Skip to main content

Apoptosis Induction in T Lymphocytes by HIV

  • Chapter
Apoptosis, Cell Signaling, and Human Diseases

Summary

Infection with human immunodeficiency virus (HIV) is characterized by a progressive decrease in CD4+ T-cell number with a consequent impairment of the immune response and the onset of opportunistic infections and neoplasms. The mechanism responsible of CD4 T-cell depletion is mainly the induction of apoptosis, which can be activated by HIV through various pathways. In this chapter direct and indirect mechanisms of HIV-induced apoptosis in infected and uninfected bystander cells are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lane HC, Fauci AS. Immunologic abnormalities in the acquired immunodeficiency syndrome Ann Rev Immunol 1985;3:477–500.

    CAS  Google Scholar 

  2. Oldstone MB. Viral persistence: mechanisms and consequences. Curr Opin Microbiol 1998 Aug;1(4):436–441.

    Google Scholar 

  3. Peterlin BM, Trono D. Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nat Rev Immunol 2003 Feb;3(2):97–107.

    Google Scholar 

  4. Hilleman MR. Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proc Natl Acad Sci USA 2004 Oct 5;101Suppl 2:14,560–14,566.

    Google Scholar 

  5. Mosier DE. Virus and target cell evolution in human immunodeficiency virus type 1 infection. Immunol Res 2000;21(2–3):253–258.

    Article  PubMed  CAS  Google Scholar 

  6. Gougeon ML, Garcia S, Henney J, et al. Programmed cell death in AIDS-related HIV and SIV infections. AIDS Res Hum Retroviruses 1993;9:553–563.

    Article  PubMed  CAS  Google Scholar 

  7. Douek DC, McFarland RD, Keiser PH, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998;396:690–695.

    Article  PubMed  CAS  Google Scholar 

  8. Pakkar NG, Notermans DW, de Boer RJ, et al. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nat Med 1998;4:208–214.

    Article  Google Scholar 

  9. Hellerstein MK, McCune JM. T cell turnover in HIV-1 disease. Immunity 1997;7:583–589.

    Article  PubMed  CAS  Google Scholar 

  10. Gougeon ML, Laurent-Crawford AG, Hovanessian AG, Montagnier L. Direct and indirect mechanisms mediating apoptosis during HIV infection: contribution to in vivo CD4 T cell depletion Sem Immunol 1993 Jun;5(3):187–194.

    Google Scholar 

  11. Badley AD, Dockrell D, Pray CV. Apoptosis in AIDS Adv Pharmacol 1997;41:271–294.

    CAS  Google Scholar 

  12. Badley AD, Pilon AA, Landay A, Lynch DH. Mechanisms of HIV-associated lymphocyte apoptosis Blood 2000 Nov 1;96(9):2951–2964

    Google Scholar 

  13. Bell DJ, Dockrell DH. Apoptosis in HIV-1 infection. J Eur Acad Dermatol Venereol 2003 Mar;17(2):178–183.

    Google Scholar 

  14. Alimonti JB, Ball TB, Fowke KR. Mechanisms of CD4+ T lymphocyte cell death in human immunodeficiency virus infection and AIDS. J Gen Virol 2003 Jul;84(Pt 7):1649–1661.

    Google Scholar 

  15. Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000 Feb 7;191(3):411–416.

    Google Scholar 

  16. Luciw PA. Human immunodeficiency viruses and their replication. In: Fields BN, Knippe DM, Howley PM, ed. Fields Virology. Philadelphia: Lippincott-Raven 1996;1881–1975.

    Google Scholar 

  17. Roshal M, Zhu Y, Planelles V. Apoptosis in AIDS. Apoptosis 2001 Feb–Apr;6(1–2):103–116.

    Google Scholar 

  18. Littman DR. Chemokine receptors: keys to AIDS pathogenesis? Cell 1998 May 29;93(5): 677–680.

    Google Scholar 

  19. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999;17:657–700.

    Article  PubMed  CAS  Google Scholar 

  20. Blaak H, van’t Wout AB, Brouwer M, Hooibrink B, Hovenkamp E, Schuitemaker H. In vivo HIV-1 infection of CD45RA(+)CD4(+) T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+) T cell decline Proc Natl Acad Sci USA 2000 Feb 1;97(3):1269–1274.

    Google Scholar 

  21. Schuitemaker H, Koot M, Kootstra NA, et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol 1992 Mar;66(3):1354–1360.

    Google Scholar 

  22. Granelli-Piperno A, Delgado E, Finkel V, Paxton W, Steinman RM. Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M-and T-tropic virus to T cells. J Virol 1998 Apr;72(4):2733–2737.

    Google Scholar 

  23. Rowland-Jones SL. HIV/ The deadly passenger in dendritic cells Curr Biol 1999;9: 248–250.

    Google Scholar 

  24. Hazenberg MD, Hamann D, Schuitemaker H, Miedema F. T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol 2000 Oct;1(4):285–289.

    Google Scholar 

  25. Mohri H, Perelson AS, Tung K, et al. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J Exp Med 2001 Nov 5;194(9):1277–1287.

    Google Scholar 

  26. Ribeiro RM, Mohri H, Ho DD, Perelson AS. In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD4+ but not CD8+ T cells depleted? Proc Natl Acad Sci USA 2002 Nov 26;99(24):15,572–15,577.

    Google Scholar 

  27. Gougeon ML. Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 2003 May;3(5):392–404.

    Google Scholar 

  28. Heeney J, Jonker R, Koornstra W, et al. The resistance of HIV-infected chimpanzees to progression to AIDS correlates with absence of HIV-related T-cell dysfunction. J Med Primatol 1993 Feb–May;22(2–3):194–200.

    Google Scholar 

  29. Lenardo M, Chan KM, Hornung F, et al. Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999;17: 221–253.

    Article  PubMed  CAS  Google Scholar 

  30. Meyaard L, Otto SA, Jonker RR, Mijnster MJ, Keep RP, Miedema F. Programmed cell death of T cells in HIV-1 infection. Science (Washington) 1992 Jul 10;257(5067):217–219.

    Google Scholar 

  31. Finkel TH, Tudor-Williams G, Banda NK. Apoptosis occurs predominantly in bystander cells and not in productively infected cells HIV-and SIV-infected lymph nodes. Nature Med 1995 Feb;1(2):129–134.

    Google Scholar 

  32. Katsikis PD, Wunderlich ES, Smith CA, Herzenberg LA. Fas antigen stimulation induces marked apoptosis of T Lymphocytes in human immunodeficiency virus-infected individuals. J Exp Med 1995 Jun 1;181(6):2029–2036.

    Google Scholar 

  33. Dockrell DH, Badley AD, Algeciras-Schimnich A. Activation-induced CD4 T cell death in HIV-positive individuals correlates with Fas susceptibility, CD4+ T cell count, and HIV plasma viral copy number AIDS Res Hum Retroviruses. 1999 Nov 20;15(17):1509–1518.

    Google Scholar 

  34. Westendorp MO, Frank R, Ochsenbauer C, et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995 Jun 8;375(6531):497–500.

    Google Scholar 

  35. Benedict CA, Norris PS, Ware CF. To kill or be killed: viral evasion of apoptosis. Nat Immunol 2002;3(11):1013–1018.

    Article  PubMed  CAS  Google Scholar 

  36. Petit F, Arnoult D, Viollet L, Estaquier J. Intrinsic and extrinsic pathways signaling during HIV-1 mediated cell death. Biochimie 2003;85(8):795–811.

    Article  PubMed  CAS  Google Scholar 

  37. Scaffidi C, Fulda S, Srinivasan A, et al. CD95 (APO-1/Fas) signaling pathways. EMBO J 1998 Mar 16;17(6):1675–1687.

    Google Scholar 

  38. Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell 2000;102:1–4.

