Skip to main content

Xenograft Models of Human Prostate Cancer

  • Chapter
Prostate Cancer

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

Prostate cancer (CaP) is the second-leading cause of cancer deaths among men in the Western world. Understanding the biology of CaP is essential to the development of novel therapeutic strategies. To do this effectively, researchers need access to cell lines, animal models, and biospecimens. Ideally, these should reflect characteristics of the disease from early diagnosis through the period of androgen-independent metastases. However, the biology of CaP is extraordinarily complex. The primary tumors are heterogeneous and multifocal. They almost uniformly produce a number of biomarkers, such as prostate-specific antigen, prostate acid phosphatase, human kallikrein 2, prostate-specific membrane antigen, and prostate stem cell antigen. The tumors are characteristically androgen dependent, and respond favorably to androgen ablation for a variable period, after which time, they progress to an androgen refractory state, wherein the low androgen levels are no longer growth inhibitory. Progression also involves metastases, primarily to the lymph nodes and bone. Unlike other epithelial tumors that metastasize to bone, CaP results in a notoriously osteoblastic response characterized by the formation of new bone. Thus, CaP presents to the investigator a very dynamic, biologically diverse set of characteristics during its course from early disease to bone metastases. Unfortunately, no single model mimics all of the features of human CaP, but by using a combination of models, nearly all of the biological characteristics can be studied to some degree.

In this chapter, we review the various xenograft models of human CaP that are available for study. We look at the method of generating xenografts, including the host strains and sites of implantation. We report on the models that are best suited for the study of progression from androgen dependence to androgen independence. Unfortunately, spontaneous metastases to bone resulting in an osteoblastic response are an extremely rare event in these models, but several methods that attempt to circumvent this limitation are reviewed. Overall, several examples that demonstrate the wealth of new knowledge being provided by use of these preclinical human CaP xenograft models are provided throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Weerden, W. M. and Romijn, J. C. (2000). Use of nude mouse xenograft models in prostate cancer research. Prostate 43, 263–271.

    Article  PubMed  Google Scholar 

  2. van Bokhoven, A., Varella-Garcia, M., Korch, C., et al. (2003). Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205–225.

    Article  PubMed  CAS  Google Scholar 

  3. Rosol, T. J., Tannehill-Gregg, S. H., LeRoy, B. E., Mandl, S., and Contag, C. H. (2003). Animal models of bone metastasis. Cancer 97, 748–757.

    Article  PubMed  Google Scholar 

  4. Navone, N. M., Logothetis, C. J., von Eschenbach, A. C., and Troncoso, P. (1998). Model systems of prostate cancer: uses and limitations. Cancer Metastasis Rev. 17, 361–371.

    Article  PubMed  Google Scholar 

  5. Russell, P. J. and Voeks, D. J. (2003). Animal models of prostate cancer. Methods Mol. Med. 81, 89–112.

    PubMed  CAS  Google Scholar 

  6. Sobel, R. E. and Sadar, M. D. (2005). Cell lines used in prostate cancer research: a compendium of old and new lines— part 1. J. Urol. 173, 342–359.

    Article  PubMed  CAS  Google Scholar 

  7. Sobel, R. E. and Sadar, M. D. (2005). Cell lines used in prostate cancer research: a compendium of old and new lines— part 2. J. Urol. 173, 360–372.

    Article  PubMed  CAS  Google Scholar 

  8. Isaacson, J. H. and Cattanach, B. M. (1962). Mouse News Letter. Report 27–31.

    Google Scholar 

  9. Pandelouris, E. (1968). Absence of thymus in a mouse mutant. Nature 217, 370–371.

    Article  Google Scholar 

  10. Festing, M. F. W. (1968). International index of laboratory animals. Leicester: University of Leicester.

    Google Scholar 

  11. Wagner, B., Otto, U., Becker, H., Schroder, S., and Klosterhalfen, H. (1989). Transplantation of human prostate or BHP tissue into NMRI nu/nu mice: reliability of an experimental model. Urol. Res. 17, 340.

