eggs facilitate investigations on cell division and the cell cycle. Sea urchin embryos are an ideal model system for signal transduction, because the number of constituent cells is small. The simple organization of the embryo simplifies the analysis of morphogenetic movements. Both primary and secondary mesenchyme cells are interesting populations for studying cell movement. Sea urchin embryos will continue to contribute to the analysis of various unsolved problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hinegardner R. Care and handling of sea urchin eggs. In: Czihak G, Ed. The Sea Urchin Embryos. Berlin: Springer-Verlag, 1975:10–25.

    Google Scholar 

  2. Dan JC. Studies on the acrosome. II. Acrosome reaction in starfish spermatozoa. Biol Bull 1954;107:203–218.

    Article  Google Scholar 

  3. Ward GE, Brokaw CJ, Garbers DL, Vacquier VD. Chemotaxis of Arbacia punctulata spermatozoa to react, a peptide from the jelly layer. J Cell Biol 1985;101:2324–2329.

    Article  PubMed  CAS  Google Scholar 

  4. Vacquire VD, Moy GW. Isolation of bindin: The protein responsible for adhesion of sperm to sea urchin eggs. Proc Natl Acad Sci USA 1977;74:2456–2460.

    Article  Google Scholar 

  5. Jaffe LA. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 1976;261:68–71.

    Article  PubMed  CAS  Google Scholar 

  6. Hamaguchi MS, Hiramoto Y. Fertilization process in the heart-urchin, Clypeaster japonicus, observed with a differential interference microscope. Dev Growth Differ 1980;22:517–530.

    Article  Google Scholar 

  7. Hiramoto Y, Hamaguchi Y, Shoji Y, Schroeder TE, Shimoda S, Nakamura S. Quantitative studies on the polarization optical properties of living cells. II. The role of microtubules in birefringence of the spindle of the sea urchin egg. J Cell Biol 1981;89:121–130.

    Article  PubMed  CAS  Google Scholar 

  8. Rappaport R. Role of the mitotic apparatus in furrow initiation. Ann NY Acad Sci 1990;582:15–21.

    Article  PubMed  CAS  Google Scholar 

  9. Schroeder TE. The contractile ring. II. Determining its brief existence, volumetric changes, and vital role in cleaving Arbacia eggs. J Cell Biol 1972;53:419–434.

    Article  PubMed  CAS  Google Scholar 

  10. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 1983;33:389–396.

    Article  PubMed  CAS  Google Scholar 

  11. Hörstadius S. Experimental Embryology of Echinoderms. London: Oxford University Press, 1973.

    Google Scholar 

  12. Logan CY, Miller JR, Ferkowicz MJ, McClay DR. Nuclear betacatenin is required to specify vegetal cell fates in the sea urchin embryo. Development 1999;126:345–357.

    PubMed  CAS  Google Scholar 

  13. Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 2004;39:194–205.

    Article  PubMed  CAS  Google Scholar 

  14. Sherwood DR, McClay DR. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 1999;126:1703–1713.

    PubMed  CAS  Google Scholar 

  15. Sherwood DR, McClay DR. LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo. Development 2001;128:2221–2232.

    PubMed  CAS  Google Scholar 

  16. Ruffins SW, Ettensohn CA. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 1996:122:253–263.

    PubMed  CAS  Google Scholar 

  17. Duboc, Lepage T. A conserved role for the Nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. J Exp Zool B Mol Dev Evol 2006;306B:1–13.

    Article  Google Scholar 

  18. Coffman JA, McCarthy JJ, Dickey-Sims C, Robertson AJ. Oral-aboral axis specification in the sea urchin embryo. II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus. Dev Biol 2004;273:160–171.

    Article  PubMed  CAS  Google Scholar 

  19. Kominami T, Takata H. Gastrulation in the sea urchin embryo: A model system for analyzing the morphogenesis of a monolayered epithelium. Dev Growth Differ 2004;46:309–326.

    Article  PubMed  Google Scholar 

  20. Fink RD, McClay DR. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev Biol 1985;107:66–74.

    Article  PubMed  CAS  Google Scholar 

  21. Rottinger E, Besnardeau L, Lepage T. A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development 2004;131:1075–1087.

    Article  PubMed  Google Scholar 

  22. Okazaki K. Normal development to metamorphosis. In: Czihak G, Ed. The Sea Urchin Embryos. Berlin: Springer-Verlag, 1975:177–232.

    Google Scholar 

  23. Keller RE. An experimental analysis of the role of bottle cells and the deep marginal zone in the gastrulation of Xenopus laevis. J Exp Zool 1981;216:81–101.

