Skip to main content

Accounting for the Follicle Population in the Polycystic Ovary

  • Chapter
Polycystic Ovary Syndrome

Part of the book series: Contemporary Endocrinology ((COE))

Summary

Recruitment of primordial follicles through selection of the dominant follicle and its eventual ovulation requires complex interactions between reproductive and metabolic functions, as well as intraovarian paracrine signals to coordinate granulosa cell proliferation, theca cell differentiation, and oocyte maturation. Early follicle development to an initial antral stage is relatively independent of gonadotropins and relies mostly on mesenchymal–epithelial cell interactions, intraovarian paracrine signals, and oocyte-secreted factors. Beyond this stage, cyclic follicle development depends upon circulating gonadotropins in combination with these locally derived regulators. Recruitment, growth, and subsequent selection of the dominant follicle are perturbed in women with polycystic ovaries (PCO). Ovarian hyperandrogenism, hyperinsulinemia from insulin resistance, and altered intrafollicular paracrine signaling contribute to the accumulation of small antral follicles within the periphery of the ovary, giving it a polycystic morphology. Prenatal androgen excess also entrains multiple organ systems in utero and demonstrates that the hormonal environment of intrauterine life may program the morphology of the ovary in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faddy MJ, Gosden RG. Modelling the dynamics of ovarian follicle utilization throughout life. In: Trounson AO, Gosden RG, eds. Biology and Pathology of the Oocyte. Role in Fertility and Reproductive Medicine. Cambridge: Cambridge University Press, 2003:44–52.

    Google Scholar 

  2. Gougeon A. The early stages of folliclar growth. In: Trounson AO, Gosden RG, eds. Biology and Pathology of the Oocyte. Role in Fertility and Reproductive Medicine. Cambridge: Cambridge University Press, 2003:29–43.

    Google Scholar 

  3. Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab 1997;82:3748–3751.

    PubMed  CAS  Google Scholar 

  4. Wandji SA, Fortier MA, Sirard MA. Differential response to gonadotropins and prostaglandins E2 in ovarian tissue during prenatal and postnatal development in cattle. Biol Reprod 1992;46:1034–1341.

    PubMed  CAS  Google Scholar 

  5. Horie K, Fujita J, Takakura K, Kanzaki H, Suginami H, Iwai M, Nakayama H, Mori T. The expression of c-kit protein in human adult and fetal tissues. Hum Reprod 1993;8:1955–1962.

    PubMed  CAS  Google Scholar 

  6. Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 1999;140:4262–4271.

    PubMed  CAS  Google Scholar 

  7. Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod 2000;5:143–152.

    PubMed  CAS  Google Scholar 

  8. Zachow RJ, Magoffin DA. Ovarian androgen biosynthesis: paracrine/autocrine regulation. In: Azziz R, Nestler JE, and Dewailly D, eds. Androgen Excess Disorders in Women. Philadelphia, PA: Lippincott-Raven, 1997:13–22.

    Google Scholar 

  9. Adashi EY. The ovarian follicular apparatus. In: Adashi EY, Rock JA, Rosenwaks Z, eds. Reproductive Endocrinology, Surgery, and Technology. Philadelphia, PA: Lippincott-Raven, 1996:18–40.

    Google Scholar 

  10. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypothesis. Endocr Rev 1996;17:121–155.

    PubMed  CAS  Google Scholar 

  11. Hughesdon PE. Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called “hyperthecosis.” Obstet Gynecol Surv 1982;37:59–77.

    PubMed  CAS  Google Scholar 

  12. Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K, Franks S. Formation and early development of follicles in the polycystic ovary. Lancet 2003;362:1017–1021.

    PubMed  CAS  Google Scholar 

  13. Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ, Erickson GF. Stockpiling of transitional and classic prima0ry follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004;89:5321–5327.

    PubMed  CAS  Google Scholar 

  14. Adams J, Polson DW, Franks, S. Prevalence of polycystic ovaries in women with anovulation and idiopathic hirsutism. Br Med J 1986;293:355–359.

    CAS  Google Scholar 

  15. The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19:41–47.

    Google Scholar 

  16. Jonard S, Robert Y, Cortet-Rudelli C, Pigny P, Decanter C, Dewailly D. Ultrasound examination of polycystic ovaries: is it worth counting the follicles? Hum Reprod 2003;18:598–603.

    PubMed  CAS  Google Scholar 

  17. Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicle growth in the primate ovarian. J Clin Invest 1998;101:2622–2629.

    PubMed  CAS  Google Scholar 

  18. Weil SJ, Vendola K, Zhou J, Adesanya OO, Wang J, Okafor J, Bondy CA. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab 1998;83:2479–2485..

    PubMed  CAS  Google Scholar 

  19. Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab 1999;84:2951–2956.

    PubMed  CAS  Google Scholar 

  20. Vendola K, Zhou J, Wang J, Bondy CA. Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary. Hum Reprod 1999;14:2328–2332.

    PubMed  CAS  Google Scholar 

  21. Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary. Biol Reprod 1999;61:353–357.

    PubMed  CAS  Google Scholar 

  22. Gilling-Smith C, Willis DS, Beard RW, Franks S. Hypersecretion of androstenedione by isolated theca cells from polycystic ovaries. J Clin Endocrinol Metab 1994;79: 1158–1165.

    PubMed  CAS  Google Scholar 

  23. Mason HD, Willis DS, Beard RW, Winston RM, Margara R, Franks S. Estradiol production by granulosa cells of normal and polycystic ovaries: relationship to menstrual cycle history and concentrations of gonadotropins and sex steroids in follicular fluid. J Clin Endocrinol Metab 1994;79: 1355–1360.

    PubMed  CAS  Google Scholar 

  24. Nelson VL, Legro RS, Strauss JF III, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycysitc ovaries. Mol Endocrinol 1999;13:946–957.

    PubMed  CAS  Google Scholar 

  25. Nelson VL, Qin K, Rosenfield RL, Wood JR, Penning TM, Legro RS, Strauss JF III, McAllister JM. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2001;86:5925–5933.

    PubMed  CAS  Google Scholar 

  26. Dumesic DA, Damario MA, Session DR, Famuyide A, Lesnick TG, Thornhill AR, McNeilly AS. Ovarian Morphology and Serum Hormone Markers as Predictors of Ovarian Follicle Recruitment by Gonadotropins for In Vitro Fertilization. J Clin Endocrinol Metab 2001;86:2538–2543.

    PubMed  CAS  Google Scholar 

  27. De Leo V, Lanzetta D, D’Antona D, la Marca A, Morgante G. Hormonal effects of flutamide in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 1998;83:99–102.

    PubMed  Google Scholar 

  28. Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update 2005;11:357–374.

    PubMed  CAS  Google Scholar 

  29. Abbott DH, Dumesic DA, Eisner JR, Colman RJ, Kemnitz JW. Insights into the development of polycystic ovary syndrome (PCOS) from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol Metab 1998;9:62–67.

    CAS  Google Scholar 

  30. Birch RA, Padmanabhan V, Foster DL, Unsworth WP, Robinson JE. Prenatal programming of reproductive neuroendocrine function: fetal androgen exposure produces progressive disruption of reproductive cycles in sheep. Endocrinology 2003;144:1426–1434.

    PubMed  CAS  Google Scholar 

  31. Sullivan SD and Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc Natl Acad Sci USA 2004;101: 7129–7134.

    Google Scholar 

  32. Foecking EM, Szabo M, Schwartz NB, Levine JF. Neuroendocrine consequences of prenatal androgen exposure in the female rat: absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biol Reprod 2005;72:1475–1483.

    PubMed  CAS  Google Scholar 

  33. Abbott DH, Dumesic DA, Eisner JR, Kemnitz JW, Goy RW. The prenatally androgenized female rhesus monkey as a model for PCOS. In: Azziz R, Nestler JE, Dewailly D, eds. Androgen Excess Disorders in Women. Philadelphia, PA: Lippincott-Raven, 1997:369–382.

    Google Scholar 

  34. West C, Foster DL, Evans NP, Robinson J, Padmanabhan V. Intra-follicular activin availability is altered in prenatally-androgenized lambs. Mol Cell Endocrinol 2001;185:51–59.

    PubMed  CAS  Google Scholar 

  35. Resko JA, Ellinwood WE. Sexual differentiation of the brain of primates. In: Serio M, Motta M, Zanisi M, Martini L, eds. Sexual Differentiation: Basic and Clinical Aspects. New York: Raven Press, 1984:169–181.

    Google Scholar 

  36. Resko JA, Buhl AE, Phoenix CH. Treatment of pregnant rhesus macaques with testosterone propionate: observations on its fate in the fetus. Biol Reprod 1987;37:1185–1191.

    PubMed  CAS  Google Scholar 

  37. Goy RW, Robinson JA. Prenatal exposure of rhesus monkeys to patent androgens: morphological, behavioral, and physiological consequences. Banbury Report 1982;11:355–378.

    CAS  Google Scholar 

  38. Goy RW, Kemnitz JW. Early, persistent and delayed effects of virilizing substances delivered transplacentally to female rhesus monkeys. In: Zbinden G, Cuomo V, Racagni G, Weiss B, eds. Applications of Behavioral Pharmacology in Toxicology. New York: Raven Press, 1983: 303–314.

    Google Scholar 

  39. Goy RW, Uno H, Sholl SA. Psychological and anatomical consequences of prenatal exposure to androgens in female rhesus. In: Mori T, Nagasawa H, eds. Toxicity of Hormones in Perinatal Life. Boca Raton, FL: CRC Press, 1988:127–142.

    Google Scholar 

  40. Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology 2005;146:3185–3193.

    PubMed  CAS  Google Scholar 

  41. Joyce IM, Pendola FL, Wigglesworth K, Eppig JJ. Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev Biol 1999;214:342–353.

    PubMed  CAS  Google Scholar 

  42. Hickey TE, Marrocco DL, Amato F, Ritter LJ, Norman RJ, Gilchrist RB, Armstrong DT. Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells. Biol Reprod 2005;73:825–832.

    PubMed  CAS  Google Scholar 

  43. Willis D, Franks S. Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-1 insulin-like growth factor receptor. J Clin Endocrinol Metab 1995;80:3788–3790.

    PubMed  CAS  Google Scholar 

  44. Balen AH, Conway GS, Homburg R, Legro RS. Polycystic Ovary Syndrome. A Guide to Clinical Management. London: Taylor and Francis; 2005:47–67.

    Google Scholar 

  45. Samoto T, Maruo T, Ladines-llave C, Matsuo H, Deguchi J, Barnea E, Mochizuki M. Insulin receptor expression in the follicular and stroma compartments of the human ovary over the course of follicular growth, regression, and atresia. Endocr J 1993;40:715–726.

    PubMed  CAS  Google Scholar 

  46. Phy JL, Conover CA, Abbott DH, Zschunke MA, Walker DL, Session DR, Tummon IS, Thornhill AR, Lesnick TG, Dumesic DA. Insulin and messenger ribonucleic acid expression of insulin receptor isoforms in ovarian follicles from nonhirsute ovulatory women and polycystic ovary syndrome patients. J Clin Endocrinol Metab 2004;89:3561–3566.

    PubMed  CAS  Google Scholar 

  47. Bergh C, Carlsson B, Olsson JH, Selleskog H, Hillensjo T. Regulation of androgen production in cultured human theca cells by insulin-like growth factor-I and insulin. Fertil Steril 1993;59: 323–331.

    PubMed  CAS  Google Scholar 

  48. McGee EA, Sawetawan C, Bird I, Rainey WE, Carr BR. The effect of insulin and insulin-like growth factors on the expression of steroidogenic enzymes in a human ovarian thecal-like tumor cell model. Fertil Steril 1996;65:87–93.

    PubMed  CAS  Google Scholar 

  49. Franks S, Gilling-Smith C, Watson H, Willis D. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin North Am 1999;28:361–378.

    PubMed  CAS  Google Scholar 

  50. Dunaif A. Insulin resistance and the polycystic ovarian syndrome: mechanism and implications for pathogenesis. Endo Rev 1997;18:774–800.

    CAS  Google Scholar 

  51. Baillargeon JP, Nestler JE. Commentary: polycystic ovary syndrome: a syndrome of ovarian hypersensitivity to insulin? J Clin Endocrinol Metab 2006;91:22–24.

    PubMed  CAS  Google Scholar 

  52. Moghetti P, Castello R, Negri C, Tosi F, Perrone F, Caputo M, Zanolin E, Muggeo M. Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab 2000;85:139–146.

    PubMed  CAS  Google Scholar 

  53. Kezele PR, Nilsson EE, Skinner MK. Insulin but not insulin-like growth factor-I promotes the primordial to primary follicle transition. Mol Cell Endocrinol 2002;192:37–43.

    PubMed  CAS  Google Scholar 

  54. Fulghesu AM, Villa P, Pavone V, Guido M, Apa R, Caruso A, Lanzone A, Rossodivita A, Mancuso S. The impact of insulin secretion on the ovarian response to exogenous gonadotropins in polycystic ovary syndrome. J Clin Endocrinol Metab 1997;82:644–648.

    PubMed  CAS  Google Scholar 

  55. Navot D, Bergh P, Laufer N. The ovarian hyperstimulation syndrome. In: Adashi E, Rock J, Rosenwaks Z, eds. Reproductive Endocrinology, Surgery, and Technology. Philadelphia, PA: Lippincott-Raven, 1996: 2216–2232.

    Google Scholar 

  56. Filicori M, Flamigni C, Cognigni G, Dellai P, Michelacci L, Arnone R. Increased insulin secretion in patients with multifollicular and polycystic ovaries and its impact on ovulation induction. Fertil Steril 1994;62:279–285.

    PubMed  CAS  Google Scholar 

  57. Kjotrod SB, During VV, Carlsen, SM. Metformin treatment before IVF/ICSI in women with polycystic ovary syndrome; a prospective, randomized, double blind study. Hum Reprod 2004;19:1315–1322.

    PubMed  CAS  Google Scholar 

  58. Tang T, Glanville J, Orsi N, Barth JH, Balen AH. The use of metformin for women with PCOS undergoing IVF treatment. Hum Reprod 2006;21:1416–1425.

    PubMed  CAS  Google Scholar 

  59. Knight PG, Glister C. Local roles of TGF-βsuperfamily members in the control of ovarian follicle development. Anim Reprod Sci 2003;78:165–183.

    PubMed  CAS  Google Scholar 

  60. Stubbs SA, Hardy K, Da Silva-Buttkus P, Stark J, Webber LJ, Flanagan AM, Themmen APN, Visser JA, Groome NP, Franks S. Anti-Mullerian hormone protein expression is reduced during the initial stages of follicle development in human polycystic ovaries. J Clin Endocrinol Metab 2005;90: 5536–5543.

    PubMed  CAS  Google Scholar 

  61. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, Kramer P, Fauser BC, Themmen AP. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 2004;10:77–83.

    PubMed  CAS  Google Scholar 

  62. Fanchin R, Louafi N, Lozano DHM, Frydman N, Frydman R, Taieb J. Per-follicle measurements indicate that anti-Mullerian hormone secretion is modulated by the extent of follicular development and luteinization and may reflect qualitatively the ovarian follicular status. Fertil Steril 2005;84:167–173.

    PubMed  CAS  Google Scholar 

  63. Eldar-Geva T, Margalioth EJ, Gal M, Ben-Chetrit A, Algur N, Zylber-Haran E, Brooks B, Huerta M, Spitz IM. Serum anti-Mullerian hormone levels during controlled ovarian hyperstimulation in women with polycystic ovaries with and without hyperandrogenism. Hum Reprod 2005;20:1814–1819.

    PubMed  CAS  Google Scholar 

  64. Piltonen T, Morin-Papunen L, Koivunen R, Perheentupa A, Ruokonen A, Tapanainen JS. Serum anti-Mullerian hormone levels remain high until late reproductive age and decrease during metformin therapy in women with polycystic ovary syndrome. Hum Reprod 2005;20:1820–1826.

    PubMed  CAS  Google Scholar 

  65. Durlinger ALL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, Uilenbroek JT, Grootegoed JA, Themmen AP. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 2002;143:1076–1084.

    PubMed  CAS  Google Scholar 

  66. Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JTJ, Grootegoed JA, Themmen APN. Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 1999;140:5789–5798.

    PubMed  CAS  Google Scholar 

  67. Fortune JE. The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim Reprod Sci 2003;78:135–163.

    PubMed  CAS  Google Scholar 

  68. Jakimiuk AJ, Weitsman SR, Brzechffa PR, Magoffin DA. Aromatase mRNA expression in individual follicles from polycystic ovaries. Mol Hum Reprod 1998;4:1–8.

    PubMed  CAS  Google Scholar 

  69. Hillier SG, Whitelaw PF, Smyth CD. Follicular oestrogen synthesis: the ‘two-cell, two-gonadotropin’ model revisited. Mol Cell Endocrinol 1994;100:51–54.

    PubMed  CAS  Google Scholar 

  70. Shima K, Kitayama S, Nakano R. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle. Obstet Gynecol 1987;69:800–806.

    PubMed  CAS  Google Scholar 

  71. Chaffin CL, Hess DL, Stouffer RL. Dynamics of periovulatory steroidogenesis in the rhesus monkey follicle after ovarian stimulation. Hum Reprod 1999;14:642–649.

    PubMed  CAS  Google Scholar 

  72. Erickson GF, Magoffin DA, Garzo VG, Cheung AP, Chang RJ. Granulosa cells of polycystic ovaries: are they normal or abnormal? Hum Reprod 1992;7:293–299.

    PubMed  CAS  Google Scholar 

  73. Jakimiuk AJ, Weitsman SR, Magoffin DA. 5a-Reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 1999;84:2414–2418.

    PubMed  CAS  Google Scholar 

  74. Agarwal SK, Judd HL, Magoffin DA. A mechanism for the suppression of estrogen production in polycystic ovary syndrome. J Clin Endocrinol Metab 1996;81:3686–3691.

    PubMed  CAS  Google Scholar 

  75. Dumesic DA, Schramm RD, Bird IM, Peterson E, Paprocki AM, Zhou R, Abbott DH. Reduced intrafollicular androstenedione and estradiol levels in early-treated prenatally androgenized female rhesus monkeys receiving FSH therapy for in vitro fertilization. Biol Reprod 2003;69:1213–1219.

    PubMed  CAS  Google Scholar 

  76. Zeleznik AJ, Little-Ihrig L, Ramasawamy S. Administration of dihydrotestosterone to rhesus monkeys inhibits gonadotropin-stimulated ovarian steroidogenesis. J Clin Endocrinol Metab 2004;89:860–866.

    PubMed  CAS  Google Scholar 

  77. Pradeep PK, Li X, Peegel H, Menon KMJ. Dihydrotestosterone inhibits granulosa cell proliferation by decreasing the cyclin D2 mRNA expression and cell cycle arrest at G1 phase. Endocrinology 2002;143:2930–2935.

    PubMed  CAS  Google Scholar 

  78. Legro RS, Bentley-Lewis R, Driscoll D, Wang SC, Dunaif A. Insulin resistance in the sisters of women with polycystic ovary syndrome: association with hyperandrogenemia rather than menstrual irregularity. J Clin Endocrinol Metab 2002;87:2128–2133.

    PubMed  CAS  Google Scholar 

  79. Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod 1998;13:1502–1505.

    PubMed  CAS  Google Scholar 

  80. Kiddy DS, Hamilton-Fairley D, Bush A, Short F, Anyaoku V, Reed MJ, Franks S. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 1992;36:105–111.

    CAS  Google Scholar 

  81. Eppig, J.J., O’Brien, M.J., Pendola, F.L., and Watanabe, S. Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle stimulating hormone and insulin. Biol Reprod 1998;59:1445–53.

    PubMed  CAS  Google Scholar 

  82. Willis D, Mason H, Gilling-Smith C, Franks, S. Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab 1996;81:302–309.

    PubMed  CAS  Google Scholar 

  83. Willis D, Watson H, Mason H, Galea R, Brincat M, Franks S. Premature response to LH of granulosa cells from anovulatory women with polycystic ovaries: relevance to mechanism of anovulation. J Clin Endocrinol Metab 1998;83:3984–3991.

    PubMed  CAS  Google Scholar 

  84. Jakimiuk AJ, Weitsman SR, Navab A, Magoffin DA. Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overproduced in thecal and granulosa cells from polycystic ovaries. J Clin Endocrinol Metab 2001;86:1318–1323.

    PubMed  CAS  Google Scholar 

  85. Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 2000;163:49–52.

    PubMed  CAS  Google Scholar 

  86. Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH. Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J Clin Endocrinol Metab 2002;87:1111–1119.

    PubMed  CAS  Google Scholar 

  87. Knight PG, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 2001;121:503–512.

    PubMed  CAS  Google Scholar 

  88. Schneyer AL, Fujiwara T, Fox J, Welt CK, Adams J, Messerlian GM, Taylor AE. Dynamic changes in the intrafollicular inhibin/activin/follistatin axis during human follicular development: relationship to circulating hormone levels. J Clin Endocrinol Metab 2000;85:3319–3330.

    PubMed  CAS  Google Scholar 

  89. Fujiwara T, Sidis Y, Welt CK, Lambert-Messerlian G, Fox J, Taylor AE, Schneyer A. Dynamics of inhibin subunit and follistatin mRNA during development of normal and PCOS follicles. J Clin Endocrinol Metab 2001;86:4206–4215.

    PubMed  CAS  Google Scholar 

  90. Magoffin DA, Jakimiuk AJ. Inhibin A, inhibin B and activin concentrations in follicular fluid from women with polycystic ovary syndrome. Hum Reprod 1998;13:2693–2698.

    PubMed  CAS  Google Scholar 

  91. Smyth CD, Miro F, Whitelaw PF, Howles CM, Hillier SG. Ovarian thecal/interstitial androgen synthesis is enhanced by a follicle-stimulating hormone-stimulated paracrine mechanism. Endocrinology 1993;133: 1532–1538.

    PubMed  CAS  Google Scholar 

  92. Welt CK, Taylor AE, Fox J, Messerlian GM, Adams JM, Schneyer AL. Follicular arrest in polycystic ovary syndrome is associated with deficient inhibin A and B biosynthesis. J Clin Endocrinol Metab 2005;90:5582–5587.

    PubMed  CAS  Google Scholar 

  93. Lambert-Messerlian G, Taylor A, Leykin L, Isaacson K, Toth T, Chang Y, Schneyer A. Characterization of intrafollicular steroid hormones, inhibin, and follistatin in women with and without polycystic ovarian syndrome following gonadotropin stimulation. Biol Reprod 1997;57:1211–1216.

    PubMed  CAS  Google Scholar 

  94. Welt CK, Taylor AE, Martin KA, Hall JE. Serum inhibin B in polycystic ovary syndrome: regulation by insulin and luteinizing hormone. J Clin Endocrinol Metab 2002;87:5559–5565.

    PubMed  CAS  Google Scholar 

  95. Norman RJ, Milner CR, Groome NP, Robertson DM. Circulating follistatin concentrations are higher and activin levels are lower in polycystic ovarian syndrome. Hum Reprod 2001;16:668–672.

    PubMed  CAS  Google Scholar 

  96. Eldar-Geva T, Spitz IM, Groome NP, Margalioth EJ, Homberg R. Follistatin and activin A serum concentrations in obese and non-obese patients with polycystic ovary syndrome. Hum Reprod 2001;16:2552–2556.

    PubMed  CAS  Google Scholar 

  97. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol 1999B;13:1035–1048.

    CAS  Google Scholar 

  98. Hayashi M, McGee EA, Min G, Klein C, Rose UM, van Duin M, Hsueh AJW. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 1999;140:1236–1244.

    PubMed  CAS  Google Scholar 

  99. Vitt UA, Hayashi M, Klein C, Hsueh AJW. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod 2000;62:370–377.

    PubMed  CAS  Google Scholar 

  100. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996;383:531–535.

    PubMed  CAS  Google Scholar 

  101. Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 1999;13:1018–1034.

    PubMed  CAS  Google Scholar 

  102. Aaltonen J, Laitinen MP, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppa L, Louhio H, Tuuri T, Sjoberg J, Butzow R, Hovatta O, Dale L, Ritvos O. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab 1999;84:2744–2750.

    PubMed  CAS  Google Scholar 

  103. Filho FLT, Baracat EC, Lee TH, Suh CS, Matsui M, Chang RJ, Shimasaki S, Erickson GF. Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab 2002;87:1337–1344.

    Google Scholar 

  104. Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJW, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab 2002;87:316–321.

    PubMed  CAS  Google Scholar 

  105. Manikkam M, Steckler TL, Welch KB, Inskeep EK, Padmanabhan V. Fetal programming: prenatal testosterone treatment leads to follicular persistence/luteal defects. Partial restoration of ovarian function by cyclic progesterone treatment. Endocrinology 2006;147:1997–2007.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Dumesic, D.A., Abbott, D.H. (2008). Accounting for the Follicle Population in the Polycystic Ovary. In: Dunaif, A., Chang, R.J., Franks, S., Legro, R.S. (eds) Polycystic Ovary Syndrome. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-108-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-108-6_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-831-7

  • Online ISBN: 978-1-59745-108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics