Skip to main content

Intracellular Pathways Involved in DNA Damage and Repair to Neuronal Apoptosis

  • Chapter
Apoptosis, Cell Signaling, and Human Diseases
  • 987 Accesses

Summary

One of the most well known connections between abnormalities of the DNA damage response and neurodegeneration has been the human syndrome of ataxia telangiectasia. However, other syndromes associated with defective DNA damage response also include neurological symptoms as a primary feature of their phenotypes. This argues that defects in the repair of, or response to, DNA damage impact significantly on brain function. This chapter summarizes some recent data underlying the contribution to neuronal function and dysfunction of at least two transcription factors known to be involved in DNA damage sensing and repairing: the tumor suppressor p53 and the component of the DNA mismatch repair system MSH2. Both proteins participate in the cancer prevention machinery for the body as well as in the neurodegenerative process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almong N, Rotter V. Involvement of p53 in cell differentiation and development, Biochem Biophys Acta 1997;1333, F1–F27.

    Google Scholar 

  2. Jacobs WB, Walsh GS, Miller FD. Neuronal survival and p73/p63/p53: a family affair. Neuroscientist 2004;10(5):443–455.

    Article  PubMed  CAS  Google Scholar 

  3. Purdie CA, Harrison DJ, Peter A, et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 1994;9:603–609.

    PubMed  CAS  Google Scholar 

  4. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250:1233–1238.

    Article  PubMed  CAS  Google Scholar 

  5. Donehower LA, Harvey M, Slagle BT, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215–221.

    Article  PubMed  CAS  Google Scholar 

  6. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996;10:1054–1072.

    Article  PubMed  CAS  Google Scholar 

  7. Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 1998;12:2973–2983.

    PubMed  CAS  Google Scholar 

  8. Uberti D, Belloni M, Grilli M, Spano P, Memo M. Induction of tumour-suppressor phosphoprotein p53 in the apoptosis of cultured rat cerebellar neurones triggered by excitatory amino acids. Eur J Neurosci 1998;10:246–254.

    Article  PubMed  CAS  Google Scholar 

  9. Sakhi S, Bruce A, Sun N, Tocco G, Baudry M, Schreiber SS. p53 induction is associated with neuronal damage in the central nervous system. Proc Natl Acad Sci USA 1994;89: 12,028–12,032.

    Google Scholar 

  10. Hughes PE, Alexi, T, Yoshida T, Schreiber SS, Knusel B. Excitotoxic lesion of rat brain with quinolinic acid induces expression of p53 messenger RNA and protein and p53-inducible genes Bax and Gadd-45 in brain areas showing DNA fragmentation. Neuroscience 1996;74: 1143–1160.

    PubMed  CAS  Google Scholar 

  11. Schreiber SS, Sakhi S, Dugich-Djordjevic MM, Nichols NR. Tumor suppressor p53 induction and DNA damage in hippocampal granule cells after adrenalectomy. Exp Neurol 1994;130:368–377.

    Article  PubMed  CAS  Google Scholar 

  12. Chopp M, Li Y, Zhang ZG, Freytag SO. p53 expression in brain after middle cerebral artery occlusion in the rat. Biochem Biophys Res Commun 1992;182:1201–1207.

    Article  PubMed  CAS  Google Scholar 

  13. Crumrine RC, Thomas AL, Morgan PF. Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 1994;14:887–891.

    PubMed  CAS  Google Scholar 

  14. LaFerla FM, Hall CK, Ngo L, Jay G. Extracellular deposition of beta-amyloid upon p53-dependent neuronal cell death in transgenic mice. J Clin Invest 1996;98:1626–1632.

    Article  PubMed  CAS  Google Scholar 

  15. Copani A, Uberti D, Sortino MA, Bruno V, Nicoletti F, Memo M. Activation of cell-cycleassociated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci 2001;24(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  16. Uberti D, Grilli M, Memo M. Contribution of NF-kappaB and p53 in the glutamate-induced apoptosis. Int J Dev Neurosci 2000;18(4–5):447–454.

    Article  PubMed  CAS  Google Scholar 

  17. Morrison RS, Kinoshita Y. The role of p53 in neuronal cell death. Cell Death Differ 2000;7(10):868–879.

    Article  PubMed  CAS  Google Scholar 

  18. De la Monte SM, Sohn YK, Wands JR. Correlates of p53-and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J Neurol Sci 1997;152: 73–83.

    Article  PubMed  Google Scholar 

  19. Amson R, Lassalle J-M, Halley H, et al. Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proc Natl Acad Sci USA 2000;97:5346–5350.

    Article  PubMed  CAS  Google Scholar 

  20. Tyner SD, Venkatachalam S, Choi J, et al. p53 mutant mice that display early ageing-associated phonotypes. Nature 2002;415:45–53.

    Article  PubMed  CAS  Google Scholar 

  21. Pelicci PG. Do tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence? J Clin Invest 2004;113:4–7.

    Article  PubMed  CAS  Google Scholar 

  22. Niida H, et al. Severe growth defect in mouse cells lacking the telomerase RNA component. Nat Gen 1998;19:203–206.

    Article  CAS  Google Scholar 

  23. Ben-Porath I, Weinberg RA. When cells get stressed: an integrative view of cellular senescence. J Clin Invest 2004;113:8–13.

    Article  PubMed  CAS  Google Scholar 

  24. Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS. Evidence for p53-mediated modulation of neuronal viability. J Neurosci 1996 Nov 1;16(21):6753–6765.

    PubMed  CAS  Google Scholar 

  25. Cregan SP, Arbour NA, Maclaurin JG, et al. p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci 2004;24(44): 10,003–10,012.

    Article  CAS  Google Scholar 

  26. Culmsee C, Siewe J, Junker V, et al. Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J Neurosci 2003;23:8586–8595.

    PubMed  CAS  Google Scholar 

  27. Grilli M, Memo M. Possible role of NF-kB and p53 in glutamate-induced pro-apoptotic neuronal pathway. Cell Death Diff 1999;6:22–27.

    Article  CAS  Google Scholar 

  28. Grilli M, Memo M. Nuclear factor-kappaB/Rel proteins: a point of convergence of signalling pathways relevant in neuronal function and dysfunction. Biochem Pharmacol 1999; 57:1–7.

    Article  PubMed  CAS  Google Scholar 

  29. Pizzi M, Goffi F, Boroni F, et al. Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1beta. J Biol Chem 2002;277(23):20,717–20,723.

    Article  PubMed  CAS  Google Scholar 

  30. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y. A single ataxia teleangectasia gene with a product similar to PI-3 kinase. Science 1995;268:1749–1753.

    Article  PubMed  CAS  Google Scholar 

  31. Jung M, Zhang Y, Lee S, Dritschilo A. Correction of radiation sensitivity in ataxia teleangectasia cells by truncated IkBa. Science 1995;268:1619–1621.

    Article  PubMed  CAS  Google Scholar 

  32. Ro K, Xu Y, Aguila MC, Baltimore D. Degeneration of neurons, synapses, and neuropil and glial activation in a murine Atm knockout model of ataxia-teleangectasia. Proc Natl Acad Sci USA 1997;94:12,688–12,693.

    Article  Google Scholar 

  33. Syngal S, Fox EA, Li C, et al. Interpretation of genetic tests results for hereditary nonpolyposis colorectal cancer. Implications for clinical predisposition testing. JAMA 1999;282: 247–253.

    Article  PubMed  CAS  Google Scholar 

  34. Sancar A. Excision repair invades the territory of mismatch repair. Nat Gen 1999;21: 247–249.

    Article  CAS  Google Scholar 

  35. Su S-S, Modrich P. Escherichia Coli mutS-encoded protein binds to mismatched DNA base pairs. Proc Natl Acad Sci 1986;83:5057–5061.

    Article  PubMed  CAS  Google Scholar 

  36. Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TF. Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2 and MSH3 complexes. J Biol Chem 2000;275(47):36,498–36,501.

    Article  PubMed  CAS  Google Scholar 

  37. Gu L, Hong Y, McCulloch S, Watanabe H, Li GM. GATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acid Res 1998; 26(5):1173–1178.

    Article  PubMed  CAS  Google Scholar 

  38. Umar A, Buermeyer AB, Simon JA, et al. Requirement for PCNA in DNA Mismatch Repair at a Step Preceding DNA Resynthesis. Cell 1996;87:65–73.

    Article  PubMed  CAS  Google Scholar 

  39. Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair /pro-apoptotic dual role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 2002;511(2):145–178.

    Article  PubMed  CAS  Google Scholar 

  40. Hickman MJ, Samson LD. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc Natl Acad Sci USA 1999;96:10,764–10,769.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang H, Richards B, Wilson T, et al. Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res 1999;59:3021–3027.

    PubMed  CAS  Google Scholar 

  42. Duckett DR, Bronstein SM, Taya Y, Modrich P. hMutSaand hMutLa-dependent phosphorylation of p53 in response to DNA methylator damage. Proc Natl Acad Sci USA 1999;96:12,384–12,388.

    Article  PubMed  CAS  Google Scholar 

  43. Hardman RA, Afshari CA, Barrett JC. Involvement of mammalian MLH1 in the apoptotic response to peroxide-induced oxidative stress. Cancer Res 2001;61:1392–1397.

    PubMed  CAS  Google Scholar 

  44. De Weese TL, Shipman JM, Larrier NA, et al. Mouse embrionic stem cells carryng one or two defective MSH2 alleles respond abnormally to oxidative stress inflicted by low-level radiation. Proc Natl Acad Sci USA 1998;95:11,915–11,920.

    Article  Google Scholar 

  45. Warthin AS. Heredity with reference to carcinoma. Arch Intern Med 1913;12:546–555.

    Google Scholar 

  46. Lynch HT, Show MW, Magnuson CW, Larsen AL, Krush AJ. Hereditary factors in cancer. Study of two large Midwestern kindreds. Arch Intern Med 1966;117:206–212.

    Article  PubMed  CAS  Google Scholar 

  47. Wheeler JMD, Bodmer WF, Mc Mortensen NJ. DNA mismatch repair genes and colorectal cancer. Gut 2000;47:148–153.

    Article  PubMed  CAS  Google Scholar 

  48. Marietta C, Palombo F, Gallinari P, Jiricny J, Brooks PJ. Expression of long-patch and shortpatch DNA mismatch repair proteins in the embryonic and adult mammalian brain. Mol Brain Res 1998;53:317–320.

    Article  PubMed  CAS  Google Scholar 

  49. Brooks PJ, Marietta C, Goldman D. DNA mismatch repair and DNA methylation in adult brain neurons. J Neurosci 1996;16(3):939–945.

    PubMed  CAS  Google Scholar 

  50. Belloni M, Uberti D, Rizzini C, et al. Distribution and kainate-mediated induction of the DNA mismatch repair protein MSH2 in rat brain. Neuroscience 1999;94:1323–1331.

    Article  PubMed  CAS  Google Scholar 

  51. Belloni M, Uberti D, Rizzini C, Jiricny J, Memo M. Induction of Two DNA Mismatch Repair Proteins, MSH2 and MSH6, in Differentiated Human Neuroblastoma SH-SY5Y Cells Exposed to Doxorubicin. J Neurochem 1999;72:974–979.

    Article  PubMed  CAS  Google Scholar 

  52. Uberti D, Ferrari Toninelli G, Memo M. Involvement of DNA damage and repair systems in neurodegenerative process. Toxicol Lett 2003;139:99–105.

    Article  PubMed  CAS  Google Scholar 

  53. David P. DNA replication and postreplication mismatch repair in cell-free exstracts from cultured human neuroblastoma and fibroblast cells, J Neurosci 1997;17: 8711–8720.

    PubMed  CAS  Google Scholar 

  54. Huntington’s Disease Collaborative Research Study. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72: 971–983.

    Article  Google Scholar 

  55. Wheeler VC, Lebel L-A, Vrbanac V, Teed A, te Riele H, MacDonald ME. Mismatch repair gene MSH2 modifies the timing of early disease in HdhQ111 striatum. Hum Mol Gen 2003; 12:273–281.

    Article  PubMed  CAS  Google Scholar 

  56. Rolig RL, McKinnon PJ. Linking DNA damage and neurodegeneration. Trends Neurosci 2000;23:417–424.

    Article  PubMed  CAS  Google Scholar 

  57. Pratico D, Delanty N. Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease, Am J Med 2000;109:577–585.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Memo, M. (2006). Intracellular Pathways Involved in DNA Damage and Repair to Neuronal Apoptosis. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-199-4_16

Download citation

Publish with us

Policies and ethics