    Article  PubMed  CAS  Google Scholar 

  39. Selliah N, Finkel TH. Biochemical mechanisms of HIV induced T cell apoptosis. Cell Death Differ 2001;8(2):127–136.

    Article  PubMed  CAS  Google Scholar 

  40. Arnoult D, Petit F, Lelievre JD, Estaquier J. Mitochondria in HIV-1-induced apoptosis. Biochem Biophys Res Commun 2003 May 9;304(3):561–574.

    Google Scholar 

  41. Chirmule N, Pahwa S. Envelope glycoproteins of human immunodeficiency virus type 1: profound influences on immune functions. Microbiol Re 1996;60(2):386–406.

    CAS  Google Scholar 

  42. Herbein G, Van Lint C, Lovett JL, Verdin E. Distinct mechanisms trigger apoptosis in human immunodeficiency virus type 1-infected and in uninfected bystander T lymphocytes J. Virol 1998;72(1):660–670.

    PubMed  CAS  Google Scholar 

  43. Banda NK, Bernier J, Kurahara DK, et al. Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J Exp Med 1992;176(4): 1099–1106.

    Article  PubMed  CAS  Google Scholar 

  44. Tuosto L, Gilardini Montani MS, Lorenzetti S, et al. Differential susceptibility to monomeric HIV gp120-mediated apoptosis in antigen-activated CD4+ T cell populations. Eur J Immunol 1995;25(10):2907–2916.

    Article  PubMed  CAS  Google Scholar 

  45. Perfettini JL, Castedo M, Roumier T, et al. Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ 2005;12(Suppl1):916–923.

    Article  PubMed  CAS  Google Scholar 

  46. Oyaizu N, McCloskey TW, Than S, Hu R, Kalyanaraman VS, Pahwa S. Cross-linking of CD4 molecules upregulates Fas antigen expression in lymphocytes by inducing interferongamma and tumor necrosis factor-alpha secretion. Blood 1994;84(8):2622–2631.

    PubMed  CAS  Google Scholar 

  47. Tateyama M, Oyaizu N, McCloskey TW, Than S, Pahwa S. CD4 T lymphocytes are primed to express Fas ligand by CD4 cross-linking and to contribute to CD8 T-cell apoptosis via Fas/FasL death signaling pathway. Blood 2000;96:195–202.

    PubMed  CAS  Google Scholar 

  48. Somma F, Tuosto L, Gilardini Montani MS, Di Somma MM, Cundari E, Piccolella E. Engagement of CD4 before TCR triggering regulates both Bax-and Fas (CD95)-mediated apoptosis J Immunol 2000;164(10):5078–5087.

    PubMed  CAS  Google Scholar 

  49. Hashimoto F, Oyaizu N, Kalyanaraman VS, Pahwa S. Modulation of Bcl-2 protein by CD4 cross-linking: a possible mechanism for lymphocyte apoptosis in human immunodeficiency virus infection and for rescue of apoptosis by interleukin-2. Blood 1997;90(2): 745–53.

    PubMed  CAS  Google Scholar 

  50. Arthos J, Cicala C, Selig SM, et al. The role of the CD4 receptor versus HIV coreceptors in envelope-mediated apoptosis in peripheral blood mononuclear cells. Virology 2002;292: 98–106.

    Article  PubMed  CAS  Google Scholar 

  51. Cottrez F, Manca F, Dalgleish AG, Arenzana-Seisdedos F, Capron A, Groux H. Priming of human CD4+ antigen-specific T cells to undergo apoptosis by HIV-infected monocytes. A two-step mechanism involving the gp120 molecule. J Clin Invest 1997;99(2):257–266.

    PubMed  CAS  Google Scholar 

  52. Ahr B, Robert-Hebmann V, Devaux C, Biard-Piechaczyk M. Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology 2004;1(1):12.

    Article  PubMed  CAS  Google Scholar 

  53. Vlahakis SR, Algeciras-Schimnich A, Bou G, et al. Chemokine-receptor activation by env determines the mechanism of death in HIV-infected and uninfected T lymphocytes. J Clin Invest 2001;107(2):207–215.

    Article  PubMed  CAS  Google Scholar 

  54. Ferri KF, Jacotot E, Blanco J, et al. Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J Exp Med 2000; 192(8):1081–1092.

    Article  PubMed  CAS  Google Scholar 

  55. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 1990;345(6270):84–86.

    Article  PubMed  CAS  Google Scholar 

  56. Mann DA, Frankel AD. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 1991;10(7):1733–1739.

    PubMed  CAS  Google Scholar 

  57. Demarchi F, d’Adda di Fagagna F, Falaschi A, Giacca M. Activation of transcription factor NF-kappaB by the Tat protein of human immunodeficiency virus type 1. J Virol 1996; 70(7):4427–4437.

    PubMed  CAS  Google Scholar 

  58. Macian F, Rao A. Reciprocal modulatory interaction between human immunodeficiency virus type 1 Tat and transcription factor NFAT1. Mol Cell Biol 1999;19(5):3645–3653.

    PubMed  CAS  Google Scholar 

  59. Kumar A, Manna SK, Dhawan S, Aggarwal BB. HIV-Tat protein activates c-Jun N-terminal kinase and activator protein-1. J Immunol 1998;161(2):776–781.

    PubMed  CAS  Google Scholar 

  60. Li-Weber M, Laur O, Dern K, Krammer PH. T cell activation-induced and HIV tatenhanced CD95(APO-1/Fas) ligand transcription involves NF-kB Eur. J Immunol 2000; 30(2):661–670.

    Article  CAS  Google Scholar 

  61. Bartz SR, Emerman M. Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol 1999; 73(3):1956–1963.

    PubMed  CAS  Google Scholar 

  62. Sastry KJ, Marin MC, Nehete PN, McConnell K, el-Naggar AK, McDonnell TJ. Expression of human immunodeficiency virus type I tat results in down-regulation of bcl-2 and induction of apoptosis in hematopoietic cells. Oncogene 1996;13(3):487–493.

    PubMed  CAS  Google Scholar 

  63. Zauli G, Gibellini D, Caputo A, et al. The human immunodeficiency virus type-1 Tat protein upregulates Bcl-2 gene expression in Jurkat T-cell lines and primary peripheral blood mononuclear cells. Blood 1995;86(10):3823–3834.

    PubMed  CAS  Google Scholar 

  64. Gummuluru S, Emerman M. Cell cycle-and Vpr-mediated regulation of human immunodeficiency virus type 1 expression in primary and transformed T-cell lines. J Virol 1999; 73(7):5422–5430.

    PubMed  CAS  Google Scholar 

  65. He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 1995;69(11):6705–6711.

    PubMed  CAS  Google Scholar 

  66. Re F, Braaten D, Franke EK, Luban J. Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J Virol 1995; 69(11):6859–6864.

    PubMed  CAS  Google Scholar 

  67. Stewart SA, Poon B, Jowett JB, Chen IS. Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 1997;71(7):5579–5592.

    PubMed  CAS  Google Scholar 

  68. Watanabe N, Yamaguchi T, Akimoto Y, Rattner JB, Hirano H, Nakauchi H. Induction of M-phase arrest and apoptosis after HIV-1 Vpr expression through uncoupling of nuclear and centrosomal cycle in HeLa cells. Exp Cell Res 2000;258(2):261–269.

    Article  PubMed  CAS  Google Scholar 

  69. Jacotot E, Ravagnan L, Loeffler M, et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 2000; 191(1):33–46.

    Article  PubMed  CAS  Google Scholar 

  70. Muthumani K, Zhang D, Hwang DS, et al. Adenovirus encoding HIV-1 Vpr activates caspase 9 and induces apoptotic cell death in both p53 positive and negative human tumor cell lines. Oncogene 2002;21(30):4613–4625.