    Google Scholar 

  12. Bosma, G. C., Custer, R. P., and Bosma, M. J. (1983). A severe combined immunodeficiency mutation in the mouse. Nature 301, 527–530.

    Article  PubMed  CAS  Google Scholar 

  13. Leblond, V., Autran, B., and Cesbron, J. Y. (1997). The SCID mouse mutant: definition and potential use as a model for immune and hematological disorders. Hematol. Cell Ther. 39, 213–221.

    Article  PubMed  CAS  Google Scholar 

  14. Bosma, G. C., Fried, M., Custer, R. P., Carroll, A., Gibson, D. M., and Bosma, M. J. (1988). Evidence of functional lymphocytes in some (leaky) scid mice. J. Exp. Med. 167, 1016–1033.

    Article  PubMed  CAS  Google Scholar 

  15. Bosma, M. J. and Carroll, A. M. (1991). The SCID mouse mutant: definition, characterization, and potential uses. Annu. Rev. Immunol. 9, 323–350.

    Article  PubMed  CAS  Google Scholar 

  16. Shinkai, Y., Rathbun, G., Lam, K. P., et al. (1992). RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867.

    Article  PubMed  CAS  Google Scholar 

  17. Mosier, D. E., Stell, K. L., Gulizia, R. J., Torbett, B. E., and Gilmore, G. L. (1993). Homozygous scid/scid;beige/beige mice have low levels of spontaneous or neonatal T cell-induced B cell generation. J. Exp. Med. 177, 191–194.

    Article  PubMed  CAS  Google Scholar 

  18. Shultz, L. D., Schweitzer, P. A., Christianson, S. W., et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180–191.

    PubMed  CAS  Google Scholar 

  19. Presnell, S. C., Werdin, E. S., Maygarden, S., Mohler, J. L., and Smith, G. J. (2001). Establishment of short-term primary human prostate xenografts for the study of prostate biology and cancer. Am. J. Pathol. 159, 855–860.

    PubMed  CAS  Google Scholar 

  20. Gray, D. R., Huss, W. J., Yau, J. M., et al. (2004). Short-term human prostate primary xenografts: an in vivo model of human prostate cancer vasculature and angiogenesis. Cancer Res. 64, 1712–1721.

    Article  PubMed  CAS  Google Scholar 

  21. Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth G. H. A. Clowes memorial award lecture. Cancer Res. 50, 6130–6138.

    PubMed  CAS  Google Scholar 

  22. Bogden, A. E., Kelton, D. E., Cobb, W. R., and Esber, H. J. (1978). A Rapid Screening Method for Testing Chemotherapeutic Agents Human Tumor Xenografts. Gustav Fisher, New York, NY.

    Google Scholar 

  23. Wang, Y., Revelo, M. P., Sudilovsky, D., et al. (2005). Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate 64, 149–159.

    Article  PubMed  CAS  Google Scholar 

  24. Nemeth, J. A., Harb, J. F., Barroso, U. J., He, Z., Grignon, D. J., and Cher, M. L. (1999). Severe combined immunodeficienthu model of human prostate cancer metastasis to human bone. Cancer Res. 59, 1987–1993.

    PubMed  CAS  Google Scholar 

  25. Hoehn, W., Schroeder, F., Riemann, J., Joebsis, A., and Hermanek, P. (1980). Human prostatic adenocarcinoma: some characteristics of a serially transplantable line in nude mice (PC 82). Prostate 1, 95–104.

    Article  PubMed  CAS  Google Scholar 

  26. Nagabhushan, M., Miller, C. M., Pretlow, T. P., et al. (1996). CWR22: The first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res. 56, 3042–3046.

    PubMed  CAS  Google Scholar 

  27. Corey, E., Quinn, J. E., Buhler, K. R., et al. (2003). LuCaP 35: a new model of prostate cancer progression to androgen independence. Prostate 55, 239–246.

    Article  PubMed  CAS  Google Scholar 

  28. Roudier, M. P., True, L. D., Higano, C. S., et al. (2003). Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum. Pathol. 34, 646–653.

    Article  PubMed  Google Scholar 

  29. Horoszewicz, J. S., Leong, S. S., Kawinski, E., et al. (1983). LNCaP model of human prostatic carcinoma. Cancer Res. 43, 1809–1818.

    PubMed  CAS  Google Scholar 

  30. Thalmann, G. N., Anezinis, P. E., Chang, S., et al. (1994). Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54, 2577–2581.

    PubMed  CAS  Google Scholar 

  31. Thalmann, G. N., Sikes, R. A., Wu, T. T., et al. (2000). LNCaP progression model of human prostate cancer: androgenindependence and osseous metastasis. Prostate 44, 91–103.

    Article  PubMed  CAS  Google Scholar 

  32. Wu, T. T., Sikes, R. A., Cui, Q., et al. (1998). Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int. J. Cancer 77, 887–894.

    Article  PubMed  CAS  Google Scholar 

  33. Kaighn, M., Shakar Narayan, K., Ohnuki, Y., Lechner, J., and Jones, L. (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Urology 17, 16–23.

    CAS  Google Scholar 

  34. Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H., and Paulson, D. F. (1978). Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 21, 274–281.

    Article  PubMed  CAS  Google Scholar 

  35. Navone, N. M., Olive, M., Ozen, M., et al. (1997). Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin. Cancer Res. 3, 2493–2500.

    PubMed  CAS  Google Scholar 

  36. Hara, T., Nakamura, K., Araki, H., Kusaka, M., and Yamaoka, M. (2003). Enhanced androgen receptor signaling correlates with the androgen-refractory growth in a newly established MDA PCa 2b-hr human prostate cancer cell subline. Cancer Res. 63, 5622–5628.

    PubMed  CAS  Google Scholar 

  37. Wainstein, M. A., He, F., Robinson, D., et al. (1994). CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res. 54, 6049–6052.

    PubMed  CAS  Google Scholar 

  38. Tepper, C. G., Boucher, D. L., Ryan, P. E., et al. (2002). Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res. 62, 6606–6614.

    PubMed  CAS  Google Scholar 

  39. Korenchuk, S., Lehr, J. E., MClean, L., et al. (2001). VCaP, a cell-based model system of human prostate cancer. In Vivo 15, 163–168.

    PubMed  CAS  Google Scholar 

  40. Lee, Y. G., Korenchuk, S., Lehr, J., Whitney, S., Vessela, R., and Pienta, K. J. (2001). Establishment and characterization of a new human prostatic cancer cell line: DuCaP. In Vivo 15, 157–162.

    PubMed  CAS  Google Scholar 

  41. Zhau, H. Y., Chang, S. M., Chen, B. Q., et al. (1996). Androgen-repressed phenotype in human prostate cancer. Proc. Natl. Acad. Sci. USA 93, 15,152–15,157.

    Article  PubMed  CAS  Google Scholar 

  42. Harper, M. E., Goddard, L., Smith, C., and Nicholson, R. I. (2004). Characterization of a transplantable hormoneresponsive human prostatic cancer xenograft TEN12 and its androgen-resistant sublines. Prostate 58, 13–22.

    Article  PubMed  Google Scholar 

  43. Selvan, S. R., Cornforth, A. N., Rao, N. P., et al. (2005). Establishment and characterization of a human primary prostate carcinoma cell line, HH870. Prostate 63, 91–103.

    Article  PubMed  CAS  Google Scholar 

  44. McCulloch, D. R., Opeskin, K., Thompson, E. W., and Williams, E. D. (2005). BM18: a novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis. Prostate 65, 35–43.

    Article  PubMed  Google Scholar 

  45. Klein, K. A., Reiter, R. E., Redula, J., et al. (1997). Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 3, 402–408.

    Article  PubMed  CAS  Google Scholar 

  46. Davies, M. R., Lee, Y. P., Lee, C., Zhang, X., Afar, D. E., and Lieberman, J. R. (2003). Use of a SCID mouse model to select for a more aggressive strain of prostate cancer. Anticancer Res. 23, 2245–2252.

    PubMed  Google Scholar 

  47. Craft, N., Chhor, C., Tran, C., et al. (1999). Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 59, 5030–5036.

    PubMed  CAS  Google Scholar 

  48. Ellis, W. J., Vessella, R. L., Buhler, K. R., et al. (1996). Characterization of a novel androgen-sensitive, prostatespecific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin. Cancer Res. 2, 1039–1048.

    PubMed  CAS  Google Scholar 

  49. True, L. D., Buhler, K. R., Quinn, J., et al. (2002). A neuroendocrine/small cell prostate carcinoma xenograft: LuCaP 49. Am. J. Pathol. 161, 705–715.

    PubMed  Google Scholar 

  50. Akakura, K., Bruchovsky, N., Goldenberg, S. L., Rennie, P. S., Buckley, A. R., and Sullivan, L. D. (1993). Effects of intermittent androgen suppression on androgen-dependent tumors. Apoptosis and serum prostate-specific antigen. Cancer 71, 2782–2790.

    Article  PubMed  CAS  Google Scholar 

  51. Zhao, X., van Steenbrugge, G. J., and Schroder, F. H. (1992). Differential sensitivity of hormone-responsive and unresponsive human prostate cancer cells (LNCaP) to tumor necrosis factor. Urol. Res. 20, 193–197.

    Article  PubMed  CAS  Google Scholar 

  52. van Steenbrugge, G. J., van Weerden, W. M., de Ridder, C. M. A., van der Kwast, T. H., and Schroder, F. H. (1994). Development and Application of Prostatic Xenograft Models for the Study of Human Prostate Cancer. Elsevier, Amsterdam, Holland, pp. 11–12.

    Google Scholar 

  53. Veldscholte, J., Ris Stalpers, C., Kuiper, G. G., et al. (1990). A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540.

    Article  PubMed  CAS  Google Scholar 

  54. Wu, H. C., Hsieh, J. T., Gleave, M. E., Brown, N. M., Pathak, S., and Chung, L. W. (1994). Derivation of androgenindependent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int. J. Cancer 57, 406–412.

    Article  PubMed  CAS  Google Scholar 

  55. Tso, C. L., McBride, W. H., Sun, J., et al. (2000). Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Cancer J. 6, 220–233.

    PubMed  CAS  Google Scholar 

  56. Patel, B. J., Pantuck, A. J., Zisman, A., et al. (2000). CL1-GFP: an androgen independent metastatic tumor model for prostate cancer. J. Urol. 164, 1420–1425.

    Article  PubMed  CAS  Google Scholar 

  57. Pretlow, T. G., Wolman, S. R., Micale, M. A., et al. (1993). Xenografts of primary human prostatic carcinoma. J. Natl. Cancer Inst. 85, 394–398.

    Article  PubMed  CAS  Google Scholar 

  58. Tan, J., Sharief, Y., Hamil, K. G., et al. (1997). Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol. Endocrinol. 11, 450–459.

    Article  PubMed  CAS  Google Scholar 

  59. Nickerson, T., Chang, F., Lorimer, D., Smeekens, S. P., Sawyers, C. L., and Pollak, M. (2001). In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res. 61, 6276–6280.

    PubMed  CAS  Google Scholar 

  60. Corey, E., Quinn, J. E., and Vessella, R. L. (2003). A novel method of generating prostate cancer metastases from orthotopic implants. Prostate 56, 110–114.

    Article  PubMed  Google Scholar 

  61. Whang, Y. E., Wu, X., Suzuki, H., et al. (1998). Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc. Natl. Acad. Sci. USA 95, 5246–5250.

    Article  PubMed  CAS  Google Scholar 

  62. Chen, C. D., Welsbie, D. S., Tran, C., et al. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39.

    Article  PubMed  CAS  Google Scholar 

  63. Amler, L. C., Agus, D. B., LeDuc, C., et al. (2000). Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res. 60, 6134–6141.

    PubMed  CAS  Google Scholar 

  64. Mousses, S., Bubendorf, L., Wagner, U., et al. (2002). Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res. 62, 1256–1260.

    PubMed  CAS  Google Scholar 

  65. Sirotnak, F. M., She, Y., Khokhar, N. Z., Hayes, P., Gerald, W., and Scher, H. I. (2004). Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol. Carcinog. 41, 150–163.

    Article  PubMed  CAS  Google Scholar 

  66. Gu, Z., Rubin, M. A., Yang, Y., et al. (2005). Reg IV: a promising marker of hormone refractory metastatic prostate cancer. Clin. Cancer Res. 11, 2237–2243.

    Article  PubMed  CAS  Google Scholar 

  67. Porkka, K. P., Tammela, T. L., Vessella, R. L., and Visakorpi, T. (2004). RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. Genes Chromosomes Cancer 39, 1–10.

    Article  PubMed  CAS  Google Scholar 

  68. Gleave, M., Goldenberg, S. L., Bruchovsky, N., and Rennie, P. (1998). Intermittent androgen suppression for prostate cancer: rationale and clinical experience. Prostate Cancer Prostatic. Dis. 1, 289–296.

    Article  PubMed  CAS  Google Scholar 

  69. Bruchovsky, N., Klotz, L. H., Sadar, M., et al. (2000). Intermittent androgen suppression for prostate cancer: Canadian Prospective Trial and related observations. Mol. Urol. 4, 191–199.

    PubMed  CAS  Google Scholar 

  70. Buhler, K. R., Santucci, R. A., Royai, R. A., et al. (2000). Intermittent androgen suppression in the LuCaP 23.12 prostate cancer xenograft model. Prostate 43, 63–70.

    Article  PubMed  CAS  Google Scholar 

  71. Sato, N., Akakura, K., Isaka, S., et al. (2004). Intermittent androgen suppression for locally advanced and metastatic prostate cancer: preliminary report of a prospective multicenter study. Urology 64, 341–345.

    Article  PubMed  Google Scholar 

  72. Lane, T. M., Ansell, W., Farrugia, D., et al. (2004). Long-term outcomes in patients with prostate cancer managed with intermittent androgen suppression. Urol. Int. 73, 117–122.

    Article  PubMed  CAS  Google Scholar 

  73. Higano, C., Shields, A., Wood, N., Brown, J., and Tangen, C. (2004). Bone mineral density in patients with prostate cancer without bone metastases treated with intermittent androgen suppression. Urology 64, 1182–1186.

    Article  PubMed  Google Scholar 

  74. Peyromaure, M., Delongchamps, N. B., Debre, B., and Zerbib, M. (2005). Intermittent androgen deprivation for biologic recurrence after radical prostatectomy: long-term experience. Urology 65, 724–729.

    Article  PubMed  Google Scholar 

  75. Ware, J. L., Paulson, D. F., Mickey, G. H., and Webb, K. S. (1982). Spontaneous metastasis of cells of the humanprostate carcinoma cell-line PC-3 in athymic nude-mice. J. Urol. 128, 1064–1067.

    PubMed  CAS  Google Scholar 

  76. Sato, N., Gleave, M. E., Bruchovsky, N., Rennie, P. S., Beraldi, E., and Sullivan, L. D. (1997). A metastatic and androgen-sensitive human prostate cancer model using intraprostatic inoculation of LNCaP cells in SCID mice. Cancer Res. 57, 1584–1589.

    PubMed  CAS  Google Scholar 

  77. Rembrink, K., Romijn, J. C., van der Kwast, T. H., Rubben, H., and Schroder, F. H. (1997). Orthotopic implantation of human prostate cancer cell lines: a clinically relevant animal model for metastatic prostate cancer. Prostate 31, 168–174.

    Article  PubMed  CAS  Google Scholar 

  78. Stephenson, R. A., Dinney, C. P., Gohji, K., Ordonez, N. G., Killion, J. J., and Fidler, I. J. (1992). Metastatic model for human prostate cancer using orthotopic implantation in nude mice. J. Natl. Cancer Inst. 84, 951–957.

    Article  PubMed  CAS  Google Scholar 

  79. Pettaway, C. A., Pathak, S., Greene, G., et al. (1996). Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin. Cancer Res. 2, 1627–1636.

    PubMed  CAS  Google Scholar 

  80. Scatena, C. D., Hepner, M. A., Oei, Y. A., et al. (2004). Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer. Prostate 59, 292–303.

    Article  PubMed  CAS  Google Scholar 

  81. Wang, X., An, Z., Geller, J., and Hoffman, R. M. (1999). High-malignancy orthotopic nude mouse model of human prostate cancer LNCaP. Prostate 39, 182–186.

    Article  PubMed  CAS  Google Scholar 

  82. Shevrin, D. H., Kukreja, S. C., Ghosh, L., and Lad, T. E. (1988). Development of skeletal metastasis by human prostate cancer in athymic nude mice. Clin. Exp. Metastasis 5, 401–409.

    Article  Google Scholar 

  83. Rubio, N., Villacampa, M. M., and Blanco, J. (1998). Traffic to lymph nodes of PC-3 prostate tumor cells in nude mice visualized using the luciferase gene as a tumor cell marker. Lab. Invest. 78, 1315–1325.

    PubMed  CAS  Google Scholar 

  84. Rubio, N., Villacampa, M. M., El Hilali, N., and Blanco, J. (2000). Metastatic burden in nude mice organs measured using prostate tumor PC-3 cells expressing the luciferase gene as a quantifiable tumor cell marker. Prostate 44, 133–143.

    Article  PubMed  CAS  Google Scholar 

  85. An, Z., Wang, X., Geller, J., Moossa, A. R., and Hoffman, R. M. (1998). Surgical orthotopic implantation allows high lung and lymph node metastatic expression of human prostate carcinoma cell line PC-3 in nude mice. Prostate 34, 169–174.

    Article  PubMed  CAS  Google Scholar 

  86. Yang, M., Jiang, P., Sun, F. X., et al. (1999). A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res. 59, 781–786.

    PubMed  CAS  Google Scholar 

  87. Rubin, M. A., Putzi, M., Mucci, N., et al. (2000). Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin. Cancer Res. 6, 1038–1045.

    PubMed  CAS  Google Scholar 

  88. Bubendorf, L., Schopfer, A., Wagner, U., et al. (2000). Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol. 31, 578–583.

    Article  PubMed  CAS  Google Scholar 

  89. Shimazaki, J., Higa, T., Akimoto, S., Masai, M., and Isaka, S. (1992). Clinical course of bone metastasis from prostatic cancer following endocrine therapy: examination with bone x-ray. Adv. Exp. Med. Biol. 324, 269–275.

    PubMed  CAS  Google Scholar 

  90. Urwin, G. H., Percival, R. C., Harris, S., Beneton, M. N., Williams, J. L., and Kanis, J. A. (1985). Generalised increase in bone resorption in carcinoma of the prostate. Br. J. Urol. 57, 721–723.

    PubMed  CAS  Google Scholar 

  91. Clarke, N. W., McClure, J., and George, N. J. (1991). Morphometric evidence for bone resorption and replacement in prostate cancer. Br. J. Urol. 68, 74–80.

    Article  PubMed  CAS  Google Scholar 

  92. Wang, M. and Stearns, M. E. (1991). Isolation and characterization of PC-3 human prostatic tumor sublines which preferentially metastasize to select organs in S.C.I.D. mice. Differentiation 48, 115–125.

    Article  PubMed  CAS  Google Scholar 

  93. Angelucci, A., Gravina, G. L., Rucci, N., et al. (2004). Evaluation of metastatic potential in prostate carcinoma: an in vivo model. Int. J. Oncol. 25, 1713–1720.

    PubMed  Google Scholar 

  94. Gleave, M., Hsieh, J. T., Gae, C., von Eschenback, A. C., and Chung, L. W. K. (1991). Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 51, 3753–3761.

    PubMed  CAS  Google Scholar 

  95. Koeneman, K. S., Yeung, F., and Chung, L. W. (1999). Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39, 246–261.

    Article  PubMed  CAS  Google Scholar 

  96. Corey, E., Quinn, J. E., Bladou, F., et al. (2002). Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52, 20–33.

    Article  PubMed  Google Scholar 

  97. Tsingotjidou, A. S., Zotalis, G., Jackson, K. R., et al. (2002). Development of an animal model for prostate cancer cell metastasis to adult human bone. Anticancer Res. 21, 971–978.

    Google Scholar 

  98. Yonou, H., Ochiai, A., Goya, M., et al. (2004). Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cells to osteoclasts in osteoblastic metastatic lesions. Prostate 58, 406–413.

    Article  PubMed  Google Scholar 

  99. Yonou, H., Yokose, T., Kamijo, T., et al. (2001). Establishment of a novel species-and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res. 61, 2177–2182.

    PubMed  CAS  Google Scholar 

  100. Lee, Y., Schwarz, E., Davies, M., et al. (2003). Differences in the cytokine profiles associated with prostate cancer cell induced osteoblastic and osteolytic lesions in bone. J. Orthop. Res. 21, 62–72.

    Article  PubMed  CAS  Google Scholar 

  101. Fisher, J. L., Schmitt, J. F., Howard, M. L., Mackie, P. S., Choong, P. F., and Risbridger, G. P. (2002). An in vivo model of prostate carcinoma growth and invasion in bone. Cell Tissue Res. 307, 337–345.

    Article  PubMed  CAS  Google Scholar 

  102. Pfitzenmaier, J., Quinn, J. E., Odman, A. M., et al. (2003). Characterization of C4-2 prostate cancer bone metastases and their response to castration. J. Bone Miner. Res. 18, 1882–1888.

    Article  PubMed  CAS  Google Scholar 

  103. Berlin, O., Samid, D., Donthineni-Rao, R., Akeson, W., Amiel, D., and Woods, V. L., Jr. (1993). Development of a novel spontaneous metastasis model of human osteosarcoma transplanted orthotopically into bone of athymic mice. Cancer Res. 53, 4890–4895.

    PubMed  CAS  Google Scholar 

  104. Andresen, C., Bagi, C. M., and Adams, S. W. (2003). Intra-tibial injection of human prostate cancer cell line CWR22 elicits osteoblastic response in immunodeficient rats. J. Musculoskelet. Neuronal Interact. 3, 148–155.

    Google Scholar 

  105. Pinthus, J. H., Waks, T., Schindler, D. G., et al. (2000). WISH-PC2: a unique xenograft model of human prostatic small cell carcinoma. Cancer Res. 60, 6563–6567.

    PubMed  CAS  Google Scholar 

  106. Nemeth, J. A., Yousif, R., Herzog, M., et al. (2002). Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. J. Natl. Cancer Inst. 94, 17–25.

    PubMed  CAS  Google Scholar 

  107. Cher, M. L., Biliran, H. R., Jr., Bhagat, S., et al. (2003). Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proc. Natl. Acad. Sci. USA 100, 7847–7852.

    Article  PubMed  CAS  Google Scholar 

  108. Li, Y., Che, M., Bhagat, S., et al. (2004). Regulation of gene expression and inhibition of experimental prostate cancer bone metastasis by dietary genistein. Neoplasia 6, 354–363.

    Article  PubMed  CAS  Google Scholar 

  109. Nemeth, J. A., Cher, M. L., Zhou, Z., Mullins, C., Bhagat, S., and Trikha, M. (2003). Inhibition of alpha(v)beta3 integrin reduces angiogenesis, bone turnover, and tumor cell proliferation in experimental prostate cancer bone metastases. Clin. Exp. Metastasis 20, 413–420.

    Article  PubMed  CAS  Google Scholar 

  110. Zhang, J., Dai, J., Yao, Z., Lu, Y., Dougall, W., and Keller, E. T. (2003). Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res. 63, 7883–7890.

    PubMed  CAS  Google Scholar 

  111. Goya, M., Miyamoto, S., Nagai, K., et al. (2004). Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors. Cancer Res. 64, 6252–6258.

    Article  PubMed  CAS  Google Scholar 

  112. Yonou, H., Kanomata, N., Goya, M., et al. (2003). Osteoprotegerin/osteoclastogenesis inhibitory factor decreases human prostate cancer burden in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Cancer Res. 63, 2096–2102.

    PubMed  CAS  Google Scholar 

  113. Zhang, J., Dai, J., Qi, Y., et al. (2001). Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest. 107, 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  114. Kiefer, J. A., Vessella, R. L., Quinn, J. E., et al. (2004). The effect of osteoprotegerin administration on the intra-tibial growth of the osteoblastic LuCaP 23.1 prostate cancer xenograft. Clin. Exp. Metastasis 21, 381–387.

    Article  PubMed  CAS  Google Scholar 

  115. Corey, E., Brown, L. G., Kiefer, J. A., et al. (2005). Osteoprotegerin in prostate cancer bone metastasis. Cancer Res. 65, 1710–1718.

    Article  PubMed  CAS  Google Scholar 

  116. Lee, Y. P., Schwarz, E. M., Davies, M., et al. (2002). Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe-combined-immunodeficient mouse model. Cancer Res. 62, 5564–5570.

    PubMed  CAS  Google Scholar 

  117. Corey, E., Brown, L. G., Quinn, J. E., et al. (2003). Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clin. Cancer Res. 9, 295–306.

    PubMed  CAS  Google Scholar 

  118. Burton, D. W., Geller, J., Yang, M., et al. (2005). Monitoring of skeletal progression of prostate cancer by GFP imaging, X-ray, and serum OPG and PTHrP. Prostate 62, 275–281.

    Article  PubMed  CAS  Google Scholar 

  119. Uehara, H., Kim, S. J., Karashima, T., et al. (2003). Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J. Natl. Cancer Inst. 95, 458–470.

    Article  PubMed  CAS  Google Scholar 

  120. Kim, S. J., Uehara, H., Karashima, T., Shepherd, D. L., Killion, J. J., and Fidler, I. J. (2003). Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin. Cancer Res. 9, 1200–1210.

    PubMed  CAS  Google Scholar 

  121. Kim, S. J., Uehara, H., Yazici, S., et al. (2004). Simultaneous blockade of platelet-derived growth factor-receptor and epidermal growth factor-receptor signaling and systemic administration of paclitaxel as therapy for human prostate cancer metastasis in bone of nude mice. Cancer Res. 64, 4201–4208.

    Article  PubMed  CAS  Google Scholar 

  122. Kim, S. J., Uehara, H., Yazici, S., et al. (2005). Modulation of bone microenvironment with zoledronate enhances the therapeutic effects of STI571 and paclitaxel against experimental bone metastasis of human prostate cancer. Cancer Res. 65, 3707–3715.

    Article  PubMed  CAS  Google Scholar 

  123. Gamradt, S. C., Feeley, B. T., Liu, N. Q., et al. (2005). The effect of cyclooxygenase-2 (COX-2) inhibition on human prostate cancer induced osteoblastic and osteolytic lesions in bone. Anticancer Res. 25, 107–115.

    PubMed  CAS  Google Scholar 

  124. Fizazi, K., Sikes, C. R., Kim, J., et al. (2004). High efficacy of docetaxel with and without androgen deprivation and estramustine in preclinical models of advanced prostate cancer. Anticancer Res. 24, 2897–2903.

    PubMed  CAS  Google Scholar 

  125. Sun, Y. X., Schneider, A., Jung, Y., et al. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/ CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J. Bone Miner. Res. 20, 318–329.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Corey, E., Vessella, R.L. (2007). Xenograft Models of Human Prostate Cancer. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics