Skip to main content

The Role of Telomeres in Genomic Instability

  • Chapter
Apoptosis, Senescence, and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1682 Accesses

summary

Genomic instability is now considered to play an important role in promoting the genetic changes necessary for cancer. It has been reported that exposure of cells to ionizing radiation or chemical agents can promote genomic instability, although the mechanisms involved are not understood. Knowledge concerning mechanisms of genomic instability has been derived from studies in yeast and human genetic disease, where mutations in a variety of genes involved in DNA replication, repair, and cell cycle regulation have been found to promote genomic instability. However, the identity of the mechanisms responsible for the genomic instability common to many cancer cells has yet to be determined, although increasing evidence demonstrates that loss of telomere function is important in this process. Telomeres are nucleoprotein structures that serve as caps that protect the ends of chromosomes and are maintained by the enzyme telomerase. Telomeres are maintained in the germ line but shorten with age in most somatic cells due to the lack of sufficient telomerase. This telomere shortening serves as a signal for replicative cell senescence, which protects against the unlimited cell division required for advanced forms of cancer. As a result, malignant cancer cells invariably maintain their telomeres, which is necessary to prevent massive chromosome fusion and cell death. However, telomere loss can occur during “crisis,” in which cells that fail to senesce undergo critical telomere shortening prior to re-establishing the ability to maintain telomeres. In addition, it is now clear that even tumor cells that maintain telomeres continue to show a high rate of telomere loss, suggesting a fundamental defect in telomere maintenance in many cancer cells. Telomere loss results in sister chromatid fusion that initiates prolonged breakage/fusion/bridge (B/F/B) cycles, in which chromosomes repeatedly fuse and break for many cell generations. This prolonged instability results in various chromosomal rearrangements that are commonly associated with cancer, including amplification, deletions, nonreciprocal translocations, and duplications of whole chromosome arms. This instability is not confined to the chromosome that originally lost its telomere but can be transferred to other chromosomes as well. Thus, the loss of a single telomere can result in a large population of cells with a variety of changes in many different chromosomes. Understanding the mechanisms of telomere loss and the factors that control chromosome instability resulting from B/F/B cycles is therefore an important goal in cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tlsty TD. Genomic instability and its role in neoplasia. Curr Topics Microbiol Immunol 1997; 221:37–46.

    CAS  Google Scholar 

  2. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396:643–9.

    Article  PubMed  CAS  Google Scholar 

  3. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10(8): 789–99.

    Google Scholar 

  4. Kolodner RD, Putnam CD, Myung K. Maintenance of genome stability in saccharomyces cerevisiae. Science 2002; 297:552–7.

    Article  PubMed  CAS  Google Scholar 

  5. Surralles J, Jackson SP, Jasin M, Kastan MB, West SC, Joenje H. Molecular cross-talk among chromosome fragility syndromes. Genes Dev 2004; 18:1359–70.

    Article  PubMed  CAS  Google Scholar 

  6. Michel LS, Liberal V, Chatterjee A, et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001;409(6818):355–9.

    Article  PubMed  CAS  Google Scholar 

  7. Rajagopalan H, Lengauer C. Aneuploidy and cancer. Nature 2004; 432(7015):338–41.

    Article  PubMed  CAS  Google Scholar 

  8. Hernando E, Nahle Z, Juan G, et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 2004; 430(7001):797–802.

    Article  PubMed  CAS  Google Scholar 

  9. Little JB. Genomic instability and radiation. J Radiol Prot 2003; 23:173–81.

    Article  PubMed  CAS  Google Scholar 

  10. Murnane JP. Role of induced genetic instability in the mutagenic effects of chemicals and radiation. Mutat Res 1995; 367:11–23.

    Google Scholar 

  11. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability induced by ionizing radiation. Radiat Res 1996; 146:247–58.

    Article  PubMed  CAS  Google Scholar 

  12. Amundson SA, Fornace AJ Jr. Gene expression profiles for monitoring radiation exposure. Radiat Prot Dosimetry 2001; 97(1):11–6.

    Google Scholar 

  13. Hall EJ, Hei TK. Genomic instability and bystander effects induced by high-LET radiation. Oncogene 2003; 22(45):7034–42.

    Article  PubMed  CAS  Google Scholar 

  14. Azzam EI, de Toledo SM, Little JB. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene 2003; 22(45):7050–7.

    Article  PubMed  CAS  Google Scholar 

  15. Limoli CL, Giedzinski E, Morgan WF, Swarts SG, Jones GD, Hyun W. Persistent oxidative stress in chromosomally unstable cells. Cancer Res 2003; 63(12):3107–11.

    PubMed  CAS  Google Scholar 

  16. Murnane JP. The role of recombinational hotspots in genome instability in mammalian cells. Bioessays 1990; 12:577–81.

    Article  PubMed  CAS  Google Scholar 

  17. Smith LE, Parks KK, Hasegawa LS, Eastmond DA, Grosovsky AJ. Targeted breakage of paracentromeric heterochromatin induces chromosomal instability. Mutagenesis 1998; 13(5):435–43.

    Article  PubMed  CAS  Google Scholar 

  18. Pongsaensook P, Ritter LE, Parks KK, Grosovsky AJ. Cis-acting transmission of genomic instability. Mutat Res 2004; 568(1):49–68.

    PubMed  CAS  Google Scholar 

  19. McEachern MJ, Krauskopf A, Blackburn EH. Telomeres and their control. Ann Rev Genet 2000; 34:331–58.

    Article  PubMed  CAS  Google Scholar 

  20. Blackburn EH. Switching and signaling at the telomere. Cell 2001; 106:661–73.

    Article  PubMed  CAS  Google Scholar 

  21. Blackburn EH, Greider CW. Telomeres. Plainview, NY: Cold Spring Harbor Laboratory Press, 1995.

    Google Scholar 

  22. de Lange T. Telomere dynamics and genome instability in human cancer. In: Blackburn EH, Greider CW, eds. Telomeres. Plainview, NY: Cold Spring Harbor Press; 1995:265–93.

    Google Scholar 

  23. Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295:2446–9.

    Article  PubMed  CAS  Google Scholar 

  24. Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992; 11:1921–9.

    PubMed  CAS  Google Scholar 

  25. Ducray C, Pommier J-P, Martins L, Boussin F, Sabatier L. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process. Oncogene 1999; 18:4211–23.

    Article  PubMed  CAS  Google Scholar 

  26. Romanov SR, Kozakiewicz BK, Hoist CR, Stampfer MR, Haupt LM, Tlsty TD. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 2001;409:633–7.

    Article  PubMed  CAS  Google Scholar 

  27. Yaswen P, Stampfer MR. Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial cells. Int J Biochem Cell Biol 2002; 34:1382–94.

    Article  PubMed  CAS  Google Scholar 

  28. Harley CB. Telomeres and aging. In: Blackburn EH, Greider CW, eds. Telomeres. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1995:247–63.

    Google Scholar 

  29. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279:349–52.

    Article  PubMed  CAS  Google Scholar 

  30. Murnane JP, Sabatier L, Marder BA, Morgan WF. Telomere dynamics in an immortal human cell line. EMBO J 1994; 13:4953–62.

    PubMed  CAS  Google Scholar 

  31. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995; 14:4240–8.

    PubMed  CAS  Google Scholar 

  32. Dunham MA, Neumann AA, Fasching CL, Reddel RR. Telomere maintenance by recombination in human cells. Nat Genet 2000; 26:447–50.

    Article  PubMed  CAS  Google Scholar 

  33. Shay JW, Wright WE. Telomerase activity in human cancer. Curr Opin Oncol 1996; 8:66–71.

    PubMed  CAS  Google Scholar 

  34. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266:2011–5.

    Article  PubMed  CAS  Google Scholar 

  35. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 1997; 3:1271–4.

    Article  PubMed  CAS  Google Scholar 

  36. Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004; 73:177–208.

    Article  PubMed  CAS  Google Scholar 

  37. Karlseder J, Kachatrian L, Takai H, et al. Targeted deletion reveals an essential function for the telomere length regulator Trf1. Mol Cell Biol 2003; 23(18):6533–41.

    Article  PubMed  CAS  Google Scholar 

  38. van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385:740–3.

    Article  PubMed  Google Scholar 

  39. van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92:401–13.

    Article  PubMed  Google Scholar 

  40. Bouffler SD, Blasco MA, Cox R, Smith PJ. Telomeric sequences, radiation sensitivity and genomic instability. Int J Radiat Biol 2001; 77(10):995–1005.

    Article  PubMed  CAS  Google Scholar 

  41. Sharma GG, Gupta A, Wang H, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 2003; 22(1):131–46.

    Article  PubMed  CAS  Google Scholar 

  42. Wong KK, Chang S, Weiler SR, et al. Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 2000; 26(1):85–8.

    Article  PubMed  CAS  Google Scholar 

  43. Goytisolo FA, Samper E, Martin-Caballero J, et al. Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med 2000; 192(11):1625–36.

    Article  PubMed  CAS  Google Scholar 

  44. Gonzalez-Suarez E, Goytisolo FA, Flores JM, Blasco MA. Telomere dysfunction results in enhanced organismal sensitivity to the alkylating agent N-methyl-N-nitrosourea. Cancer Res 2003; 63(21):7047–50.

    PubMed  CAS  Google Scholar 

  45. Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rates and genomic instability. Cell 2001; 106:275–86.

    Article  PubMed  CAS  Google Scholar 

  46. Lo AWI, Sprung CN, Fouladi B, et al. Chromosome instability as a result of double-strand breaks near telomeres in mouse embryonic stem cells. Mol Cell Biol 2002; 22:4836–50.

    Article  PubMed  CAS  Google Scholar 

  47. Lo AWI, Sabatier L, Fouladi B, Pottier G, Ricoul M, Murnane JP. DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line. Neoplasia 2002; 6:531–8.

    Article  CAS  Google Scholar 

  48. Fouladi B, Miller D, Sabatier L, Murnane JP. The relationship between spontaneous telomere loss and chromosome instability in a human tumor cell line. Neoplasia 2000; 2:540–54.

    Article  PubMed  CAS  Google Scholar 

  49. Sabatier L, Ricoul M, Pottier G, Murnane JP. The loss of a single telomere can result in genomic instability involving multiple chromosomes in a human tumor cell line. Mol Cancer Res 2005; 3:139–50.

    Article  PubMed  CAS  Google Scholar 

  50. McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics 1941; 41:234–82.

    Google Scholar 

  51. Ricchetti M, Dujon B, Fairhead C. Distance from the chromosome end determines the efficiency of double-strand break repair in subtelomeres of haploid yeast. J Mol Biol 2003; 328:847–62.

    Article  PubMed  CAS  Google Scholar 

  52. Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res 1998; 239:152–60.

    Article  PubMed  CAS  Google Scholar 

  53. Kruk PA, Rampino NJ, Bohr VA. DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci USA 1995; 92:258–62.

    Article  PubMed  CAS  Google Scholar 

  54. Lin Y, Waldman AS. Capture of DNA sequences at double-strand breaks in mammalian cells. Genetics 2001; 158:1665–74.

    PubMed  CAS  Google Scholar 

  55. Sargent RG, Brenneman MA, Wilson JH. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol Cell Biol 1997; 17(1):267–77.

    PubMed  CAS  Google Scholar 

  56. Sprung CN, Reynolds GE, Jasin M, Murnane JP. Chromosome healing in mouse embryonic stem cells. Proc Natl Acad Sci USA 1999; 96:6781–6.

    Article  PubMed  CAS  Google Scholar 

  57. Yu Y, Okayasu R, Weil MM, et al. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene. Cancer Res 2001; 61(5):1820–4.

    PubMed  CAS  Google Scholar 

  58. Bailey SM, Meyne J, Chen DJ, et al. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci USA 1999; 96:14899–904.

    Article  PubMed  CAS  Google Scholar 

  59. Gilley D, Tanaka H, Hande MP, et al. DNA-PKcs is critical for telomere capping. Proc Natl Acad Sci USA 2001; 98:15084–8.