    Article  PubMed  CAS  Google Scholar 

  71. Muthumani K, Choo AY, Hwang DS, et al. Mechanism of HIV-1 viral protein R-induced apoptosis. Biochem Biophys Res Commun 2003;304(3):583–592.

    Article  PubMed  CAS  Google Scholar 

  72. Conti L, Rainaldi G, Matarrese P, et al. The HIV-1 vpr protein acts as a negative regulator of apoptosis in a human lymphoblastoid T cell line: possible implications for the pathogenesis of AIDS J Exp M 1998;187(3):403–413.

    CAS  Google Scholar 

  73. Conti L, Matarrese P, Varano B, et al. Dual role of the HIV-1 vpr protein in the modulation of the apoptotic response of T cells. J Immunol 2000;165(6):3293–3300.

    PubMed  CAS  Google Scholar 

  74. Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 2001;293(5534):1503–1506.

    Article  PubMed  CAS  Google Scholar 

  75. Kestler HW 3rd, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 1991;65(4):651–662.

    Article  PubMed  CAS  Google Scholar 

  76. Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 1996;2(3):338–342.

    Article  PubMed  CAS  Google Scholar 

  77. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 1998;391(6665): 397–401.

    Article  PubMed  CAS  Google Scholar 

  78. Collins KL. Resistance of HIV-infected cells to cytotoxic T lymphocytes. Microbes Infect 2004;6(5):494–500.

    Article  PubMed  CAS  Google Scholar 

  79. Garcia JV, Miller AD. Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 1991;350(6318):508–511.

    Article  PubMed  CAS  Google Scholar 

  80. Xu XN, Laffert B, Screaton GR, et al. Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor zeta chain. J Exp Med 1999;189(9):1489–1496.

    Article  PubMed  CAS  Google Scholar 

  81. Arold ST, Baur AS. Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein. Trends Biochem Sci 2001;26(6):356–363.

    Article  PubMed  CAS  Google Scholar 

  82. Fackler OT, Baur AS. Live and let die: Nef functions beyond HIV replication. Immunity 2002;16(4):493–497.

    Article  PubMed  CAS  Google Scholar 

  83. Xu XN, Screaton GR, Gotch FM, et al. Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J Exp Med 1997;186(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  84. Geleziunas R, Xu W, Takeda K, Ichijo H, Greene WC. HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 2001;410(6830):834–838.

    Article  PubMed  CAS  Google Scholar 

  85. Wolf D, Witte V, Laffert B, Blume K, Stromer E, Trapp S, d’Aloja P, Schurmann A, Baur AS. HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med 2001;7(11):1217–1224.

    Article  PubMed  CAS  Google Scholar 

  86. Strack PR, Frey MW, Rizzo CJ, et al. Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc Natl Acad Sci USA 1996;93(18):9571–9576.

    Article  PubMed  CAS  Google Scholar 

  87. Nie Z, Phenix BN, Lum JJ, et al. HIV-1 protease processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death Differ 2002;9(11):1172–1184.

    Article  PubMed  CAS  Google Scholar 

  88. Willey RL, Maldarelli F, Martin MA, Strebel K. Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 1992;66(12):7193–7200.

    PubMed  CAS  Google Scholar 

  89. Kerkau T, Bacik I, Bennink JR, et al. The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med 1997;185(7):1295–1305.

    Article  PubMed  CAS  Google Scholar 

  90. Gonzalez ME, Carrasco L. Human immunodeficiency virus type 1 VPU protein affects Sindbis virus glycoprotein processing and enhances membrane permeabilization. Virology 2001;279(1):201–209.

    Article  PubMed  CAS  Google Scholar 

  91. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996; 271(5255):1582–1586.

    Article  PubMed  CAS  Google Scholar 

  92. Yagi T, Sugimoto A, Tanaka M, et al. Fas/FasL interaction is not involved in apoptosis of activated CD4+ T cells upon HIV-1 infection in vitro. J Acquir Immune Defic Syndr Hum Retrovirol 1998;18(4):307–315.

    PubMed  CAS  Google Scholar 

  93. Gandhi RT, Chen BK, Straus SE, Dale JK, Lenard MJ, Baltimore D. HIV-1 directly kills CD4+ T cells by a Fas-independent mechanism. J Exp Med 1998;187:1113–1122.

    Article  PubMed  CAS  Google Scholar 

  94. Petit F, Arnoult D, Lelievre JD, et al. Productive HIV-1 infection of primary CD4+ T cells induces mitochondrial membrane permeabilization leading to a caspase-independent cell death. J Biol Chem 2002;277(2):1477–1487.

    Article  PubMed  CAS  Google Scholar 

  95. Re M, Gibellini D, Aschbacher R, et al. High levels of HIV-1 replication show a clear correlation with downmodulation of Bcl-2 protein in peripheral blood lymphocytes of HIV-1-seropositive subjects. J Med Virol 1998;56:66–73

    Article  PubMed  CAS  Google Scholar 

  96. Levy JA. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 1993; 57:183–289

    PubMed  CAS  Google Scholar 

  97. Fauci AS. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 1988;239(4840):617–622.

    Article  PubMed  CAS  Google Scholar 

  98. Howcroft TK, Strebel K, Martin MA, Singer DS. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science 1993;260(5112):1320–1322.

    Article  PubMed  CAS  Google Scholar 

  99. Crise B, Buonocore L, Rose JK. CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J Virol 1990;64(11):5585–5593.

    PubMed  CAS  Google Scholar 

  100. Salghetti S, Mariani R, Skowronski J. Human immunodeficiency virus type 1 Nef and p56lck protein-tyrosine kinase interact with a common element in CD4 cytoplasmic tail. Proc Natl Acad Sci USA 1995;92(2):349–353.

    Article  PubMed  CAS  Google Scholar 

  101. Zauli G, Gibellini D, Secchiero P, et al. Human immunodeficiency virus type 1 Nef protein sensitizes CD4(+) T lymphoid cells to apoptosis via functional upregulation of the CD95/CD95 ligand pathway. Blood 1999;93(3):1000–1010.

    PubMed  CAS  Google Scholar 

  102. Piazza C, Gilardini Montani MS, Moretti S, Cundari E, Piccolella E. Cutting edge: CD4+ T cells kill CD8+ T cells via Fas/Fas ligand-mediated apoptosis. Immunol 1997;158(4): 1503–1506.

    CAS  Google Scholar 

  103. Oyaizu N, Adachi Y, Hashimoto F, et al. Monocytes express Fas ligand upon CD4 crosslinking and induce CD4+ T cells apoptosis: a possible mechanism of bystander cell death in HIV infection. J Immunol 1997;158(5):2456–2463.

    PubMed  CAS  Google Scholar 

  104. Badley AD, Dockrell D, Simpson M, et al. Macrophage-dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by FasL and tumor necrosis factor. J Exp Med 1997;185(1):55–64.

    Article  PubMed  CAS  Google Scholar 

  105. Lifson JD, Reyes GR, McGrath MS, Stein BS, Engleman EG. AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 1986;232(4754):1123–1127.

    Article  PubMed  CAS  Google Scholar 

  106. Richman DD, Bozzette SA. The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis 1994;169(5):968–974.

    PubMed  CAS  Google Scholar 

  107. Castedo M, Perfettini JL, Roumier T, Kroemer G. Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 2002;9(12):1287–1293.

    Article  PubMed  CAS  Google Scholar 

  108. Amendola A, Gougeon ML, Poccia F, Bondurand A, Fesus L, Piacentini M. Induction of “tissue” transglutaminase in HIV pathogenesis: evidence for high rate of apoptosis of CD4+ T lymphocytes and accessory cells in lymphoid tissues. Proc Natl Acad Sci USA 1996;93(20):11,057–11,062.

    Article  PubMed  CAS  Google Scholar 

  109. Clerici M, Shearer GM. A TH1->TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 1993;14(3):107–111.

    Article  PubMed  CAS  Google Scholar 

  110. Adachi Y, Oyaizu N, Than S, McCloskey TW, Pahwa S. IL-2 rescues in vitro lymphocyte apoptosis in patients with HIV infection: correlation with its ability to block cultureinduced down-modulation of Bcl-2. J Immunol 1996;157(9):4184–4193.

    PubMed  CAS  Google Scholar 

  111. Waldmann T, Tagaya Y, Bamford R. Interleukin-2, interleukin-15, and their receptors. Int Rev Immunol 1998;16(3–4):205–226.

    PubMed  CAS  Google Scholar 

  112. Naora H, Gougeon ML. Interleukin-15 is a potent survival factor in the prevention of spontaneous but not CD95-induced apoptosis in CD4 and CD8 T lymphocytes of HIV-infected individuals. Correlation with its ability to increase BCL-2 expression. Cell Death Differ 1999;6(10):1002–1011.

    Article  PubMed  CAS  Google Scholar 

  113. Clerici M, Sarin A, Berzofsky JA, et al. Antigen-stimulated apoptotic T-cell death in HIV infection is selective for CD4+ T cells, modulated by cytokines and effected by lymphotoxin. AIDS 1996;10(6):603–611.

    Article  PubMed  CAS  Google Scholar 

  114. Hammer SM. Advances in antiretroviral therapy and viral load monitoring. AIDS 1996;10Suppl 3: S1–S11.

    PubMed  CAS  Google Scholar 

  115. Johnson N, Parkin JM. Anti-retroviral therapy reverses HIV-associated abnormalities in lymphocyte apoptosis. Clin Exp Immunol 1998;113(2):229–234.

    Article  PubMed  CAS  Google Scholar 

  116. Badley AD, Parato K, Cameron DW, et al. Dynamic correlation of apoptosis and immune activation during treatment of HIV infection. Cell Death Differ 1999;6(5):420–432.

    Article  PubMed  CAS  Google Scholar 

  117. Phenix BN, Angel JB, Mandy F, et al. Decreased HIV-associated T cell apoptosis by HIV protease inhibitors. AIDS Res Hum Retroviruses 2000;16(6):559–567.

    Article  PubMed  CAS  Google Scholar 

  118. Sloand EM, Kumar PN, Kim S, Chaudhuri A, Weichold FF, Young NS. Human immunodeficiency virus type 1 protease inhibitor modulates activation of peripheral blood CD4(+) T cells and decreases their susceptibility to apoptosis in vitro and in vivo. Blood 1999; 94(3):1021–1027.

    PubMed  CAS  Google Scholar 

  119. Phenix BN, Lum JJ, Nie Z, Sanchez-Dardon J, Badley AD. Antiapoptotic mechanism of HIV protease inhibitors: preventing mitochondrial transmembrane potential loss. Blood 2001;98(4):1078–1085.

    Article  PubMed  CAS  Google Scholar 

  120. Lu W, Andrieu JM. HIV protease inhibitors restore impaired T-cell proliferative response in vivo and in vitro: a viral-suppression-independent mechanism. Blood 2000;96(1):250–258.

    PubMed  CAS  Google Scholar 

  121. Phenix BN, Cooper C, Owen C, Badley AD. Modulation of apoptosis by HIV protease inhibitors. Apoptosis 2002;7(4):295–312.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Saveria, M., Montani, G. (2006). Apoptosis Induction in T Lymphocytes by HIV. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-199-4_14

Download citation

Publish with us

Policies and ethics