Skip to main content

Altered Glucose Transport and Its Metabolic Effects in Glomerular Cells

  • Chapter
The Diabetic Kidney

Part of the book series: Contemporary Diabetes ((CDI))

  • 1347 Accesses

Abstract

Over many years of investigation it has been found that the mechanisms contributing to the development of diabetic nephropathy (DN) are both varied and complex (1-8). A key finding, however, was that hyperglycemia plays an important role in the development of diabetic tissue complications, including nephropathy. A substantial amount of effort has been expended in identifying glucose-induced pathways in the kidney, which contribute to the production of excessive extracellular matrix (ECM), which could scar the kidneys, particularly in the form of glomerulosclerosis (3,912), but also in the form of tubulo-interstitial fibrosis (1317). More recently, the discovery of numerous new members of the glucose transporter families, both the facilitative glucose transporter family (i.e., GLUTs; solute carrier family SLC2A) and the sodium-glucose cotransporter family (i.e., SGLT, SLC5A), has allowed their investigation in the kidney and a beginning assessment of their roles in normal and diabetic kidneys. The explosion of information that is now occurring in the glucose transporter field is allowing renal researchers many new opportunities to understand how these transporters contribute to normal and altered renal glucose metabolism (18-22).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ziyadeh FN. Mediators of diabetic renal disease: the case for TGF-beta as the major mediator. J Am Soc Nephrol 2004;15(1):S55–S57.

    Article  PubMed  CAS  Google Scholar 

  2. Ziyadeh FN, Han DC, Cohen JA, et al. Glycated albumin stimulates fibronectin gene expression in glomerular mesangial cells: involvement of the transforming growth factor-beta system. Kidney Int 1998;53(3):631–638.

    Article  PubMed  CAS  Google Scholar 

  3. Kreisberg JI, Garoni JA, Radnik R, et al. High glucose and TGF beta 1 stimulate fibronectin gene expression through a cAMP response element. Kidney Int 1994;46(4):1019–1024.

    Article  PubMed  CAS  Google Scholar 

  4. Kreisberg JI, Radnik RA, Ayo SH, et al. High glucose elevates c-fos and c-jun transcripts and proteins in mesangial cell cultures. Kidney Int 1994;46(1):105–112.

    Article  PubMed  CAS  Google Scholar 

  5. Haneda M, Araki S, Togawa M, et al. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 1997;46(5):847–853.

    Article  PubMed  CAS  Google Scholar 

  6. Hudson BI, Schmidt AM. RAGE: a novel target for drug intervention in diabetic vascular disease. Pharm Res 2004;21(7):1079–1086.

    Article  PubMed  CAS  Google Scholar 

  7. Neuringer JR, Brenner BM. Glomerular hypertension: cause and consequence of renal injury. J Hypertens Suppl 1992;10(7):S91–S97.

    Article  PubMed  CAS  Google Scholar 

  8. Remuzzi G, Ruggenenti P, Perna A, et al. Continuum of renoprotection with losartan at all stages of type 2 diabetic nephropathy: a post hoc analysis of the RENAAL trial results. J Am Soc Nephrol 2004;15(12):3117–3125.

    Article  PubMed  Google Scholar 

  9. Ziyadeh FN, Hoffman BB, Han DC, et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci USA 2000;97(14):8015–8020.

    Article  PubMed  CAS  Google Scholar 

  10. Heilig K, Chen S, Xiang M, Brosius F, Heilig C. Overexpression of GLUT1 in glomeruli produces features of diabetic nephropathy (DN) in mice. (abstract). JASN 2004;15:263A.

    Google Scholar 

  11. Thallas-Bonke V, Lindschau C, Rizkalla B, et al. Attenuation of extracellular matrix accumulation in diabetic nephropathy by the advanced glycation end product cross-link breaker ALT-711 via a protein kinase C-alpha-dependent pathway. Diabetes 2004;53(11):2921–2930.

    Article  PubMed  CAS  Google Scholar 

  12. Haneda M, Kikkawa R, Horide N, et al. Glucose-induced overproduction of type IV collagen in cultured glomerular mesangial cells. J Diabet Complications 1991;5(2,3):199, 200.

    PubMed  Google Scholar 

  13. Hong SW, Isono M, Chen S, et al. Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse. Am J Pathol 2001;158(5):1653–1663.

    PubMed  CAS  Google Scholar 

  14. Wolf G, Ziyadeh FN, Stahl RA. Angiotensin II stimulates expression of transforming growth factor beta receptor type II in cultured mouse proximal tubular cells. J Mol Med 1999;77(7):556–564.

    Article  PubMed  CAS  Google Scholar 

  15. Bleyer AJ, Fumo P, Snipes ER, et al. Polyol pathway mediates high glucose-induced collagen synthesis in proximal tubule. Kidney Int 1994;45(3):659–666.

    Article  PubMed  CAS  Google Scholar 

  16. Rocco MV, Chen Y, Goldfarb S, et al. Elevated glucose stimulates TGF-beta gene expression and bioactivity in proximal tubule. Kidney Int 1992;41(1):107–114.

    Article  PubMed  CAS  Google Scholar 

  17. Ziyadeh FN, Simmons DA, Snipes ER, et al. Effect of myo-inositol on cell proliferation and collagen transcription and secretion in proximal tubule cells cultured in elevated glucose. J Am Soc Nephrol 1991;1(11):1220–1229.

    PubMed  CAS  Google Scholar 

  18. Joost HG, Bell GI, Best JD, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 2002;282(4):E974–E976.

    PubMed  CAS  Google Scholar 

  19. Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 2001;18(4):247–256.

    Article  PubMed  CAS  Google Scholar 

  20. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 2003;89(1):3–9.

    Article  PubMed  CAS  Google Scholar 

  21. Scheepers A, Joost HG, Schurmann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J Parenter Enteral Nutr 2004;28(5):364–371.

    PubMed  CAS  Google Scholar 

  22. Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 2004;447(5):480–489.

    Article  PubMed  CAS  Google Scholar 

  23. Thorens B, Lodish HF, Brown D. Differential localization of two glucose transporter isoforms in rat kidney. Am J Physiol 1990;259(6 Part 1):C286–C294.

    PubMed  CAS  Google Scholar 

  24. Heilig C, Zaloga C, Lee M, et al. Immunogold localization of high-affinity glucose transporter isoforms in normal rat kidney. Lab Invest 1995;73(5):674–684.

    PubMed  CAS  Google Scholar 

  25. Heilig CW, Concepcion LA, Riser BL, et al. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest 1995;96(4):1802–1814.

    PubMed  CAS  Google Scholar 

  26. Haspel HC, Stephenson KN, Davies-Hill T, et al. Effects of barbiturates on facilitative glucose transporters are pharmacologically specific and isoform selective. J Membr Biol 1999;169(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  27. Baldwin SA, Baldwin JM, Lienhard GE. Monosaccharide transporter of the human erythrocyte. Characterization of an improved preparation. Biochemistry 1982;21(16):3836–3842.

    Article  PubMed  CAS  Google Scholar 

  28. Asada T, Ogawa T, Iwai M, et al. Recombinant insulin-like growth factor I normalizes expression of renal glucose transporters in diabetic rats. Am J Physiol 1997;273(1 Part 2):F27–F37.

    PubMed  CAS  Google Scholar 

  29. Schiffer M, Susztak K, Ranalletta M, et al. Localization of the GLUT8 glucose transporter in murine kidney and regulation in vivo in non-diabetic and diabetic conditions. Am J Physiol Renal Physiol 2005;289(1):F186–F193.

    Article  PubMed  CAS  Google Scholar 

  30. Wakisaka M, He Q, Spiro MJ, et al. Glucose entry into rat mesangial cells is mediated by both Na(+)-coupled and facilitative transporters. Diabetologia 1995;38(3):291–297.

    Article  PubMed  CAS  Google Scholar 

  31. Lewko B, Bryl E, Witkowski JM, et al. Characterization of glucose uptake by cultured rat podocytes. Kidney Blood Press Res 2005;28(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  32. Lewko B, Bryl E, Witkowski JM, et al. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes. Nephrol Dial Transplant 2005;20(2):306–311.

    Article  PubMed  CAS  Google Scholar 

  33. Heilig CW, Kreisberg JI, Freytag S, et al. Antisense GLUT-1 protects mesangial cells from glucose induction of GLUT-1 and fibronectin expression. Am J Physiol Renal Physiol 2001;280(4):F657–F666.

    PubMed  CAS  Google Scholar 

  34. Dimitrakoudis D, Vranic M, Klip A. Effects of hyperglycemia on glucose transporters of the muscle: use of the renal glucose reabsorption inhibitor phlorizin to control glycemia. J Am Soc Nephrol 1992;3(5):1078–1091.

    PubMed  CAS  Google Scholar 

  35. Deems RO, Deacon RW, Ramlal T, et al. Insulin action on whole body glucose utilization and on muscle glucose transporter translocation in mice. Biochem Biophys Res Commun 1994;199(2):662–670.

    Article  PubMed  CAS  Google Scholar 

  36. Heilig CW, Liu Y, England RL, et al. D-glucose stimulates mesangial cell GLUT1 expression and basal and IGF-I-sensitive glucose uptake in rat mesangial cells: implications for diabetic nephropathy. Diabetes 1997;46(6):1030–1039.

    Article  PubMed  CAS  Google Scholar 

  37. Bilan PJ, Mitsumoto Y, Maher F, et al. Detection of the GLUT3 facilitative glucose transporter in rat L6 muscle cells: regulation by cellular differentiation, insulin and insulin-like growth factor-I. Biochem Biophys Res Commun 1992;186(2):1129–1137.

    Article  PubMed  CAS  Google Scholar 

  38. Haber RS, Weinstein SP, O’Boyle E, et al. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology 1993;132(6):2538–2543.

    Article  PubMed  CAS  Google Scholar 

  39. Chiang SH, Baumann CA, Kanzaki M, et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 2001;410(6831):944–948.

    Article  PubMed  CAS  Google Scholar 

  40. Marcus RG, England R, Nguyen K, et al. Altered renal expression of the insulin-responsive glucose transporter GLUT4 in experimental diabetes mellitus. Am J Physiol 1994;267(5 Part 2):F816–F824.

    PubMed  CAS  Google Scholar 

  41. Chen S, Heilig K, Brosius III F, Heilig C. Diabetes increases glomerular GLUT1, and antisense-GLUT1 protects against diabetic glomerulosclerosis. JASN 2003;14:14A.

    Google Scholar 

  42. Carayannopoulos MO, Chi MM, Cui Y, et al. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci USA 2000;97(13):7313–7318.

    Article  PubMed  CAS  Google Scholar 

  43. Harik SI, Behmand RA, Arafah BM. Chronic hyperglycemia increases the density of glucose transporters in human erythrocyte membranes. J Clin Endocrinol Metab 1991;72(4):814–818.

    Article  PubMed  CAS  Google Scholar 

  44. Miele C, Formisano P, Condorelli G, et al. Abnormal glucose transport and GLUT1 cell-surface content in fibroblasts and skeletal muscle from NIDDM and obese subjects. Diabetologia 1997;40(4):421–429.

    Article  PubMed  CAS  Google Scholar 

  45. Miura T, Suzuki W, Ishihara E, et al. Impairment of insulin-stimulated GLUT4 translocation in skeletal muscle and adipose tissue in the Tsumura Suzuki obese diabetic mouse: a new genetic animal model of type 2 diabetes. Eur J Endocrinol 2001;145(6):785–790.

    Article  PubMed  CAS  Google Scholar 

  46. Kreisberg JI, Ayo SH. The glomerular mesangium in diabetes mellitus. Kidney Int 1993;43(1):109–113.

    Article  PubMed  CAS  Google Scholar 

  47. Craven PA, Davidson CM, DeRubertis FR. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 1990;39(6):667–674.

    Article  PubMed  CAS  Google Scholar 

  48. Gnudi L, Viberti G, Raij L, et al. GLUT-1 overexpression: Link between hemodynamic and metabolic factors in glomerular injury? Hypertension 2003;42(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  49. Weigert C, Brodbeck K, Brosius FC III, et al. Evidence for a novel TGF-beta1-independent mechanism of fibronectin production in mesangial cells overexpressing glucose transporters. Diabetes 2003;52(2):527–535.

    Article  PubMed  CAS  Google Scholar 

  50. Pinto AB, Carayannopoulos MO, Hoehn A, et al. Glucose transporter 8 expression and translocation are critical for murine blastocyst survival. Biol Reprod 2002;66(6):1729–1733.

    Article  PubMed  CAS  Google Scholar 

  51. Rajah TT, Olson AL, Grammas P. Differential glucose uptake in retina-and brain-derived endothelial cells. Microvasc Res 2001;62(3):236–242.

    Article  PubMed  CAS  Google Scholar 

  52. Fernandes R, Suzuki K, Kumagai AK. Inner blood-retinal barrier GLUT1 in long-term diabetic rats: an immunogold electron microscopic study. Invest Ophthalmol Vis Sci 2003;44(7):3150–3154.

    Article  PubMed  Google Scholar 

  53. Gullans S, Hebert S. The Kidney, 5th edition. W. B. Saunders, Philadelphia, 1996.

    Google Scholar 

  54. Chi MM, Pingsterhaus J, Carayannopoulos M, et al. Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J Biol Chem 2000;275(51):40,252–40,257.

    Article  PubMed  CAS  Google Scholar 

  55. Heilig CW, Saunders T, Brosius FC III, et al. Glucose transporter-1-deficient mice exhibit impaired development and deformities that are similar to diabetic embryopathy. Proc Natl Acad Sci USA 2003;100(26):15,613–15,618.

    Article  PubMed  CAS  Google Scholar 

  56. Heilig C, Brosius F, Siu B, et al. Implications of glucose transporter protein type 1 (GLUT1)haplodeficiency in embryonic stem cells for their survival in response to hypoxic stress. Am J Pathol 2003;163(5):1873–1885.

    PubMed  CAS  Google Scholar 

  57. Henry DN, Busik JV, Brosius FC III, et al. Glucose transporters control gene expression of aldose reductase, PKCalpha, and GLUT1 in mesangial cells in vitro. Am J Physiol 1999;277(1 Part 2):F97–F104.

    PubMed  CAS  Google Scholar 

  58. Ziyadeh FN, Sharma K, Ericksen M, et al. Stimulation of collagen gene expression and protein syn-thesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. J Clin Invest 1994;93(2):536–542.

    Article  PubMed  CAS  Google Scholar 

  59. Heilig C Jin Y Heilig K Wu G. Regulation of GLUT1 gene transcription in esangial cells. abstract. JASN 2002;1323A

    Google Scholar 

  60. von der Crone S, Deppe C, Barthel A, et al. Glucose deprivation induces Akt-dependent synthesis and incorporation of GLUT1, but not of GLUT4, into the plasma membrane of 3T3-L1 adipocytes. Eur J Cell Biol 2000;79(12):943–949.

    Article  PubMed  Google Scholar 

  61. Rathmell JC, Fox CJ, Plas DR, et al. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 2003;23(20):7315–7328.

    Article  PubMed  CAS  Google Scholar 

  62. Xiang M, Heilig C. Upstream Stimulatory Factor (USF) involvement in mesangial cell gene regulation: implications for diabetic nephropathy. (abstract). JASN 2003;14:598A.

    Google Scholar 

  63. Horiba N, Masuda S, Takeuchi A, et al. Cloning and characterization of a novel Na+-dependent glucose transporter (NaGLT1) in rat kidney. J Biol Chem 2003;278(17):14,669–14,676.

    Article  PubMed  CAS  Google Scholar 

  64. Wright EM. Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol 2001;280(1):F10–F18.

    PubMed  CAS  Google Scholar 

  65. Sugawara-Yokoo M, Suzuki T, Matsuzaki T, et al. Presence of fructose transporter GLUT5 in the S3 proximal tubules in the rat kidney. Kidney Int 1999;56(3):1022–1028.

    Article  PubMed  CAS  Google Scholar 

  66. Gutierrez C, Vendrell J, Pastor R, et al. GLUT1 gene polymorphism in non-insulin-dependent diabetes mellitus: genetic susceptibility relationship with cardiovascular risk factors and microangiopathic complications in a Mediterranean population. Diabetes Res Clin Pract 1998;41(2):113–120.

    Article  PubMed  CAS  Google Scholar 

  67. Hodgkinson AD, Millward BA, Demaine AG. Polymorphisms of the glucose transporter (GLUT1) gene are associated with diabetic nephropathy. Kidney Int 2001;59(3):985–989.

    Article  PubMed  CAS  Google Scholar 

  68. Hodgkinson AD, Page T, Millward BA, et al. A novel polymorphism in the 5’ flanking region of the glucose transporter (GLUT1) gene is strongly associated with diabetic nephropathy in patients with Type 1 diabetes mellitus. J Diabet Complications 2005;19(2):65–69.

    Article  CAS  Google Scholar 

  69. Liu ZH, Guan TJ, Chen ZH, et al. Glucose transporter (GLUT1) allele (XbaI-) associated with nephropathy in non-insulin-dependent diabetes mellitus. Kidney Int 1999;55(5):1843–1848.

    Article  PubMed  CAS  Google Scholar 

  70. Tarnow L, Grarup N, Hansen T, et al. Diabetic microvascular complications are not associated with two polymorphisms in the GLUT-1 and PC-1 genes regulating glucose metabolism in Caucasian type 1 diabetic patients. Nephrol Dial Transplant 2001;16(8):1653–1656.

    Article  PubMed  CAS  Google Scholar 

  71. Grzeszczak W, Moczulski DK, Zychma M, et al. Role of GLUT1 gene in susceptibility to diabetic nephropathy in type 2 diabetes. Kidney Int 59(2):2001;631–636.

    Article  PubMed  CAS  Google Scholar 

  72. Hsu C, Kao W, Steffes M, et al. Genetic Variation of Glucose Transporter 1 (GLUT1) and Nephropathy in the Atherosclerosis Risk in Communities (ARIC) Study (abstract). Diabetes 2004.

    Google Scholar 

  73. Ng DP, Canani L, Araki S, et al. Minor effect of GLUT1 polymorphisms on susceptibility to diabetic nephropathy in type 1 diabetes. Diabetes 2002;51(7):2264–2269.

    Article  PubMed  CAS  Google Scholar 

  74. Zintzaras E, Stefanidis I. Association between the GLUT1 gene polymorphism and the risk of diabetic nephropathy: a meta-analysis. J Hum Genet 2005;50(2):84–91.

    Article  PubMed  Google Scholar 

  75. Heilig C, Elana Y, Raymondjean M, et al. Identification of potential transcription factors (TFs) for mediation of GLUT1 positive feedback in mesangial cells. (abstract). JASN 1998;9:632A.

    Google Scholar 

  76. Cortes P, Riser BL, Asano K, et al. Effects of oral antihyperglycemic agents on extracellular matrix synthesis by mesangial cells. Kidney Int 1998;54(6):1985–1998.

    Article  PubMed  CAS  Google Scholar 

  77. Smoak IW. Tolbutamide alters glucose transport and metabolism in the embryonic mouse heart. Teratology 2002;65(1):19–25.

    Article  PubMed  CAS  Google Scholar 

  78. Tsiani E, Ramlal T, Leiter LA, et al. Stimulation of glucose uptake and increased plasma membrane content of glucose transporters in L6 skeletal muscle cells by the sulfonylureas gliclazide and glyburide. Endocrinology 1995;136(6):2505–2512.

    Article  PubMed  CAS  Google Scholar 

  79. Imamur H, Morimoto I, Tanaka Y, et al. Regulation of glucose transporter 1 expression by gliclazide in rat L6 myoblasts. Diabetes Nutr Metab 2001;14(6):308–314.

    PubMed  CAS  Google Scholar 

  80. Eckel J. Direct effects of glimepiride on protein expression of cardiac glucose transporters. Horm Metab Res 1996;28(9):508–511.

    Article  PubMed  CAS  Google Scholar 

  81. Biederman JI, Vera E, Rankhaniya R, et al. Effects of sulfonylureas, alpha-endosulfine counterparts, on glomerulosclerosis in type 1 and type 2 models of diabetes. Kidney Int 2005;67(2):554–565.

    Article  PubMed  CAS  Google Scholar 

  82. Asano T, Wakisaka M, Yoshinari M, et al. Troglitazone enhances glycolysis and improves intracellular glucose metabolism in rat mesangial cells. Metabolism 2000;49(3):308–313.

    Article  PubMed  CAS  Google Scholar 

  83. Isshiki K, Haneda M, Koya D, et al. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes 2000;49(6):1022–1032.

    Article  PubMed  CAS  Google Scholar 

  84. Togawa M, Kikkawa R, Haneda M, et al. Insulin-like growth factor I (IGF-I) stimulates glucose and amino acid uptake in cultured glomerular mesangial cells. J Diabet Complications 1991;5(2-3):184, 185.

    Article  PubMed  CAS  Google Scholar 

  85. Zhang JZ, Gao L, Widness M, et al. Captopril inhibits glucose accumulation in retinal cells in diabetes. Invest Ophthalmol Vis Sci 2003;44(9):4001–4005.

    Article  PubMed  Google Scholar 

  86. Vera JC, Reyes AM, Velasquez FV, et al. Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors. Biochemistry 2001;40(3):777–790.

    Article  PubMed  CAS  Google Scholar 

  87. Anjaneyulu M, Chopra K. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 2004;31(4):244–248.

    Article  PubMed  CAS  Google Scholar 

  88. Ho YY, Yang H, Klepper J, et al. Glucose transporter type 1 deficiency syndrome (Glut1DS): methylxanthines potentiate GLUT1 haploinsufficiency in vitro. Pediatr Res 2001;50(2):254–260.

    Article  PubMed  CAS  Google Scholar 

  89. De Vivo DC, Leary L, Wang D. Glucose transporter 1 deficiency syndrome and other glycolytic defects. J Child Neurol 2002;17(3):3S15–3S23; discussion 3S24, 3S25.

    PubMed  Google Scholar 

  90. Wang D, Pascual JM, Yang H, et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol 2005;57(1):111–118.

    Article  PubMed  CAS  Google Scholar 

  91. Liu ZH, Li YJ, Chen ZH, et al. Glucose transporter in human glomerular mesangial cells modulated by transforming growth factor-beta and rhein. Acta Pharmacol Sin 2001;22(2):169–175.

    PubMed  CAS  Google Scholar 

  92. Castiglione S, Fanciulli M, Bruno T, et al. Rhein inhibits glucose uptake in Ehrlich ascites tumor cells by alteration of membrane-associated functions. Anticancer Drugs 1993;4(3):407–414.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

W., C. (2006). Altered Glucose Transport and Its Metabolic Effects in Glomerular Cells. In: Cortes, P., Mogensen, C.E. (eds) The Diabetic Kidney. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-153-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-153-6_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-624-5

  • Online ISBN: 978-1-59745-153-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics