Skip to main content

Abstract

Although the thinking and affective and social disturbances of psychosis and schizophrenia may not be easily modeled, if at all, in infrahuman species, animal models can clarify genetic and developmental lesions leading to disruption of some of the key anatomical circuitry involved in their pathophysiology. Increasingly, it is appreciated that patients with schizophrenia manifest symptoms in a variety of discrete domains of psychopathology, including positive (e.g., hallucinations), negative (e.g., affective flattening and social withdrawal), cognitive (e.g., concretization of thought), mood (e.g., anhedonia), and motor (e.g., mannerisms and posturing) symptoms. These symptoms may reflect, in part, the spatially and temporally integrated outputs from these disrupted or faulty circuits. Major goals of current descriptive and pathological research in schizophrenia include the development of sensitive behavioral rating instruments for the assessment of the presence and severity of symptoms in discrete psychopathological domains, elucidation of unique neurotransmitter abnormalities that may underlie each of these discrete domains of psychopathology, and determining the quantitative contribution of each of these discrete domains of psychopathology to the functional disability manifested by patients with schizophrenia and other psychosis. Thus, animal models that reflect nondopaminergic neurotransmitter abnormalities implicated in the pathophysiology of these discrete domains of psychopathology are especially useful. In addition to clarifying aspects of the pathophysiology of these disorders, animal models are crucial for identifying candidate compounds that may be developed as medications; novel medications are especially needed for the negative and cognitive symptom domains of psychopathology, which may be less dependent on abnormalities of dopaminergic neurotransmission. The contributions of dopaminergic abnormalities to the pathophysiology of schizophrenia have been studied most intensively. The focus on dopaminergic abnormalities in schizophrenia was prompted by the complementary observations in humans that psychosis can be elicited by psychostimulant medications such as d-amphetamine, especially when they are abused, whereas the ability to inhibit competitively the binding of dopamine to the D2 type of dopamine receptor is a pharmacological property shared by all of the conventional antipsychotic medications. Psychostimulant medications are either indirect or directly acting dopamine agonists. These pharmacological observations in humans stimulated interest in the quantitative characterization of a variety of “hardwired” rodent behaviors elicited by dopamine agonists such as apomorphine and d-amphetamine; these behaviors include a variety of stereotypic behaviors (e.g., rearing, grooming, and sniffing), horizontal locomotion and “mouse climbing,” among other behaviors. These animal procedures have served as valuable screens for the identification of “dopamine blockers” and medications whose primary pharmacological actions involve modulation (dampening) of dopaminergic neurotransmission, which have proven especially effective in the attenuation of positive symptoms. However, the negative and cognitive symptom domains of psychopathology, which contribute very significantly to the functional disability of schizophrenia and other psychotic disorders, are not dramatically affected by these primarily dopaminergic interventions. Thus, there is also intense interest in animal models that mimic neurodevelopmental abnormalities and/or disruptions of neurotransmitter systems other than dopamine. The existence of neurodevelopmental abnormalities in at least some patients with schizophrenia, as reflected in subtle histopathological abnormalities in cortical lamination, the orientation and alignment of neurons within the hippocampus, and diminished cortical neuropil, has heightened interest in the adult developmental consequences of neonatal lesions of the hippocampus, which, thereby, deprive the developing frontal cortex of afferent inputs from the hippocampus, and genetic models associated with altered cortical lamination, such as the reeler mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Creese I, Iversen SD. The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 1975;83:419–436.

    Article  PubMed  CAS  Google Scholar 

  2. Swerdlow NR, Geyer MA. Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophrenia Bulletin 1998;24(2):285–301.

    PubMed  CAS  Google Scholar 

  3. Davis M, Gendelman D, Tischler M, Gendelman P. A primary acoustic startle circuit; lesion and stimulation studies. J Neurosci 1982;2:791–805.

    PubMed  CAS  Google Scholar 

  4. Cadenhead KS, Geyer MA, Braff DL. Impaired startle prepulse inhibition and habituation in schizotypal patients. Am J Psychiatry 1993;150:1862–1867.

    PubMed  CAS  Google Scholar 

  5. Geyer MA, Wilkinson LS, Humby T, Robbins TW. Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia. Biol Psychiatry 1993;34:361–372.

    Article  PubMed  CAS  Google Scholar 

  6. Weinberger DR, Lipska BK. Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 1995;16:87–110.

    Article  PubMed  CAS  Google Scholar 

  7. Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR. Neonatal excitotoxic hippocampal damage disrupts sensorimotor gating in postpubertal rats. Psychopharmacology 1995;122:35–43.

    Article  PubMed  CAS  Google Scholar 

  8. Palmer AA, Breen LL, Flodman P, Conti LH, Spence MA, Printz MP. Identification of quantita tive trait loci for prepulse inhibition in rats. Psychopharmacology 2003;165:270–279.

    PubMed  CAS  Google Scholar 

  9. Paylor R, Crawley JN. Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology 1997;132:169–180.

    Article  PubMed  CAS  Google Scholar 

  10. Joober R, Zarate J-M, Rouleau G-A, Skamene E, Boksa P. Provisional mapping of quantitative trait loci modulating the acoustic startle response and prepulse inhibition of acoustic startle. Neuropsychopharmacology 2002;27:765–781.

    Article  PubMed  CAS  Google Scholar 

  11. Freedman R, Adler LE, Myles-Worsley M, et al. Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Arch Gen Psychiatry 1996;53:1114–1121.

    PubMed  CAS  Google Scholar 

  12. Venables P. Input dysfunction in schizophrenia. Prog Exp Pers Psychyopathol Res 1964;1:1–47.

    Google Scholar 

  13. Freedman R, Adler LE, Bickford P, et al. Schizophrenia and nicotinic receptors. Harv Rev Psy chiatry 1994;2:179–192.

    CAS  Google Scholar 

  14. Leonard S, Adams C, Breese CR, et al. Nicotine receptor function in schizophrenia. Schizophr Bull 1996;22(3):421–445.

    Google Scholar 

  15. Adler LE, Olincy A, Waldo M, et al. Schizophrenia, sensory gating, and nicotine receptors. Schizophr Bull 1998;24(2):189–202.

    PubMed  CAS  Google Scholar 

  16. Freedman R, Coon H, Myles-Worsley M, et al. Linkage of a neurophysiological deficit in schizo phrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997;94:587–592.

    Article  PubMed  CAS  Google Scholar 

  17. Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 1995;38(1):22–33.

    Article  PubMed  CAS  Google Scholar 

  18. Court J, Spurden D, Lloyd S, et al. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: α-bingarotoxin and nicotine binding in thalamus. J Neurochem 1999;73:1590–1597.

    Article  PubMed  CAS  Google Scholar 

  19. Guan Z-Z, Zhang X, Blennow K, Nordberg A. Decreased protein level of nicotinic receptor α7 subunit in the frontal cortex from schizophrenic brain. NeuroReport 1999;10:1779–1782.

    Article  PubMed  CAS  Google Scholar 

  20. Leonard S, Gault J, Hopkins J, et al. Association of promoter variants in the a7 nicotinic acetyl-choline receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry 2002;59:1085–1096.

    Article  PubMed  CAS  Google Scholar 

  21. Stevens KE, Freedman R, Collins AC, et al. Genetic correlation of hippocampal auditory evoked response and a-bungarotoxin binding in inbred mouse strains. Neuropsychopharmacology 1996;15:152–162.

    Article  PubMed  CAS  Google Scholar 

  22. Stevens KE, Kem WR, Mahnir VM, Freedman R. Selective α7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology 1998;136:320–327.

    Article  PubMed  CAS  Google Scholar 

  23. Simosky JK, Stevens KE, Adler LE, Freedman R. Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychyopharmacology 2003;165:386–396.

    CAS  Google Scholar 

  24. Stevens KE, Johnson RG, Rose GM. Rats reared in social isolation show schizophrenia-like changes in auditory gating. Pharmacol Biochem Behav 1997;58(4):1031–1036.

    Article  PubMed  CAS  Google Scholar 

  25. Guidotti A, Auta J, Davis JM, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. A postmortem brain study. Arch Gen Psychiatry 2000;57:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  26. Liu WS, Pesold C, Rodriguez MA, et al. Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci USA 2001;98(6):3477–3482.

    Article  PubMed  CAS  Google Scholar 

  27. Costa E, Chen Y, Davis J, et al. Reelin and schizophrenia: a disease at the interface of the genome and epigenome. Mol Interv 2002;2:47–57.

    Article  PubMed  CAS  Google Scholar 

  28. Fatemi SH, Emamian ES, Kist D, et al. Defective corticogenesis and reduction in Reelin immu-noreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 1999;4:145–154.

    Article  PubMed  CAS  Google Scholar 

  29. Deutsch SI, Rosse RB, Schwartz BL, Mastropaolo J. A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacol 2001;24(1):43–49.

    Article  PubMed  CAS  Google Scholar 

  30. Jakob H, Beckman H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Trans 1986;65:303–326.

    Article  CAS  Google Scholar 

  31. Arnold SE, Hyman BT, van Hoesen GW, Damasio AR. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 1991;48:625–632.

    PubMed  CAS  Google Scholar 

  32. Lipska BK, Weinberger DR. Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Dev Brain Res 1993;75:213–222.

    Article  CAS  Google Scholar 

  33. Lipska BK, Weinberger DR. Genetic variation in vulnerability to the behavioral effects of neonatal hippocampal damage in rats. Proc Natl Acad Sci USA 1995;92:8906–8910.

    Article  PubMed  CAS  Google Scholar 

  34. Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 1993;9:67–75.

    PubMed  CAS  Google Scholar 

  35. Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B. Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 2002;27:47–54.

    Article  PubMed  Google Scholar 

  36. Brady K, Balster R. Discriminative stimulus properties of ketamine stereoisomers in phencyclid-ine-trained rats. Pharmacol Biochem Behav 1982;17:291–295.

    Article  PubMed  CAS  Google Scholar 

  37. Sams-Dodd F. Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav Pharmacol 1996;7:3–23.

    PubMed  CAS  Google Scholar 

  38. Deutsch SI, Mastropaolo J, Rosse RB. Neurodevelopmental consequences of early exposure to phencyclidine and related drugs. Clin Neuropharmacol 1998;21(6):320–332.

    PubMed  CAS  Google Scholar 

  39. Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999;98:427–436.

    Article  PubMed  CAS  Google Scholar 

  40. Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999;283(5398):70–74.

    Article  PubMed  CAS  Google Scholar 

  41. Wang C, McInnis J, Ross-Sanchez M, Shinnick-Gallagher P, Wiley JL, Johnson KM. Long-term for schizophrenia. Neuroscience 2001;107(4):535–550.

    Article  PubMed  CAS  Google Scholar 

  42. Lieberman J, Charles C, Sharma T, et al., for the HGDH Research Group. Antipsychotic treatment effects on progression of brain pathomorphology in first episode schizophrenia. ACNP 41st Annual Meeting, December 8-12, 2002, San Juan, Puerto Rico.

    Google Scholar 

  43. Li X-M, Xu H, Qing H, Lu W, Keegan D, Richardson JS. Quetiapine attenuates the immobilization-induced decrease of brain-derived neurotrophic factor in hippocampus. ACNP 41st Annual Meeting, December 8–12, 2002, San Juan, Puerto Rico.

    Google Scholar 

  44. Farber NB, Foster J, Duhan NL, Olney JW. Olanzapine and fluperlapine mimic clozapine in preventing MK-801 neurotoxicity. Schizophr Res 1996;21:33–37.

    Article  PubMed  CAS  Google Scholar 

  45. Deutsch SI, Hitri A. Measurement of an explosive behavior in the mouse, induced by MK-801, a PCP analogue. Clin Neuropharmacol 1993;16:251–257.

    Article  PubMed  CAS  Google Scholar 

  46. Norris DO, Mastropaolo J, O’Connor DA, Novitzki M, Deutsch SI. Glycinergic interventions potentiate the ability of MK-801 to raise the threshold voltage for tonic hindlimb extension in mice. Pharmacol Biochem Behav 1992;43, 609–612.

    Article  PubMed  CAS  Google Scholar 

  47. Deutsch SI, Rosse RB, Paul SM, Riggs RL, Mastroapolo J. Inbred mouse strains differ in sensitivity to popping behavior elicited by MK-801. Pharmacol Biochem Behav 1997;57:315–317.

    Article  PubMed  CAS  Google Scholar 

  48. Norris DO, Mastropaolo J, O’Connor DA, Cohen JM, Deutsch SI. A glycinergic intervention potentiates the antiseizure efficacies of MK-801, flurazepam, and carbamazepine. Neurochem Res 1994;19:161–165.

    Article  PubMed  CAS  Google Scholar 

  49. Deutsch SI, Mastropaolo J, Powell DG, Rosse RB, Bachus SE. Inbred mouse strains differ in their sensitivity to an antiseizure effect of MK-801. Clin Neuropharmacol 1998;21(4):255–257.

    PubMed  CAS  Google Scholar 

  50. Deutsch SI, Rosse RB, Mastropaolo J. Behavioral approaches to the functional assessment of NMDA-mediated neural transmission in intact mice. Clin Neuropharmacol 1997;20(5):375–384.

    Article  PubMed  CAS  Google Scholar 

  51. Deutsch SI, Rosse RB, Schwartz BL, Powell DG, Mastropaolo J. Stress and a glycinergic intervention interact in the modulation of MK-801-elicited mouse popping behavior. Pharmacol Biochem Behav 1999;62(2):395–398.

    Article  PubMed  CAS  Google Scholar 

  52. Billingslea EN, Mastropaolo J, Rosse RB, Bellack AS, Deutsch SI. Interaction of stress and strain on glutamatergic neurotransmission: relevance to schizophrenia. Pharmacol Biochem Behav 2003;74:351–356.

    Article  PubMed  CAS  Google Scholar 

  53. Deutsch SI, Rosse RB, Paul SM, et al. 7-Nitroindazole and methylene blue, inhibitors of neuronal nitric oxide synthase and NO-stimulated guanylate cyclase, block MK-801 elicited behaviors in mice. Neuropsychopharmacology 1996;15:37–43.

    Article  PubMed  CAS  Google Scholar 

  54. Deutsch SI, Rosse RB, Billingslea EN, Bellack AS, Mastropaolo J. Topiramate antagonizes MK-801 in an animal model of schizophrenia. Eur J Pharmacol 2002;449:121–125.

    Article  PubMed  CAS  Google Scholar 

  55. Deutsch SI, Rosse RB, Billingslea EN, Bellack AS, Mastropaolo J. Modulation of MK-801-elic-2003;73:2355–2361.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Deutsch, S.I. et al. (2006). Animal Models of Psychosis. In: Fisch, G.S., Flint, J. (eds) Transgenic and Knockout Models of Neuropsychiatric Disorders. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-058-4_10

Download citation

Publish with us

Policies and ethics