Skip to main content

Physiological and Proteomic Approaches to Understanding Human Sperm Function

Prefertilization Events

  • Chapter
The Genetics of Male Infertility

Abstract

Sperm dysfunction is the single most common defined cause of infertility. Approximately 1 in 15 men are subfertile and the condition is increasing in frequency. However, the diagnosis is poor and, excluding assisted conception, there is no treatment because of our limited understanding of the cellular, biochemical, and molecular functioning of the spermatozoon. The underlying premise of our research program is to establish a rudimentary understanding of the processes necessary for successful fertilization. We detail advances in our understanding of calcium signaling in the cell and outline genetic and proteomic technologies that are being used to improve the diagnosis of the condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hull MG Glazener CM Kelly NJ, et al. Population study of causes, treatment, and outcome of infertility. Br Med J (Clin Res Ed) 1985;291:1693–1697.

    Article  CAS  Google Scholar 

  2. Templeton A Fraser C Thompson B. The epidemiology of infertility in Aberdeen. BMJ 1990;301:148–152.

    PubMed  CAS  Google Scholar 

  3. Andersen AG Jensen TK Carlsen E, et al. High frequency of sub-optimal semen quality in an unselected population of young men. Hum Reprod 2000;15:366–372.

    Article  PubMed  CAS  Google Scholar 

  4. Wild S Roglic G Green A Sicree R King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047–1053.

    Article  PubMed  Google Scholar 

  5. Sharpe RM Irvine DS. How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? BMJ 2004;328:447–451.

    Article  PubMed  CAS  Google Scholar 

  6. Bjorndahl L Barratt CL. Semen analysis: setting standards for the measurement of sperm numbers. J Androl 2005;26:11.

    PubMed  Google Scholar 

  7. Tomlinson MJ Kessopoulou E Barratt CL. The diagnostic and prognostic value of traditional semen parameters. J Androl 1999;20:588–593.

    PubMed  CAS  Google Scholar 

  8. Larsen L Scheike T Jensen TK, et al. Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. The Danish First Pregnancy Planner Study Team. Hum Reprod 2000;15:1562–1567.

    Article  PubMed  CAS  Google Scholar 

  9. Comhaire F. Clinical andrology: from evidence-base to ethics. The ‘E’ quintet in clinical andrology. Hum Reprod 2000;15:2067–2071.

    Article  PubMed  CAS  Google Scholar 

  10. Muller CH. Rationale, interpretation, validation, and uses of sperm function tests. J Androl 2000;21:10–30.

    PubMed  CAS  Google Scholar 

  11. Ivic A Onyeaka H Girling A, et al. Critical evaluation of methylcellulose as an alternative medium in sperm migration tests. Hum Reprod 2002;17:143–149.

    Article  PubMed  Google Scholar 

  12. Aitken RJ Baker MA O’Bryan M. Shedding light on chemiluminescence: the application of chemiluminescence in diagnostic andrology. J Androl 2004;25:455–465.

    PubMed  CAS  Google Scholar 

  13. Seli E Sakkas D. Spermatozoal nuclear determinants of reproductive outcome: implications for ART. Hum Reprod Update 2005;11:337–349.

    Article  PubMed  CAS  Google Scholar 

  14. Bungum M Humaidan P Spano M Jepson K Bungum L Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod 2004;19:1401–1408.

    Article  PubMed  CAS  Google Scholar 

  15. Gandini L Lombardo F Paoli D, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod 2004;19:1409–1417.

    Article  PubMed  CAS  Google Scholar 

  16. Kamischke A Nieschlag E. Diagnosis and Treatment of Male Infertility. Cambridge University Press, Cambridge; 2002.

    Google Scholar 

  17. Greco E Romano S Iacobelli M, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 2005;20:2590–2594.

    Article  PubMed  CAS  Google Scholar 

  18. Maher ER Afnan M Barratt CL. Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Hum Reprod 2003;18:2508–2511.

    Article  PubMed  Google Scholar 

  19. Hansen M Bower C Milne E de Klerk N Kurinczuk JJ. Assisted reproductive technologies and the risk of birth defects—a systematic review. Hum Reprod 2005;20:328–338.

    Article  PubMed  Google Scholar 

  20. Barratt CL Publicover SJ. Interaction between sperm and zona pellucida in male fertility. Lancet 2001;358:1660–1662.

    Article  PubMed  CAS  Google Scholar 

  21. Krausz C Bonaccorsi L Maggio P, et al. Two functional assays of sperm responsiveness to progesterone and their predictive values in in-vitro fertilization. Hum Reprod 1996;11:1661–1667.

    PubMed  CAS  Google Scholar 

  22. Jimenez-Gonzalez C Michaelangeli F Harper CV Barratt CLR Publicover S. Calcium signalling in human spermatozoa: a specialized “toolkit” of channels, transporters and stores. Hum Reprod Update 2006;12:253–267.

    Article  PubMed  CAS  Google Scholar 

  23. Berridge MJ. Unlocking the secrets of cell signaling. Annu Rev Physiol 2005;67:1–21.

    Article  PubMed  CAS  Google Scholar 

  24. Berridge MJ Lipp P Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000;1:11–21.

    Article  PubMed  CAS  Google Scholar 

  25. Harper CV Publicover SJ. Reassessing the role of progesterone in fertilization—compartmentalized calcium signalling in human spermatozoa? Hum Reprod 2005;20:2675–2680.

    Article  PubMed  CAS  Google Scholar 

  26. Blackmore PF. Thapsigargin elevates and potentiates the ability of progesterone to increase intracellular free calcium in human sperm: possible role of perinuclear calcium. Cell Calcium 1993;14:53–60.

    Article  PubMed  CAS  Google Scholar 

  27. O’Toole CM Arnoult C Darszon A Steinhardt RA Florman HM. Ca(2+) entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Mol Biol Cell 2000;11:1571–1584.

    PubMed  CAS  Google Scholar 

  28. Evans JP Florman HM. The state of the union: the cell biology of fertilization. Nat Cell Biol 2002;4:s57–s63.

    Article  PubMed  Google Scholar 

  29. Ho HC Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001;65:1606–1615.

    Article  PubMed  CAS  Google Scholar 

  30. Harper CV Barratt CL Publicover SJ. Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca(2+)](i) oscillations and cyclical transitions in flagellar beating. J Biol Chem 2004;279:46,315–46,325.

    Article  PubMed  CAS  Google Scholar 

  31. Darszon A Nishigaki T Wood C Trevino CL Felix R Beltran C. Calcium channels and Ca2+ fluctuations in sperm physiology. Int Rev Cytol 2005;243:79–172.

    PubMed  CAS  Google Scholar 

  32. Michelangeli F Ogunbayo OA Wootton LL. A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol 2005;17:135–140.

    Article  PubMed  CAS  Google Scholar 

  33. Toyoshima C Inesi G. Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 2004;73:269–292.

    Article  PubMed  CAS  Google Scholar 

  34. Berrios J Osses N Opazo C, et al. Intracellular Ca2+ homeostasis in rat round spermatids. Biol Cell. 1998;90:391–398.

    Article  PubMed  CAS  Google Scholar 

  35. Wennemuth G Babcock DF Hille B. Calcium clearance mechanisms of mouse sperm. J Gen Physiol 2003;122:115–128.

    Article  PubMed  CAS  Google Scholar 

  36. Gunaratne HJ Neill AT Vacquier VD. Plasma membrane calcium ATPase is concentrated in the head of sea urchin spermatozoa. J Cell Physiol 2006;207:413–419.

    Article  PubMed  CAS  Google Scholar 

  37. Okunade GW Miller ML Pyne GJ, et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 2004;279:33,742–33,750.

    Article  PubMed  CAS  Google Scholar 

  38. Schuh K Cartwright EJ Jankevics E, et al. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 2004;279:28,220–28,226.

    Article  PubMed  CAS  Google Scholar 

  39. Prasad V Okunade GW Miller ML Shull GE. Phenotypes of SERCA and PMCA knockout mice. Biochem Biophys Res Commun 2004;322:1192–1203.

    Article  PubMed  CAS  Google Scholar 

  40. Harper C Wootton L Michelangeli F Lefievre L Barratt C Publicover S. Secretory pathway Ca(2+)-ATPase (SPCA1) Ca(2)+ pumps, not SERCAs, regulate complex [Ca(2+)](i) signals in human spermatozoa. J Cell Sci 2005;118:1673–1685.

    Article  PubMed  CAS  Google Scholar 

  41. Wictome M Henderson I Lee AG East JM. Mechanism of inhibition of the calcium pump of sarcoplasmic reticulum by thapsigargin. Biochem J 1992;283:525–529.

    PubMed  CAS  Google Scholar 

  42. Brown GR Benyon SL Kirk CJ, et al. Characterisation of a novel Ca2+ pump inhibitor (bis-phenol) and its effects on intracellular Ca2+ mobilization. Biochim Biophys Acta 1994;1195:252–258.

    Article  PubMed  Google Scholar 

  43. Wuytack F Raeymaekers L Missiaen L. PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store. Pflugers Arch 2003;446:148–153.

    PubMed  CAS  Google Scholar 

  44. Wootton LL Argent CC Wheatley M Michelangeli F. The expression, activity and localisation of the secretory pathway Ca2+-ATPase (SPCA1) in different mammalian tissues. Biochim Biophys Acta 2004;1664:189–197.

    Article  PubMed  CAS  Google Scholar 

  45. Ho HC Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod 2003;68:1590–1596.

    Article  PubMed  CAS  Google Scholar 

  46. Kirkman-Brown JC Barratt CL Publicover SJ. Nifedipine reveals the existence of two discrete components of the progesterone-induced [Ca2+]i transient in human spermatozoa. Dev Biol 2003;259:71–82.

    Article  PubMed  CAS  Google Scholar 

  47. Blackmore PF. Extragenomic actions of progesterone in human sperm and progesterone metabolites in human platelets. Steroids 1999;64:149–156.

    Article  PubMed  CAS  Google Scholar 

  48. Blackmore PF Eisoldt S. The neoglycoprotein mannose-bovine serum albumin, but not progesterone, activates T-type calcium channels in human spermatozoa. Mol Hum Reprod 1999;5:498–506.

    Article  PubMed  CAS  Google Scholar 

  49. Blackmore PF Beebe SJ Danforth DR Alexander N. Progesterone and 17 alphahydroxyprogesterone. Novel stimulators of calcium influx in human sperm. J Biol Chem 1990;265:1376–1380.

    PubMed  CAS  Google Scholar 

  50. Garcia MA Meizel S. Progesterone-mediated calcium influx and acrosome reaction of human spermatozoa: pharmacological investigation of T-type calcium channels. Biol Reprod 1999;60:102–109.

    Article  PubMed  CAS  Google Scholar 

  51. Bonaccorsi L Forti G Baldi E. Low-voltage-activated calcium channels are not involved in capacitation and biological response to progesterone in human sperm. Int J Androl 2001;24:341–351.

    Article  PubMed  CAS  Google Scholar 

  52. Fraire-Zamora JJ Gonzalez-Martinez MT. Effect of intracellular pH on depolarization-evoked calcium influx in human sperm. Am J Physiol Cell Physiol 2004;287:C1688–C1696.

    Article  PubMed  CAS  Google Scholar 

  53. Fukami K Yoshida M Inoue T, et al. Phospholipase Cdelta4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol 2003;161:79–88.

    Article  PubMed  CAS  Google Scholar 

  54. Baldi E Casano R Falsetti C Krausz C Maggi M Forti G. Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa. J Androl 1991;12:323–330.

    PubMed  CAS  Google Scholar 

  55. Kirkman-Brown JC Barratt CL Publicover SJ. Slow calcium oscillations in human spermatozoa. Biochem J 2004;378:827–832.

    Article  PubMed  CAS  Google Scholar 

  56. De Blas G Michaut M Trevino CL, et al. The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis. J Biol Chem 2002;277:49,326–49,331.

    Article  PubMed  CAS  Google Scholar 

  57. Herrick SB Schweissinger DL Kim SW Bayan KR Mann S Cardullo RA. The acrosomal vesicle of mouse sperm is a calcium store. J Cell Physiol 2005;202:663–671.

    Article  PubMed  CAS  Google Scholar 

  58. De Jonge C. Biological basis for human capacitation. Hum Reprod Update 2005;11:205–214.

    Article  PubMed  Google Scholar 

  59. Suarez SS Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update 2006;12:23–37.

    Article  PubMed  CAS  Google Scholar 

  60. Barratt CL Kirkman-Brown J. Man-made versus female-made environmentwill the real capacitation please stand up? Hum Reprod Update 2006;12:1–2.

    Article  PubMed  Google Scholar 

  61. Williams M Hill CJ Scudamore I Dunphy B Cooke ID Barratt CL. Sperm numbers and distribution within the human fallopian tube around ovulation. Hum Reprod 1993;8:2019–2026.

    PubMed  CAS  Google Scholar 

  62. Pacey AA Davies N Warren MA Barratt CL Cooke ID. Hyperactivation may assist human spermatozoa to detach from intimate association with the endosalpinx. Hum Reprod 1995;10:2603–2609.

    PubMed  CAS  Google Scholar 

  63. Moseley FL Jha KN Bjorndahl L, et al. Protein tyrosine phosphorylation, hyperactivation and progesterone-induced acrosome reaction are enhanced in IVF media: an effect that is not associated with an increase in protein kinase A activation. Mol Hum Reprod 2005;11:523–529.

    Article  PubMed  CAS  Google Scholar 

  64. Liu de Y Garrett C Baker HW. Clinical application of sperm-oocyte interaction tests in in vitro fertilization—embryo transfer and intracytoplasmic sperm injection programs. Fertil Steril 2004;82:1251–1263.

    Article  PubMed  Google Scholar 

  65. Wassarman PM. Zona pellucida glycoproteins. Annu Rev Biochem 1988;57:415–442.

    Article  PubMed  CAS  Google Scholar 

  66. Bleil JD Greve JM Wassarman PM. Identification of a secondary sperm receptor in the mouse egg zona pellucida: role in maintenance of binding of acrosomereacted sperm to eggs. Dev Biol 1988;128:376–385.

    Article  PubMed  CAS  Google Scholar 

  67. Mortillo S Wassarman PM. Differential binding of gold-labeled zona pellucida glycoproteins mZP2 and mZP3 to mouse sperm membrane compartments. Development 1991;113:141–149.

    PubMed  CAS  Google Scholar 

  68. Tsubamoto H Hasegawa A Nakata Y Naito S Yamasaki N Koyama K. Expression of recombinant human zona pellucida protein 2 and its binding capacity to spermatozoa. Biol Reprod 1999;61:1649–1654.

    Article  PubMed  CAS  Google Scholar 

  69. Bleil JD Wassarman PM. Sperm-egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev Biol 1983;95:317–324.

    Article  PubMed  CAS  Google Scholar 

  70. Lefievre L Conner SJ Salpekar A, et al. Four zona pellucida glycoproteins are expressed in the human. Hum Reprod 2004;19:1580–1586.

    Article  PubMed  CAS  Google Scholar 

  71. Conner SJ Lefievre L Hughes DC Barratt CL. Cracking the egg: increased complexity in the zona pellucida. Hum Reprod 2005;20:1148–1152.

    Article  PubMed  CAS  Google Scholar 

  72. Boja ES Hoodbhoy T Fales HM Dean J. Structural characterization of native mouse zona pellucida proteins using mass spectrometry. J Biol Chem 2003;278:34,189–34,202.

    Article  PubMed  CAS  Google Scholar 

  73. Rankin TL Coleman JS Epifano O, et al. Fertility and taxon-specific sperm binding persist after replacement of mouse sperm receptors with human homologs. Dev Cell 2003;5:33–43.

    Article  PubMed  CAS  Google Scholar 

  74. Dell A Chalabi S Easton RL, et al. Murine and human zona pellucida 3 derived from mouse eggs express identical O-glycans. Proc Natl Acad Sci USA 2003;100:15,631–15,636.

    Article  PubMed  CAS  Google Scholar 

  75. Chakravarty S Suraj K Gupta SK. Baculovirus-expressed recombinant human zona pellucida glycoprotein-B induces acrosomal exocytosis in capacitated spermatozoa in addition to zona pellucida glycoprotein-C. Mol Hum Reprod 2005;11:365–372.

    Article  PubMed  CAS  Google Scholar 

  76. Caballero-Campo P Chirinos M Fan XJ, et al. Biological effects of recombinant human zona pellucida proteins on sperm function. Biol Reprod 2006;74:760–768.

    Article  PubMed  CAS  Google Scholar 

  77. Prasad SV Wilkins B Skinner SM Dunbar BS. Evaluating zona pellucida structure and function using antibodies to rabbit 55 kDa ZP protein expressed in baculovirus expression system. Mol Reprod Dev 1996;43:519–529.

    Article  PubMed  CAS  Google Scholar 

  78. Topper EK Kruijt L Calvete J Mann K Topfer-Petersen E Woelders H. Identification of bovine zona pellucida glycoproteins. Mol Reprod Dev 1997;46:344–350.

    Article  PubMed  CAS  Google Scholar 

  79. Govind CK Hasegawa A Koyama K Gupta SK. Delineation of a conserved B cell epitope on bonnet monkey (Macaca radiata) and human zona pellucida glycoproteinB by monoclonal antibodies demonstrating inhibition of sperm-egg binding. Biol Reprod 2001;62:67–75.

    Article  Google Scholar 

  80. Yurewicz EC Sacco AG Gupta SK Xu N Gage DA. Hetero-oligomerizationdependent binding of pig oocyte zona pellucida glycoproteins ZPB and ZPC to boar sperm membrane vesicles. J Biol Chem 1998;273:7488–7494.

    Article  PubMed  CAS  Google Scholar 

  81. Hoodbhoy T Joshi S Boja ES Williams SA Stanley P Dean J. Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins. J Biol Chem 2005;280:12,721–12,731.

    Article  PubMed  CAS  Google Scholar 

  82. Matzuk MM Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol 2002;4:s41–s49.

    Article  PubMed  Google Scholar 

  83. Wiederkehr C Basavaraj R Sarrauste de Menthiere C, et al. Database model and specification of GermOnline Release 2.0, a cross-species community annotation knowledgebase on germ cell differentiation. Bioinformatics 2004;20:808–811.

    Article  PubMed  CAS  Google Scholar 

  84. Miyamoto T Hasuike S Yogev L, et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 2003;362:1714–1719.

    Article  PubMed  CAS  Google Scholar 

  85. Pirrello O Machev N Schimdt F Terriou P Menezo Y Viville S. Search for mutations involved in human globozoospermia. Hum Reprod 2005;20:1314–1318.

    Article  PubMed  CAS  Google Scholar 

  86. Ostermeier GC Dix DJ Miller D Khatri P Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet 2002;360:772–777.

    Article  PubMed  CAS  Google Scholar 

  87. Ainsworth C. Cell biology: the secret life of sperm. Nature 2005;436:770–771.

    Article  PubMed  CAS  Google Scholar 

  88. Irish JM Hovland R Krutzik PO, et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 2004;118:217–228.

    Article  PubMed  CAS  Google Scholar 

  89. Naaby-Hansen S Flickinger CJ Herr JC. Two-dimensional gel electrophoretic analysis of vectorially labeled surface proteins of human spermatozoa. Biol Reprod 1997;56:771–787.

    Article  PubMed  CAS  Google Scholar 

  90. Shetty J Naaby-Hansen S Shibahara H Bronson R Flickinger CJ Herr JC. Human sperm proteome: immunodominant sperm surface antigens identified with sera from infertile men and women. Biol Reprod 1999;61:61–69.

    Article  PubMed  CAS  Google Scholar 

  91. Shibahara H Sato I Shetty J, et al. Two-dimensional electrophoretic analysis of sperm antigens recognized by sperm immobilizing antibodies detected in infertile women. J Reprod Immunol 2002;53:1–12.

    Article  PubMed  CAS  Google Scholar 

  92. Bohring C Krause W. Immune infertility: towards a better understanding of sperm (auto)-immunity. The value of proteomic analysis. Hum Reprod 2003;18:915–924.

    Article  PubMed  CAS  Google Scholar 

  93. Shetty J Diekman AB Jayes FC, et al. Differential extraction and enrichment of human sperm surface proteins in a proteome: identification of immunocontraceptive candidates. Electrophoresis 2001;22:3053–3066.

    Article  PubMed  CAS  Google Scholar 

  94. Naaby-Hansen S Mandal A Wolkowicz MJ, et al. CABYR, a novel calciumbinding tyrosine phosphorylation-regulated fibrous sheath protein involved in capacitation. Dev Biol 2002;242:236–254.

    Article  PubMed  CAS  Google Scholar 

  95. Ficarro S Chertihin O Westbrook VA, et al. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 2003;278:11,579–11,589.

    Article  PubMed  CAS  Google Scholar 

  96. Naz RK Rajesh PB. Role of tyrosine phosphorylation in sperm capacitation/ acrosome reaction. Reprod Biol Endocrinol 2004;2:75.

    Article  PubMed  CAS  Google Scholar 

  97. Ostrowski LE Blackburn K Radde KM, et al. A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 2002;1:451–465.

    Article  PubMed  CAS  Google Scholar 

  98. Lefievre L Barratt CL Harper CV, et al. Physiological and proteomic approaches to studying prefertilization events in the human. Reprod Biomed Online 2003;7:419–427.

    Article  PubMed  CAS  Google Scholar 

  99. Pixton KL Deeks ED Flesch FM, et al. Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum Reprod 2004;19:1438–1447.

    Article  PubMed  Google Scholar 

  100. Publicover SJ Barratt CL. Voltage-operated Ca2+ channels and the acrosome reaction: which channels are present and what do they do? Hum Reprod 1999;14:873–879.

    Article  PubMed  CAS  Google Scholar 

  101. Ikawa M Wada I Kominami K, et al. The putative chaperone calmegin is required for sperm fertility. Nature 1997;387:607–611.

    Article  PubMed  CAS  Google Scholar 

  102. Cho C Bunch DO Faure JE, et al. Fertilization defects in sperm from mice lacking fertilin beta. Science 1998;281:1857–1859.

    Article  PubMed  CAS  Google Scholar 

  103. Cho C Ge H Branciforte D Primakoff P Myles DG. Analysis of mouse fertilin in wild-type and fertilin beta(−/−) sperm: evidence for C-terminal modification, alpha/beta dimerization, and lack of essential role of fertilin alpha in sperm-egg fusion. Dev Biol 2000;222:289–295.

    Article  PubMed  CAS  Google Scholar 

  104. Nishimura H Cho C Branciforte DR Myles DG Primakoff P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol 2001;233:204–213.

    Article  PubMed  CAS  Google Scholar 

  105. Shamsadin R Adham IM Nayernia K Heinlein UA Oberwinkler H Engel W. Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 1999;61:1445–1451.

    Article  PubMed  CAS  Google Scholar 

  106. Kim E Yamashita M Nakanishi T, et al. Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J Biol Chem 2006;281:5634–5639.

    Article  PubMed  CAS  Google Scholar 

  107. Baba T Azuma S Kashiwabara S Toyoda Y. Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem 1994;269:31,845–31,849.

    PubMed  CAS  Google Scholar 

  108. Kang-Decker N Mantchev GT Juneja SC McNiven MA van Deursen JM. Lack of acrosome formation in Hrb-deficient mice. Science 2001;294:1531–1533.

    Article  PubMed  CAS  Google Scholar 

  109. Butler A He X Gordon RE Wu HS Gatt S Schuchman EH. Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. Am J Pathol 2002;161:1061–1075.

    PubMed  CAS  Google Scholar 

  110. Sampson MJ Decker WK Beaudet AL, et al. Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem 2001;276:39,206–39,212.

    Article  PubMed  CAS  Google Scholar 

  111. Miki K Willis WD Brown PR Goulding EH Fulcher KD Eddy EM. Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev Biol 2002;248:331–342.

    Article  PubMed  CAS  Google Scholar 

  112. Gyamera-Acheampong C Tantibhedhyangkul J Weerachatyanukul W, et al. Sperm from mice genetically deficient for the PCSK4 proteinase exhibit accelerated capacitation, precocious acrosome reaction, reduced binding to egg zona pellucida, and impaired fertilizing ability. Biol Reprod 2005;4:666–673.

    Google Scholar 

  113. Hagaman JR Moyer JS Bachman ES, et al. Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci USA. 1998;95:2552–2557.

    Article  PubMed  CAS  Google Scholar 

  114. Kondoh G Tojo H Nakatani Y, et al. Angiotensin-converting enzyme is a GPI anchored protein releasing factor crucial for fertilization. Nat Med 2005;11:160–166.

    Article  PubMed  CAS  Google Scholar 

  115. Koizumi H Yamaguchi N Hattori M, et al. Targeted disruption of intracellular type I platelet activating factor-acetylhydrolase catalytic subunits causes severe impairment in spermatogenesis. J Biol Chem 2003;278:12,489–12,494.

    Article  PubMed  CAS  Google Scholar 

  116. Escalier D Silvius D Xu X. Spermatogenesis of mice lacking CK2alpha’: failure of germ cell survival and characteristic modifications of the spermatid nucleus. Mol Reprod Dev 2003;66:190–201.

    Article  PubMed  CAS  Google Scholar 

  117. Fukami K Nakao K Inoue T, et al. Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 2001;292:920–923.

    Article  PubMed  CAS  Google Scholar 

  118. Zhou Q Shima JE Nie R Friel PJ Griswold MD. Androgen-regulated transcripts in the neonatal mouse testis as determined through microarray analysis. Biol Reprod 2005;72:1010–1019.

    Article  PubMed  CAS  Google Scholar 

  119. Nayernia K Drabent B Adham IM, et al. Male mice lacking three germ cell expressed genes are fertile. Biol Reprod 2003;69:1973–1978.

    Article  PubMed  CAS  Google Scholar 

  120. Carlson AE Westenbroek RE Quill T et al. CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc Natl Acad Sci USA 2003;100:14,864–14,868.

    Article  PubMed  CAS  Google Scholar 

  121. Quill TA Ren D Clapham DE Garbers DL. A voltage-gated ion channel expressed specifically in spermatozoa. Proc Natl Acad Sci USA 2001;98:12,527–12,531.

    Article  PubMed  CAS  Google Scholar 

  122. Ren D Navarro B Perez G, et al. A sperm ion channel required for sperm motility and male fertility. Nature 2001;413:603–609.

    Article  PubMed  CAS  Google Scholar 

  123. Conner SJ Barratt CLR. Genomic and proteomic approaches to defining sperm production and function-in The Sperm Cell-Production. Maturation, Fertilization, Regeneration. (Ed. De Jonge C and Barratt C) Cambridge University Press (Cambridge, UK) 2006 pp. 49–71.

    Google Scholar 

  124. Conner SJ Lefièvre L Kirkman-Brown J, et al. Understanding the physiology of pre-fertilization events in the human spermatozoa-a necessary prerequisite to developing rational therapy. Reproduction 2006, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Conner, S.J. et al. (2007). Physiological and Proteomic Approaches to Understanding Human Sperm Function. In: Carrell, D.T. (eds) The Genetics of Male Infertility. Humana Press. https://doi.org/10.1007/978-1-59745-176-5_5

Download citation

Publish with us

Policies and ethics