Skip to main content

Polyamine Metabolism and the Hypertrophic Heart

  • Chapter
Polyamine Cell Signaling

Abstract

Cardiac muscle hypertrophy is one of the most important compensatory responses of the heart to multiple stresses that may be placed on it. If the stress is not relieved, sustained hypertrophy may progress to dysfunction and heart failure. The polyamines putrescine, spermidine, and spermine increase within hours of various types of experimentally induced cardiac hypertrophy, along with ornithine decarboxylase (ODC) gene expression. Several animal models have implicated ODC induction as an important factor in the development of hypertrophy, particularly in response to β-adrenergic stimulation. Novel transgenic mouse lines that overexpress several enzymes of polyamine metabolism in the heart have been generated in recent years, and crosses of these lines have pointed to decarboxylated adenosylmethionine and its control by S-adenosylmethionine decarboxylase as another important element in maintaining cardiac polyamine homeostasis. The activity of arginase is thought to play a regulatory role in the biosynthesis of both nitric oxide (NO) and polyamines, and NO deficiency has been linked to the development of cardiac hypertrophy. Genetically altered mouse lines with changes in arginine and NO metabolism in the heart are available, many of which possess cardiac abnormalities. These models will provide a valuable means to address the interdependence of arginine and ornithine metabolism in the development of myocardial hypertrophy and failure. Use of these tools may lead to a better understanding of the control of the signaling pathways that include the polyamines, arginine, and NO, allowing future work to focus on the interactions between these pathways in the development of heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B., and Castelli, W. P. (1990) Prognostic implications of echocardiographically determined left ventricle mass in the Framingham heart study. N. Engl. J. Med. 322, 1561–1566.

    Article  PubMed  CAS  Google Scholar 

  2. Sugden, P. H. and Clerk, A. (1998) Cellular mechanisms of cardiac hypertrophy. J. Mol. Med. 76, 725–746.

    Article  PubMed  CAS  Google Scholar 

  3. Flamigni, F., Rossoni, C., Stefanelli, C., and Caldarera, C. M. (1986) Polyamine metabolism and function in the heart. J. Mol. Cell. Cardiol. 18, 3–11.

    Article  PubMed  CAS  Google Scholar 

  4. Ikeguchi, Y., Wang, X., McCloskey, D. E., et al. (2004) Characterization of transgenic mice with widespread overexpression of spermine synthase. Biochem. J. 381, 701–707.

    Article  PubMed  CAS  Google Scholar 

  5. Caldarera, C. M., Casti, A., Rossoni, C., and Visioli, O. (1971) Polyamines and noradrenaline following myocardial hypertrophy. J. Mol. Cell. Cardiol. 3, 121–126.

    Article  PubMed  CAS  Google Scholar 

  6. Russell, D. H., Shiverick, K. T., Hamrell, B. B., and Alpert, N. R. (1971) Polyamine synthesis during initial phases of stress-induced cardiac hypertrophy. Am. J. Physiol. 221, 1287–1291.

    PubMed  CAS  Google Scholar 

  7. Caldarera, C. M., Orlandini, G., Casti, A., and Moruzzi, G. (1974) Polyamines and nucleic acid metabolism in myocardial hypertrophy of the overloaded heart. J. Mol. Cell. Cardiol. 6, 95–104.

    Article  PubMed  CAS  Google Scholar 

  8. Warnica, J. W., Antony, P., Gibson, K., and Harris, P. (1975) The effect of isoprenaline and propranolol on rat myocardial ornithine decarboxylase. Cardiovasc. Res. 9, 793–796.

    Article  PubMed  CAS  Google Scholar 

  9. Moruzzi, G., Caldarera, C. M., and Casti, A. (1974) The biological effect of polyamines on heart RNA and histone metabolism. Mol. Cell. Biochem. 3, 153–161.

    Article  PubMed  CAS  Google Scholar 

  10. Gibson, K. and Harris, P. (1974) The in vitro and in vivo effects of polyamines on cardiac protein biosynthesis. Cardiovasc. Res. 8, 668–673.

    CAS  Google Scholar 

  11. Caldarera, C. M., Casti, A., Guarnieri, C., and Moruzzi, G. (1975) Regulation of ribonucleic acid synthesis by polyamines. Biochem. J. 152, 91–98.

    PubMed  CAS  Google Scholar 

  12. Ibrahim, J., Schachter, M., Hughes, A. D., and Sever, P. S. (1995) Role of polyamines in hypertension induced by angiotensin II. Cardiovasc. Res. 29, 50–56.

    Article  PubMed  CAS  Google Scholar 

  13. Bartolome, J., Huguenard, J., and Slotkin, T. A. (1980) Role of ornithine decarboxylase in cardiac growth and hypertrophy. Science 210, 793–794.

    Article  PubMed  CAS  Google Scholar 

  14. Pegg, A. E. (1981) Effect of ?-difluoromethylornithine on cardiac polyamine content and hypertrophy. J. Mol. Cell. Cardiol. 13, 881–887.

    Article  PubMed  CAS  Google Scholar 

  15. Cubria, J. C., Reguera, R., Balana-Fouce, R., Ordonez, C., and Ordonez, D. (1998) Polyamine-mediated heart hypertrophy induced by clenbuterol in the mouse. J. Pharm. Pharmacol. 50, 91–96.

    PubMed  CAS  Google Scholar 

  16. Tipnis, U. R., He, G. Y., Campbell, G., and Boor, P. J. (2000) Attenuation of isoproterenolmediated myocardial injury in rat by an inhibitor of polyamine synthesis. Cardiovasc. Pathol. 9, 273–80.

    Article  PubMed  CAS  Google Scholar 

  17. Thompson, K. E., Friberg, P., and Adams, M. A. (1992) Vasodilators inhibit acute alpha 1-adrenergic receptor-induced trophic responses in the vasculature. Hypertension 20, 809–815.

    PubMed  CAS  Google Scholar 

  18. Schluter, K. D., Frischfopf, K., Flesch, M., Rosenkranz, S., Taimor, G., and Piper, H. M. (2000) Central role for ornithine decarboxylase in β-adrenoceptor mediated hypertrophy. Cardiovasc. Res. 45, 410–417.

    Article  PubMed  CAS  Google Scholar 

  19. Steinberg, S. F. (1999) The molecular basis for distinct β-adrenergic receptor subtype actions in cardiomyocytes. Circ. Res. 85, 1101–1111.

    PubMed  CAS  Google Scholar 

  20. Palvimo, J. J., Eisenberg, L. M., and Jänne, O. A. (1991) Protein-DNA interactions in the cAMP responsive promoter region of the murine ornithine decarboxylase gene. Nucleic Acids Res. 19, 3921–3927.

    Article  PubMed  CAS  Google Scholar 

  21. Shantz, L. M., Feith, D. J., and Pegg, A. E. (2001) Targeted overexpression of ornithine decarboxylase enhances β-adrenergic agonist-induced cardiac hypertrophy. Biochem. J. 358, 25–32.

    Article  PubMed  CAS  Google Scholar 

  22. Nakano, M., Kanada, T., Matsuzaki, S., et al. (1995) Effect of losartan, an AT1 selective angiotensin II receptor antagonist, on isoproterenol-induced cardiac ornithine decarboxylase activity. Res. Commun. Mol. Pathol. Pharmacol. 88, 21–30.

    PubMed  CAS  Google Scholar 

  23. Hunter, J. J. and Chien, K. R. (1999) Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341, 1276–1283.

    Article  PubMed  CAS  Google Scholar 

  24. Chu, G., Haghighi, K., and Kranias, E. G. (2002) From mouse to man: understanding heart failure through genetically altered mouse models. J. Card. Failure 8, S432–S449.

    Article  CAS  Google Scholar 

  25. Janne, J., Alhonen, L., Pietila, M., and Keinanen, T. A. (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur. J. Biochem. 271, 877–894.

    Article  PubMed  CAS  Google Scholar 

  26. Nishimura, K., Nakatsu, F., Kashiwagi, K., Ohno, H., Saito, T., and Igarashi, K. (2002) Essential role of S-adenosylmethionine decarboxylase in mouse embryonic development. Genes Cells 7, 41–47.

    Article  PubMed  CAS  Google Scholar 

  27. Pendeville, H., Carpino, N., Marine, J. C., et al. (2001) The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol. Cell. Biol. 21, 6549–6558.

    Article  PubMed  CAS  Google Scholar 

  28. Lorenz, B., Francis, F., Gempel, K., et al. (1998) Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Hum. Mol. Genet. 7, 541–547.

    Article  PubMed  CAS  Google Scholar 

  29. Hillary, R. A., Giordano, E., Pegg, A. E., et al. A lethal phenotype in mice with cardiac overexpression of ornithine decarboxylase. Cardiovasc. Res. In press.

    Google Scholar 

  30. Xie, X., Tome, M. E., and Gerner, E. W. (1997) Loss of intracellular putrescine pool-size regulation induces apoptosis. Exp. Cell. Res. 230, 386–392.

    Article  PubMed  CAS  Google Scholar 

  31. Tome, M. E., Fiser, S. M., Payne, C. M., and Gerner, E. W. (1997) Excess putrescine inhibits the formation of modified eukaryotic initiation factor 5A (eIF-5A) and induces apoptosis. Biochem. J. 328, 847–854.

    PubMed  CAS  Google Scholar 

  32. Schipper, R. G., Penning, L. C., and Verhofstad, A. A. (2000) Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors? Semin. Cancer Biol. 10, 55–68.

    Article  PubMed  CAS  Google Scholar 

  33. Shantz, L. M., Hu, R.-H., and Pegg, A. E. (1996) Regulation of ornithine decarboxylase in a transformed cell line that overexpresses translation initiation factor eIF-4E. Cancer Res. 56, 3265–3269.

    PubMed  CAS  Google Scholar 

  34. Tobias, K. E. and Kahana, C. (1995) Exposure to ornithine results in excessive accumulation of putrescine and apoptotic cell death in ornithine decarboxylase overproducing mouse myeloma cells. Cell Growth Differentiation 6, 1279–1285.

    PubMed  CAS  Google Scholar 

  35. Stefanelli, C., Stanic, I., Zini, M., et al. (2000) Polyamines directly induce release of cytochrome c from heart mitochondria. Biochem. J. 347, 875–880.

    Article  PubMed  CAS  Google Scholar 

  36. Phillips, L. R. and Nichols, C. G. (2003) Ligand-induced closure of inward rectifier Kir6.2 channels traps spermine in the pore. J. Gen. Physiol. 122, 795–804.

    Article  PubMed  CAS  Google Scholar 

  37. Mackintosh, C. A., Feith, D. J., Shantz, L. M., and Pegg, A. E. (2000) Overexpression of antizyme in the hearts of transgenic mice prevents the isoprenaline-induced increase in cardiac ornithine decarboxylase activity and polyamines, but does not prevent cardiac hypertrophy. Biochem. J. 350, 645–653.

    Article  PubMed  CAS  Google Scholar 

  38. Hayashi, S. and Murakami, Y. (1995) Rapid and regulated degradation of ornithine decarboxylase. Biochem. J. 306, 1–10.

    PubMed  CAS  Google Scholar 

  39. Wu, G. and Morris, S. M., Jr. (1998) Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17.

    PubMed  CAS  Google Scholar 

  40. Palmer, R. M., Ashton, D. S., and Moncada, S. (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664–666.

    Article  PubMed  CAS  Google Scholar 

  41. Li, H., Meininger, C. J., Hawker, J. R., Jr., et al. (2001) Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am. J. Physiol. Endocrinol. Metab. 280, E75–E82.

    PubMed  CAS  Google Scholar 

  42. Ignarro, L. J., Buga, G. M., Wei, L. H., Bauer, P. M., Wu, G., and del Soldato, P. (2001) Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc. Natl. Acad. Sci. USA 98, 4202–4208.

    Article  PubMed  CAS  Google Scholar 

  43. Simko, F. and Simko, J. (2000) The potential role of nitric oxide in the hypertrophic growth of the left ventricle. Physiol. Res. 49, 37–46.

    PubMed  CAS  Google Scholar 

  44. Hu, J., Mahmoud, M. I., and El-Fakahany, E. E. (1994) Polyamines inhibit nitric oxide synthase in rat cerebellum. Neurosci. Lett. 175, 41–45.

    Article  PubMed  CAS  Google Scholar 

  45. Blachier, F., Selamnia, M., Robert, V., M’Rabet-Touil, H., and Duée, P. H. (1995) Metabolism of L-arginine through polyamine and nitric oxide synthase pathways in proliferative or differentiated human colon carcinoma cells. Biochim. Biophys. Acta. 1268, 255–262.

    Article  PubMed  Google Scholar 

  46. Bauer, P. M., Buga, G. M., Fukuto, J. M., Pegg, A. E., and Ignarro, L. J. (2001) Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J. Biol. Chem. 276, 34,458–34,464.

    Article  PubMed  CAS  Google Scholar 

  47. Daghigh, F., Fukuto, J. M., and Ash, D. E. (1994) Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem. Biophys. Res. Commun. 202, 174–180.

    Article  PubMed  CAS  Google Scholar 

  48. Buga, G. M., Wei, L. H., Bauer, P. M., Fukuto, J. M., and Ignarro, L. J. (1998) NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am. J. Physiol. 275, R1256–R1264.

    PubMed  CAS  Google Scholar 

  49. Balligand, J.-L. (1999) Regulation of cardiac β-adrenergic response by nitric oxide. Cardiovasc. Res. 43, 607–620.

    Article  PubMed  CAS  Google Scholar 

  50. Ozaki, M., Kawashima, S., Yamashita, T., et al. (2002) Overexpression of endothelial nitric oxide synthase attenuates cardiac hypertrophy induced by chronic isoproterenol infusion. Circ. J. 66, 851–856.

    Article  PubMed  CAS  Google Scholar 

  51. Jones, S. P., Greer, J. M., van Haperen, R., Duncker, D. J., de Crom, R., and Lefer, D. J. (2003) Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc. Natl. Acad. Sci. USA 100, 4891–4896.

    Article  PubMed  CAS  Google Scholar 

  52. Fan, C. C. and Koenig, H. (1988) The role of polyamines in β-adrenergic stimulation of calcium influx and membrane transport in rat heart. J. Mol. Cell. Cardiol. 20, 789–799.

    Article  PubMed  CAS  Google Scholar 

  53. Merry, P. F., Pavoine, C., Belhassen, L., Pecker, F., and Fischmeister, R. (1993) Nitric oxide regulates Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activity. J. Biol. Chem. 268, 26,286–26,295.

    Google Scholar 

  54. Barouch, L. A., Harrison, R. W., Skaf, M. W., et al. (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416, 337–340.

    PubMed  CAS  Google Scholar 

  55. Brunner, F., Andrew, P., Wolkart, G., Zechner, R., and Mayer, B. (2001) Myocardial contractile function and heart rate in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Circulation 104, 3097–3102.

    Article  PubMed  CAS  Google Scholar 

  56. Heger, J., Godecke, A., Flogel, U., et al. (2002) Cardiac-specific overexpresseion of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ. Res. 90, 93–99.

    Article  PubMed  CAS  Google Scholar 

  57. Shi, O., Morris, S. M., Jr., Zoghbi, H., Porter, C. W., and O’Brien, W. E. (2001) Generation of a mouse model for arginase II deficiency by targeted disruption of the arginase II gene. Mol. Cell. Biol. 21, 811–813.

    Article  PubMed  CAS  Google Scholar 

  58. Iyer, R. K., Yoo, P. K., Kern, R. M., et al. (2002) Mouse model for human arginase deficiency. Mol. Cell. Biol. 22, 4491–4498.

    Article  PubMed  CAS  Google Scholar 

  59. Engelhardt, S., Hein, L., Wiesmann, F., and Lohse, M. J. (1999) Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl. Acad. Sci. USA 96, 7059–7064.

    Article  PubMed  CAS  Google Scholar 

  60. Du, X.-J., Gao, X.-M., Wang, B., Jennings, G. L., Woodcock, E. A., and Dart, A. M. (2000) Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing β2-adrenergic receptors in the heart. Cardiovasc. Res. 48, 448–454.

    Article  PubMed  CAS  Google Scholar 

  61. Iwase, M., Bishop, S. P., Uechi, M., et al. (1996) Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. Circ. Res. 78, 517–524.

    PubMed  CAS  Google Scholar 

  62. Roth, D. M., Bayat, H., Drumm, J. D., et al. (2002) Adenylyl cyclase increases survival in cardiomyopathy. Circulation 105, 1989–1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shantz, L.M., Giordano, E. (2006). Polyamine Metabolism and the Hypertrophic Heart. In: Wang, JY., Casero, R.A. (eds) Polyamine Cell Signaling. Humana Press. https://doi.org/10.1007/978-1-59745-145-1_7

Download citation

Publish with us

Policies and ethics