    Article  PubMed  CAS  Google Scholar 

  24. Nakajima Y, Burke RD. The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells. Dev Biol 1996;179:436–446.

    Article  PubMed  CAS  Google Scholar 

  25. Kimberly EL, Hardin J. Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev Biol 1998;204:235–250.

    Article  PubMed  CAS  Google Scholar 

  26. Davidson LA, Koehl MAR, Keller R, Oster GF. How do sea urchins invaginate: Using biomechanics to distinguish between mechanisms of primary invagination. Development 1995;121:2005–2018.

    PubMed  CAS  Google Scholar 

  27. Miller J, Fraser SE, McClay DR. Dynamics of thin filopodia during sea urchin gastrulation. Development 1995;121:2501–2511.

    PubMed  CAS  Google Scholar 

  28. Latham VH, Tully MJ, Oppenheimer SB. A putative role for carbohydrates in sea urchin gastrulation. Acta Histochem 1999;101:293–303.

    PubMed  CAS  Google Scholar 

  29. Hardin JD. The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 1988;103:317–324.

    PubMed  CAS  Google Scholar 

  30. Ettensohn CA. Gastrulation in the sea urchin embryos is accompanied by the rearrangement of invaginating epithelial cells. Dev Biol 1985;112:383–390.

    Article  PubMed  CAS  Google Scholar 

  31. Logan CY, McClay DR. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo. Development 1997;124:2213–2223.

    PubMed  CAS  Google Scholar 

  32. Martins GG, Summers RG, Morrill JB. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus. Dev Biol 1998;198:330–342.

    PubMed  CAS  Google Scholar 

  33. Takata H, Kominami T. Shrinkage and expansion of blastocoel affect the degree of invagination in sea urchin embryos. Zool Sci 2001;18:1097–1105.

    Article  Google Scholar 

  34. Beane WS, Gross JM, McClay DR. RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation. Dev Biol 2006;292:213–225.

    Article  PubMed  CAS  Google Scholar 

  35. Ettensohn CA. The regulation of primary mesenchyme cell patterning. Dev Biol 1990;140:261–271.

    Article  PubMed  CAS  Google Scholar 

  36. Hodor PG, Illies MR, Broadley S, Ettensohn CA. Cell-substrate interactions during sea urchin gastrulation: Migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains. Dev Biol 2000;222:181–194.

    Article  PubMed  CAS  Google Scholar 

  37. Hodor PG, Ettensohn CA. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Dev Biol 1998;199:111–124.

    Article  PubMed  CAS  Google Scholar 

  38. Okazaki K. Spicule formation by isolated micromeres of the sea urchin embryo. Am Zool 1975;15:567–581.

    Google Scholar 

  39. Ettensohn CA, McClay DR. A new method for isolating primary mesenchyme cells of the sea urchin embryo. Panning on wheat germ agglutinin-coated dishes. Exp Cell Res 1987;168:431–438.

    Article  PubMed  CAS  Google Scholar 

  40. Kominami T, Takata H, Takaichi M. Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis. Dev Growth Differ 2001;43:699–707.

    Article  PubMed  CAS  Google Scholar 

  41. Coffman JA, McClay DR. A hyaline layer protein that becomes localized to the oral ectoderm and foregut of sea urchin embryos. Dev Biol 1990:140:93–104.

    Article  PubMed  CAS  Google Scholar 

  42. Mitsunaga-Nakatsubo K, Akasaka K, Akimoto Y, Akiba E, Kitajima T, Tomita M, Hirano H, Shimada H. Arylsulfatase exists as nonenzymatic cell surface protein in sea urchin embryos. J Exp Zool 1998;280:220–230.

    Article  PubMed  CAS  Google Scholar 

  43. Floriddia EM, Pace D, Genazzani AA, Canonico PL, Condorelli F, Billington RA. Sphingosine releases Ca2+ from intracellular stores via the ryanodine receptor in sea urchin egg homogenates. Biochem Biophys Res Commun 2005;338:1316–1321.

    Article  PubMed  CAS  Google Scholar 

  44. Kobayashi N, Okamura H. Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents. Chemosphere 2005;61:1198–1203.

    Article  PubMed  CAS  Google Scholar 

  45. Gross JM, McClay DR. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Dev Biol 2001;239:132–147.

    Article  PubMed  CAS  Google Scholar 

  46. George NC, Killian CE, Wilt FH. Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein. Dev Biol 1991;147:334–342.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kominami, T., Takata, H. (2008). Sea Urchin Embryo. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics