Skip to main content

Delta Receptors

  • Chapter
The Glutamate Receptors

Part of the book series: The Receptors ((REC))

  • 1243 Accesses

Summary

No endogenous ligands have been identified for the delta subfamily of ionotropic glutamate receptors (GluRδ1 and GluRδ2). Nevertheless, GluRδ2 plays indispensable roles in cerebellar functions; mice that lack the GluRδ2 gene display ataxia and impaired motor-related learning tasks. Recent studies of mutant mice, such as lurcher, hotfoot, and GluRδ2- knockout mice, have provided clues to the structure and function of GluRδ2. In particular, morphologic and electrophysiologic analyses of hotfoot and GluRδ2-knockout mice have demonstrated a unique role of GluRδ2 in synapse formation and its maintenance. In addition, an antibody specific for GluRδ2′s extracellular N-terminal indicated its direct role in controlling cerebellar long-term depression. These results suggest that GluRδ2 regulates distinct s pathways involved in synapse formation and synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yuzaki M. The delta2 glutamate receptor: 10 years later. Neurosci Res 2003;46: 11–22.

    Article  PubMed  CAS  Google Scholar 

  2. Yuzaki M. The delta2 glutamate receptor: a key molecule controlling synaptic plasticity and structure in Purkinje cells. Cerebellum 2004;3:89–93.

    Article  PubMed  CAS  Google Scholar 

  3. Vogel MW, Caston J, Yuzaki M, et al. The Lurcher mouse: fresh insights from an old mutant. Brain Res 2007;1140:4–18.

    Article  PubMed  CAS  Google Scholar 

  4. Hirano T. Cerebellar regulation mechanisms learned from studies on GluRδelta2. Mol Neurobiol 2006;33:1–16.

    Article  PubMed  CAS  Google Scholar 

  5. Smith DI, Zhu Y, McAvoy S, et al. Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett 2006;232:48–57.

    Article  PubMed  CAS  Google Scholar 

  6. Wang Y, Matsuda S, Drews V, et al. A hot spot for hotfoot mutations in the gene encoding the delta2 glutamate receptor. Eur J Neurosci 2003;17:1581–1590.

    Article  PubMed  Google Scholar 

  7. Lalouette A, Guenet JL, Vriz S. Hotfoot mouse mutations affect the delta 2 glutamate receptor gene and are allelic to lurcher. Genomics 1998;50:9–13.

    Article  PubMed  CAS  Google Scholar 

  8. Robinson KO, Petersen AM, Morrison SN, et al. Two reciprocal translocations provide new clues to the high mutability of the Grid2 locus. Mamm Genome 2005;16:32–40.

    Article  PubMed  CAS  Google Scholar 

  9. Nowaczyk MJ, Teshima IE, Siegel-Bartelt J, et al. Deletion 4q21/4q22 syndrome: two patients with de novo 4q21.3q23 and 4q13.2q23 deletions. Am J Med Genet 1997;69:400–405.

    Article  PubMed  CAS  Google Scholar 

  10. Rozier L, El-Achkar E, Apiou F, et al. Characterization of a conserved aphidicolin-sensitive common fragile site at human 4q22 and mouse 6C1: possible association with an inherited disease and cancer. Oncogene 2004;23:6872–6880.

    Article  PubMed  CAS  Google Scholar 

  11. Araki K, Meguro H, Kushiya E, et al. Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 1993;197:1267–1276.

    Article  PubMed  CAS  Google Scholar 

  12. Lomeli H, Sprengel R, Laurie DJ, et al. The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 1993;315:318–322.

    Article  PubMed  CAS  Google Scholar 

  13. Matsuda S, Hannen R, Matsuda K, et al. The C-terminal juxtamembrane region of the delta 2 glutamate receptor controls its export from the endoplasmic reticulum. Eur J Neurosci 2004;19:1683–1690.

    Article  PubMed  Google Scholar 

  14. Kohda K, Kamiya Y, Matsuda S, et al. Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors. Brain Res Mol Brain Res 2003;110: 26–36.

    Article  Google Scholar 

  15. Landsend AS, Amiry-Moghaddam M, Matsubara A, et al. Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 1997;17:834–842.

    PubMed  CAS  Google Scholar 

  16. Mayat E, Petralia RS, Wang YX, et al. Immunoprecipitation, immunoblotting, and immunocytochemistry studies suggest that glutamate receptor delta subunits form novel postsynaptic receptor complexes. J Neurosci 1995;15:2533–2546.

    PubMed  CAS  Google Scholar 

  17. Kohda K, Wang Y, Yuzaki M. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nature Neurosci 2000;3: 315–322.

    Article  PubMed  CAS  Google Scholar 

  18. Kondo T, Kakegawa W, Yuzaki M. Induction of long-term depression and phosphorylation of the delta2 glutamate receptor by protein kinase C in cerebellar slices. Eur J Neurosci 2005;22:1817–1820.

    Article  PubMed  Google Scholar 

  19. Zuo J, De Jager PL, Takahashi KA, et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 1997;388:769–773.

    Article  PubMed  CAS  Google Scholar 

  20. Ikeno K, Yamakura T, Yamazaki M, et al. The Lurcher mutation reveals Ca2+ permeability and PKC modification of the GluRδelta channels. Neurosci Res 2001;41:193–200.

    Article  PubMed  CAS  Google Scholar 

  21. Williams K, Dattilo M, Sabado TN, et al. Pharmacology of delta2 glutamate receptors: effects of pentamidine and protons. J Pharmacol Exp Ther 2003;305: 740–748.

    Article  PubMed  CAS  Google Scholar 

  22. Yap CC, Muto Y, Kishida H, et al. PKC regulates the delta2 glutamate receptor interaction with S-SCAM/MAGI-2 protein. Biochem Biophys Res Commun 2003;301:1122–1128.

    Article  PubMed  CAS  Google Scholar 

  23. Taverna F, Xiong ZG, Brandes L, et al. The Lurcher mutation of an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit enhances potency of glutamate and converts an antagonist to an agonist. J Biol Chem 2000;275: 8475–8479.

    Article  PubMed  CAS  Google Scholar 

  24. Wollmuth LP, Kuner T, Jatzke C, et al. The Lurcher mutation identifies delta 2 as an AMPA/kainate receptor–like channel that is potentiated by Ca2+. J Neurosci 2000;20:5973–5980.

    PubMed  CAS  Google Scholar 

  25. Villmann C, Strutz N, Morth T, et al. Investigation by ion channel domain transplantation of rat glutamate receptor subunits, orphan receptors and a putative NMDA receptor subunit. Eur J Neurosci 1999;11:1765–1778.

    Article  PubMed  CAS  Google Scholar 

  26. Ito M. Long-term depression. Annu Rev Neurosci 1989;12:85–102.

    Article  PubMed  CAS  Google Scholar 

  27. Matsuda S, Launey T, Mikawa S, et al. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J 2000;19:2765–2774.

    Article  PubMed  CAS  Google Scholar 

  28. Wang YT, Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 2000;25:635–647.

    Article  PubMed  CAS  Google Scholar 

  29. Hirai H, Launey T, Mikawa S, et al. New role of delta2-glutamate receptors in AMPA receptor trafficking and cerebellar function. Nature Neurosci 2003;6: 869–876.

    Article  PubMed  CAS  Google Scholar 

  30. Shigemoto R, Abe T, Nomura S, et al. Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 1994;12:1245–1255.

    Article  PubMed  CAS  Google Scholar 

  31. Sillevis Smitt P, Kinoshita A, De Leeuw B, et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 2000;342:21–27.

    Google Scholar 

  32. Takeuchi T, Miyazaki T, Watanabe M, et al. Control of synaptic connection by glutamate receptor delta2 in the adult cerebellum. J Neurosci 2005;25:2146–2156.

    Article  PubMed  CAS  Google Scholar 

  33. Petralia RS, Sans N, Wang YX, et al. Loss of GLUR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor subunit differentially affects remaining synaptic glutamate receptors in cerebellum and cochlear nuclei. Eur J Neurosci 2004;19:2017–2029.

    Article  PubMed  Google Scholar 

  34. Safieddine S, Wenthold RJ. The glutamate receptor subunit delta1 is highly expressed in hair cells of the auditory and vestibular systems. J Neurosci 1997;17:7523–7531.

    PubMed  CAS  Google Scholar 

  35. Matsuda S, Yuzaki M. Mutation in hotfoot-4J mice results in retention of delta2 glutamate receptors in ER. Eur J Neurosci 2002;16:1507–1516.

    Article  PubMed  Google Scholar 

  36. Motohashi J, Kakegawa W, Yuzaki M. Ho15J: a new hotfoot allele in a hot spot in the gene encoding the delta2 glutamate receptor. Brain Res 2007;1140:153–160.

    Article  PubMed  CAS  Google Scholar 

  37. Kurihara H, Hashimoto K, Kano M, et al. Impaired parallel fiber→Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor delta2 subunit. J Neurosci 1997;17:9613–9623.

    PubMed  CAS  Google Scholar 

  38. Lalouette A, Lohof A, Sotelo C, et al. Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 2001;105:443–455.

    Article  PubMed  CAS  Google Scholar 

  39. Morando L, Cesa R, Rasetti R, et al. Role of glutamate delta-2 receptors in activity-dependent competition between heterologous afferent fibers. Proc Natl Acad Sci USA 2001;98:9954–9959.

    Article  PubMed  CAS  Google Scholar 

  40. Cesa R, Morando L, Panzanelli P, et al. Role of glutamate d2 receptors in the Purkinje cell reinnervation by climbing fibers. Abst Annu Meeting Soc Neurosci 2002;839.11.

    Google Scholar 

  41. Kano M, Kato M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 1987;325:276–279.

    Article  PubMed  CAS  Google Scholar 

  42. Crepel F, Mariani J, Delhaye-Bouchaud N. Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol 1976;7:567–578.

    Article  PubMed  CAS  Google Scholar 

  43. Kashiwabuchi N, Ikeda K, Araki K, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 1995;81:245–252.

    Article  PubMed  CAS  Google Scholar 

  44. Chen C, Kano M, Abeliovich A, et al. Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKC gamma mutant mice. Cell 1995;83:1233–1242.

    Article  PubMed  CAS  Google Scholar 

  45. Hashimoto K, Ichikawa R, Takechi H, et al. Roles of glutamate receptor delta 2 subunit (GluRdelta 2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci 2001;21:9701–9712.

    PubMed  CAS  Google Scholar 

  46. Zhao HM, Wenthold RJ, Wang YX, et al. Delta-glutamate receptors are differentially distributed at parallel and climbing fiber synapses on Purkinje cells. J Neurochem 1997;68:1041–1052.

    Article  PubMed  CAS  Google Scholar 

  47. Takayama C, Nakagawa S, Watanabe M, et al. Developmental changes in expression and distribution of the glutamate receptor channel delta 2 subunit according to the Purkinje cell maturation. Brain Res Dev Brain Res 1996;92: 147–155.

    Article  PubMed  CAS  Google Scholar 

  48. Yatsushiro S, Hayashi M, Morita M, et al. Glutamate receptor subunit delta2 is highly expressed in a novel population of glial-like cells in rat pineal glands in culture. J Neurochem 2000;75:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  49. Beck KA. Spectrins and the Golgi. Biochim Biophys Acta 2005;1744:374–382.

    Article  PubMed  CAS  Google Scholar 

  50. Hirai H, Matsuda S. Interaction of the C-terminal domain of delta glutamate receptor with spectrin in the dendritic spines of cultured Purkinje cells. Neurosci Res 1999;34:281–287.

    Article  PubMed  CAS  Google Scholar 

  51. Ikeda Y, Dick KA, Weatherspoon MR, et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 2006;38:184–190.

    Article  PubMed  CAS  Google Scholar 

  52. Yap CC, Murate M, Kishigami S, et al. Adaptor protein complex-4 (AP-4) is expressed in the central nervous system neurons and interacts with glutamate receptor delta2. Mol Cell Neurosci 2003;24:283–295.

    Article  PubMed  CAS  Google Scholar 

  53. Ayalon G, Segev E, Elgavish S, et al. Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. J Biol Chem 2005;280:15053–15060.

    Article  PubMed  CAS  Google Scholar 

  54. Hirai H. Ca2+-dependent regulation of synaptic delta2 glutamate receptor density in cultured rat Purkinje neurons. Eur J Neurosci 2001;14:73–82.

    Article  PubMed  CAS  Google Scholar 

  55. Roche KW, Ly CD, Petralia RS, et al. Postsynaptic density-93 interacts with the delta2 glutamate receptor subunit at parallel fiber synapses. J Neurosci 1999;19:3926–3934.

    Google Scholar 

  56. Hironaka K, Umemori H, Tezuka T, et al. The protein–tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J Biol Chem 2000;275:16167–16173.

    Article  PubMed  CAS  Google Scholar 

  57. Miyagi Y, Yamashita T, Fukaya M, et al. Delphilin: a novel PDZ and formin homology domain–containing protein that synaptically colocalizes and interacts with glutamate receptor delta 2 subunit. J Neurosci 2002;22:803–814.

    PubMed  CAS  Google Scholar 

  58. Yue Z, Horton A, Bravin M, et al. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 2002;35:921–933.

    Article  PubMed  CAS  Google Scholar 

  59. Uemura T, Mori H, Mishina M. Direct interaction of GluRδelta2 with Shank scaffold proteins in cerebellar Purkinje cells. Mol Cell Neurosci 2004;26:330–341.

    Article  PubMed  CAS  Google Scholar 

  60. Yawata S, Tsuchida H, Kengaku M, et al. Membrane-proximal region of GluRδ2 is critical for LTD and interaction with PICK1 in a cerebellar Purkinje neuron. J Neurosci 2006;26:3626–3633.

    Article  PubMed  CAS  Google Scholar 

  61. Ly CD, Roche KW, Lee HK, et al. Identification of rat EMAP, a delta-glutamate receptor binding protein. Biochem Biophys Res Commun 2002;291:85–90.

    Article  PubMed  CAS  Google Scholar 

  62. McGee AW, Topinka JR, Hashimoto K, et al. PSD-93 knock-out mice reveal that neuronal MAGUKs are not required for development or function of parallel fiber synapses in cerebellum. J Neurosci 2001;21:3085–3091.

    PubMed  CAS  Google Scholar 

  63. Takeuchi T, Wainai T, Hashimoto K, et al. Enhanced paired-pulse facilitation at parallel fiber–Purkinje cell synapses in mutant mice lacking postsynaptic GluRδ2-interacting protein delphilin. Abst Annu Meeting Soc Neurosci 2002;139.13.

    Google Scholar 

  64. Tezuka T, Kina S, Kusakawa S, et al. Roles of protein-tyrosine phosphatase PTPMEG in cerebellar long-term depression and associative motor learning. Abst Annu Meeting Soc Neurosci 2005;383.12.

    Google Scholar 

  65. Lu W, Ziff EB. PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking. Neuron 2005;47:407–421.

    Article  PubMed  CAS  Google Scholar 

  66. Selimi F, Lohof AM, Heitz S, et al. Lurcher GRID2-induced death and depolarization can be dissociated in cerebellar Purkinje cells. Neuron 2003;37:813–819.

    Article  PubMed  CAS  Google Scholar 

  67. Charest A, Lane K, McMahon K, et al. Association of a novel PDZ domain–containing peripheral Golgi protein with the Q-SNARE (Q-soluble N-ethylmaleimide–sensitive fusion protein (NSF) attachment protein receptor) protein syntaxin 6. J Biol Chem 2001;276:29456–29465.

    Article  PubMed  CAS  Google Scholar 

  68. Kihara A, Kabeya Y, Ohsumi Y, et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2001;2:330–335.

    Article  PubMed  CAS  Google Scholar 

  69. Cuadra AE, Kuo SH, Kawasaki Y, et al. AMPA receptor synaptic targeting regulated by stargazin interactions with the Golgi-resident PDZ protein nPIST. J Neurosci 2004;24:7491–7502.

    Article  PubMed  CAS  Google Scholar 

  70. Hirai H, Miyazaki T, Kakegawa W, et al. Rescue of abnormal phenotypes of the delta2 glutamate receptor-null mice by mutant delta2 transgenes. EMBO Rep 2005;6:90–95.

    Article  PubMed  CAS  Google Scholar 

  71. Hirai H, Kirsch J, Laube B, et al. The glycine binding site of the N-methyl-d-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc Natl Acad Sci USA 1996;93:6031–6036.

    Article  PubMed  CAS  Google Scholar 

  72. Jouppila A, Pentikainen OT, Settimo L, et al. Determinants of antagonist binding at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit, GluR-D. Role of the conserved arginine 507 and glutamate 727 residues. Eur J Biochem 2002;269:6261–6270.

    Article  PubMed  CAS  Google Scholar 

  73. Kawamoto S, Uchino S, Xin KQ, et al. Arginine-481 mutation abolishes ligand-binding of the AMPA-selective glutamate receptor channel alpha1-subunit. Brain Res Mol Brain Res 1997;47:339–344.

    Article  PubMed  CAS  Google Scholar 

  74. Laube B, Hirai H, Sturgess M, et al. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 1997;18:493–503.

    Article  PubMed  CAS  Google Scholar 

  75. Klein RM, Howe JR. Effects of the lurcher mutation on GluR1 desensitization and activation kinetics. J Neurosci 2004;24:4941–4951.

    Article  PubMed  CAS  Google Scholar 

  76. Linden DJ, Connor JA. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 1991;254:1656–1659.

    Article  PubMed  CAS  Google Scholar 

  77. De Zeeuw CI, Hansel C, Bian F, et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 1998;20:495–508.

    Article  PubMed  Google Scholar 

  78. Bao D, Pang Z, Morgan JI. The structure and proteolytic processing of Cbln1 complexes. J Neurochem 2005;95:618–629.

    Article  PubMed  CAS  Google Scholar 

  79. Hirai H, Pang Z, Bao D, et al. Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nature Neurosci 2005;8:1534–1541.

    Article  PubMed  CAS  Google Scholar 

  80. Passafaro M, Nakagawa T, Sala C, et al. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 2003;424:677–681.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Yuzaki, M. (2008). Delta Receptors. In: Gereau, R.W., Swanson, G.T. (eds) The Glutamate Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-055-3_4

Download citation

Publish with us

Policies and ethics