    Article  PubMed  CAS  Google Scholar 

  60. Espejel S, Franco S, Rodriguez-Perales S, Bouffler SD, Cigudosa JC, Blasco MA. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 2002; 21:2207–19.

    Article  PubMed  CAS  Google Scholar 

  61. Bailey SM, Cornforth MN, Ullrich RL, Goodwin EH. Dysfunctional mammalian telomeres join with DNA double-strand breaks. DNA Repair (Amst) 2004; 3(4):349–57.

    Article  CAS  Google Scholar 

  62. Schwartz JL, Jordan R, Liber H, Murnane JP, Evans HH. TP53-dependent chromosome instability is associated with transient reductions in telomere length in immortal telomerase-positive cell lines. Genes Chromosomes Cancer 2001; 30:236–44.

    Article  PubMed  CAS  Google Scholar 

  63. Bryan TM, Englezou A, Dunham MA, Reddel RR. Telomere length dynamics in telomerase-positive immortal human cell populations. Exp Cell Res 1998; 239:370–8.

    Article  PubMed  CAS  Google Scholar 

  64. Sprung CN, Afshar G, Chavez EA, Lansdorp P, Sabatier L, Murnane JP. Telomere instability in a human cancer cell line. Mutat Res 1999; 429:209–23.

    PubMed  CAS  Google Scholar 

  65. Zhu X-D, Kuster B, Mann M, Petrini JHJ, de Lange T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 2000; 25:347–52.

    Article  PubMed  CAS  Google Scholar 

  66. Ranganathan V, Heine WF, Ciccone DN, et al. Rescue of a telomere length defect in Nijmegen breakage syndrome cells requires NBS and the telomerase catalytic subunit. Curr Biol 2001; 11:962–6.

    Article  PubMed  CAS  Google Scholar 

  67. Bai Y, Murnane JP. Telomere instability in a human tumor cell line expressing the NBS1 gene with mutations at sites phosphorylated by the ATM protein. Mol Cancer Res 2003; 1:1058–69.

    PubMed  CAS  Google Scholar 

  68. Bai Y, Murnane JP. Telomere instability in a human tumor cell line expressing a dominant-negative WRN protein. Hum Genet 2003; 113:337–47.

    Article  PubMed  CAS  Google Scholar 

  69. Ivessa AS, Zhou J-Q, Schulz VP, Monson EK, Zakian VA. Saccharomyces Rrm3p, a 5 to 3 DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev 2002; 16:1383–96.

    Article  PubMed  CAS  Google Scholar 

  70. Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 2003; 12:1525–36.

    Article  PubMed  CAS  Google Scholar 

  71. Wang RC, Smogorzewska A, de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 2004; 119(3):355–68.

    Article  PubMed  CAS  Google Scholar 

  72. Zhu J, Wang H, Bishop JM, Blackburn EH. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc Natl Acad Sci USA 1999; 96:3723–8.

    Article  PubMed  CAS  Google Scholar 

  73. Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114:241–53.

    Article  PubMed  CAS  Google Scholar 

  74. DePinho RA, Polyak K. Cancer chromosomes in crisis. Nat Genet 2004; 36(9):932–4.

    Article  PubMed  CAS  Google Scholar 

  75. Chin K, de Solorzano CO, Knowles D, et al. In situ analysis of genome instability in breast cancer. Nat Genet 2004; 16:984–8.

    Article  CAS  Google Scholar 

  76. Gisselsson D, Jonson T, Petersen A, et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 2001; 98:12683–8.

    Article  PubMed  CAS  Google Scholar 

  77. Meeker AK, Hicks JL, Iacoluzio-Donahue CA, et al. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res 2004; 10:3317–26.

    Article  PubMed  CAS  Google Scholar 

  78. Meeker AK, Hicks JL, Gabrielson E, Strauss WM, De Marzo AM, Argani P. Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol 2004; 164:925–35.

    PubMed  Google Scholar 

  79. Ma C, Martin S, Trask B, Hamlin JL. Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev 1993; 7:605–20.

    Article  PubMed  CAS  Google Scholar 

  80. Smith KA, Gorman PA, Stark MB, Groves RP, Stark GR. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell 1990; 63:1219–27.

    Article  PubMed  CAS  Google Scholar 

  81. Toledo F, Buttin G, Debatisse M. The origin of chromosome rearrangements at early stages of AMPD2 gene amplification in Chinese hamster cells. Curr Biol 1993; 3:255–64.

    Article  PubMed  CAS  Google Scholar 

  82. Coquelle A, Pipiras E, Toledo F, Buttin G, Debatisse M. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplification. Cell 1997; 89:215–25.

    Article  PubMed  CAS  Google Scholar 

  83. Hahn PJ. Molecular biology of double-minute chromosomes. Bioessays 1993; 15:477–84.

    Article  PubMed  CAS  Google Scholar 

  84. Shuster MI, Han L, Le Beau MM, et al. A consistent pattern of RIN1 rearrangements in oral squamous cell carcinoma cell lines supports a breakage-fusion-bridge cycle model for 11q23 amplification. Genes Chromosomes Cancer 2000; 28:153–63.

    Article  PubMed  CAS  Google Scholar 

  85. Hellman A, Ziotorynski E, Scherer SW, et al. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 2002; 1:89–97.

    Article  PubMed  CAS  Google Scholar 

  86. Singer MJ, Mesner LD, Friedman CL, Trask BJ, Hamlin JL. Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks. Proc Natl Acad Sci USA 2000; 97:7921–6.

    Article  PubMed  CAS  Google Scholar 

  87. Coquelle A, Rozier L, Dutrillaux B, Debatisse M. Induction of multiple double-strand breaks within an hsr by meganuclease I-SceI expression of fragile site activation leads to formation of double minutes and other chromosomal rearrangements. Oncogene 2002; 21:7671–9.

    Article  PubMed  CAS  Google Scholar 

  88. Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M. A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 1998; 2:249–65.

    Article  Google Scholar 

  89. Montgomery E, Wilentz RE, Argani P. Analysis of anaphase figures in routine histologic sections distinguishes chromosomally unstable from chromosomally stable malignancies. Cancer Biol Ther 2003; 2:248–52.

    PubMed  Google Scholar 

  90. Ford M, Fried M. Large inverted duplications are associated with gene amplification. Cell 1986; 45:425–30.

    Article  PubMed  CAS  Google Scholar 

  91. d’ Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426(6963):194–8.

    Article  CAS  Google Scholar 

  92. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 2004; 14(4):501–13.

    Google Scholar 

  93. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 2004; 6(2):168–70.

    Article  PubMed  CAS  Google Scholar 

  94. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003; 13(17):1549–56.

    Article  PubMed  CAS  Google Scholar 

  95. Rudolph KL, Chang S, Lee H-W, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 1999;96:701–12.

    Article  PubMed  CAS  Google Scholar 

  96. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345:458–60.

    Article  PubMed  CAS  Google Scholar 

  97. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001; 28:155–9.

    Article  PubMed  CAS  Google Scholar 

  98. Artandi SE, Chang S, Lee S-L, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406:641–5.

    Article  PubMed  CAS  Google Scholar 

  99. Ferguson DO, Sekiguchi JM, Chang S, et al. The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc Natl Acad Sci USA 2000; 97:6630–3.

    Article  PubMed  CAS  Google Scholar 

  100. Ferguson DO, Alt FW. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 2001; 20:5572–9.

    Article  PubMed  CAS  Google Scholar 

  101. Gao Y, Ferguson DO, Xie W, et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic instability and development. Nature 2000; 404:897–900.

    Article  PubMed  CAS  Google Scholar 

  102. Difilippantonio MJ, Zhu J, Chen HT, et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 2000; 404:510–4.

    Article  PubMed  CAS  Google Scholar 

  103. Yu G, Blackburn EH. Developmentally programmed healing of chromosomes by telomerase in Tetrahymena. Cell 1991; 67:823–32.

    Article  CAS  Google Scholar 

  104. Diede SJ, Gottschling DE. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerase α and δ. Cell 1999; 99:723–33.

    Article  PubMed  CAS  Google Scholar 

  105. Varley H, Di S SW, Royle NJ. Characterization of terminal deletions at 7q32 and 22q13. 3 healed by de novo telomere addition. Am J Hum Genet 2000; 67:610–22.

    Article  PubMed  CAS  Google Scholar 

  106. Wong AC, Ning Y, Flint J, et al. Molecular characterization of a 130-kb terminal microdeletion at 22q in a child with mild mental retardation. Am J Hum Genet 1997; 60(1):113–20.

    PubMed  CAS  Google Scholar 

  107. Flint J, Thomas K, Micklem G, et al. The relationship between chromosome structure and function at a human telomeric region. Nat Genet 1997; 15(3):252–7.

    Article  PubMed  CAS  Google Scholar 

  108. Morin GB. Recognition of a chromosome truncation site associated with α-thalassaimia by human telomerase. Nature 1991; 353:454–6.

    Article  PubMed  CAS  Google Scholar 

  109. Kampinga HH, Van Waarde-Verhagen MA, Van Assen-Bolt AJ, et al. Reconstitution of active telomerase in primary human foreskin fibroblasts: effects on proliferative characteristics and response to ionizing radiation. Int J Radiat Biol 2004; 80(5):377–88.

    Article  PubMed  CAS  Google Scholar 

  110. Latre L, Genesca A, Martin M, et al. Repair of DNA broken ends is similar in embryonic fibroblasts with and without telomerase. Radiat Res 2004; 162(2):136–42.

    Article  PubMed  CAS  Google Scholar 

  111. Zhou J-Q, Monson EK, Teng S-C, Schultz VP, Zakian VA. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 2000; 289:771–4.

    Article  PubMed  CAS  Google Scholar 

  112. Bosco G, Haber JE. Chromosome break-induced replication leads to nonreciprocal translocations and telomere capture. Genetics 1998; 150:1037–47.

    PubMed  CAS  Google Scholar 

  113. Meltzer PS, Guan X-Y, Trent JM. Telomere capture stabilizes chromosome breakage. Nat Genet 1993; 4:252–5.

    Article  PubMed  CAS  Google Scholar 

  114. Richardson C, Moynahan ME, Jasin M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 1998; 12:3831–42.

    PubMed  CAS  Google Scholar 

  115. Johnson RD, Jasin M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 2000; 19:3398–407.

    Article  PubMed  CAS  Google Scholar 

  116. Richardson C, Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 2000; 405:697–700.

    Article  PubMed  CAS  Google Scholar 

  117. Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 1994; 14(12):8096–106.

    PubMed  CAS  Google Scholar 

  118. Akgun E, Zahn J, Baumes S, et al. Palindrome resolution and recombination in the mammalian germ line. Mol Cell Biol 1997; 17:5559–70.

    PubMed  CAS  Google Scholar 

  119. Waldman AS, Tran H, Goldsmith EC, Resnick MA. Long inverted repeats are an at-risk motif for recombination in mammalian cells. Genetics 1999; 153:1873–83.

    PubMed  CAS  Google Scholar 

  120. Gebow D, Miselis N, Liber H. Homologous and nonhomologous recombinatin resulting in deletion: effects of p53 status, microhomology, and repetitive DNA length and orientation. Mol Cell Biol 2000; 20:4028–35.

    Article  PubMed  CAS  Google Scholar 

  121. O’Hagan RC, Chang S, Maser RS, et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2002; 2(2):149–55.

    Article  PubMed  CAS  Google Scholar 

  122. Hackett JA, Greider CW. End resection initiates genomic instability in the absence of telomerase. Mol Cell Biol 2003; 23:8450–61.

    Article  PubMed  CAS  Google Scholar 

  123. Ingvarsson S. Molecular genetics of breast cancer progression. Semin Cancer Biol 1999; 9:277–88.

    Article  PubMed  CAS  Google Scholar 

  124. Difilippantonio MJ, Petersen S, Chen HT, et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 2002; 196:469–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Murnane, J.P. (2007). The Role of Telomeres in Genomic Instability. In: Gewirtz, D.A., Holt, S.E., Grant, S. (eds) Apoptosis, Senescence, and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-221-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-221-2_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-527-9

  • Online ISBN: 978-1-59745-221-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics