Skip to main content

Metabotropic Glutamate Receptor-Dependent Synaptic Plasticity

  • Chapter
The Glutamate Receptors

Part of the book series: The Receptors ((REC))

Summary

Long-term potentiation (LTP) and long-term depression (LTD) are important forms of synaptic plasticity thought to underlie many brain processes such as those involved in brain development, memory, and drug addiction. The metabotropic glutamate receptors (mGluRs) are capable of inducing both LTP and LTD, and also of modulating the induction of plasticity initiated by other receptor systems. Although early work focused on the role of mGluRs in LTP, the precise nature of their involvement in LTP induction remains unclear. However, there is considerable evidence that activation of mGluRs can induce LTD in numerous brain regions. This chapter reviews the evidence for mGluR involvement in LTP induction and discusses the roles of mGluRs in LTD. In particular it describes the signaling pathways and expression mechanisms of two prominent forms of LTDā€”those seen in the CA1 region of the hippocampus and the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bortolotto ZA, Collingridge GL. On the mechanism of long-term potentiation induced by (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) in rat hippocampal slices. Neuropharmacology 1995;34(8):1003.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Rese Brain Res Rev 1999;29(1):83.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Breakwell NA, Rowan MJ, Anwyl R. Metabotropic glutamate receptor dependent EPSP and EPSP-spike potentiation in area CA1 of the submerged rat hippocampal slice. J Neurophysiol 1996;76(5):3126ā€“3135.

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Collins DR, Scollon JM, Russell DC, et al. Indirect potentiation of synaptic transmission by metabotropic glutamate receptors in the rat hippocampal slice. Brain Res 1995;684(2):165ā€“171.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Fujii S, Mikoshiba K, Kuroda Y, et al. Cooperativity between activation of metabotropic glutamate receptors and NMDA receptors in the induction of LTP in hippocampal CA1 neurons. Neurosci Res 2003;46(4):509ā€“521.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Manahan-Vaughan D, Reymann KG. Group 1 metabotropic glutamate receptors contribute to slow-onset potentiation in the rat CA1 region in vivo. Neuropharmacology 1997;36(11ā€“12):1533ā€“1538.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Chinestra P, Diabira D, Urban NN, et al. Major differences between long-term potentiation and ACPD-induced slow onset potentiation in hippocampus. Neurosci Lett 1994;182(2):177ā€“180.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Manahan-Vaughan D, Behnisch T, Reymann KG. ACPD-mediated slow-onset potentiation is associated with cell death in the rat CA1 region in vivo. Neuropharmacology 1999;38(4):487ā€“494.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Cohen AS, Abraham WC. Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. J Neurophysiol 1996;76(2): 953ā€“962.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Cohen AS, Raymond CR, Abraham WC. Priming of long-term potentiation induced by activation of metabotropic glutamate receptors coupled to phospholipase C. Hippocampus 1998;8(2):160ā€“170.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Morris SH, Knevett S, Lerner EG, et al. Group I mGluR agonist DHPG facilitates the induction of LTP in rat prelimbic cortex in vitro. J Neurophysiol 1999;82(4):1927ā€“1933.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Raymond CR, Thompson VL, Tate WP, et al. Metabotropic glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation. J Neurosci 2000;20(3):969ā€“976.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Miura M, Watanabe M, Offermanns S, et al. Group I metabotropic glutamate receptor signaling via Galpha q/Galpha 11 secures the induction of long-term potentiation in the hippocampal area CA1. J Neurosci 2002;22(19):8379ā€“8390.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Otani S, Ben-Ari Y, Roisin-Lallemand MP. Metabotropic receptor stimulation coupled to weak tetanus leads to long-term potentiation and a rapid elevation of cytosolic protein kinase C activity. Brain Res 1993;613(1):1ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc Natl Acad Sci USA 1992;89(10):4363.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. van Dam EJ, Kamal A, Artola A, et al. Group I metabotropic glutamate receptors regulate the frequency-response function of hippocampal CA1 synapses for the induction of LTP and LTD. Eur J Neurosci 2004;19(1):112ā€“118.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  17. Shirasaki T, Harata N, Akaike N. Metabotropic glutamate response in acutely dissociated hippocampal CA1 pyramidal neurones of the rat. J Physiol 1994;475(3):439ā€“453.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Gereau RW, Conn PJ. Roles of specific metabotropic glutamate receptor subtypes in regulation of hippocampal CA1 pyramidal cell excitability. J Neurophysiol 1995;74(1):122ā€“129.

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Harvey J, Collingridge GL. Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. Br J Pharmacol 1993;109(4):1085ā€“1090.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Fitzjohn SM, Irving AJ, Palmer MJ, et al. Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. Neurosci Lett 1996; 203(3): 211.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Bashir ZI, Bortolotto ZA, Davies CH, et al. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 1993;363(6427):347.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Little Z, Grover LM, Teyler TJ. Metabotropic glutamate receptor antagonist, (R,S)-alpha-methyl-4-carboxyphenyglycine, blocks two distinct forms of long-term potentiation in area CA1 of rat hippocampus. Neurosci Lett 1995;201(1): 73ā€“76.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Vickery RM, Morris SH, Bindman LJ. Metabotropic glutamate receptors are involved in long-term potentiation in isolated slices of rat medial frontal cortex. J Neurophysiol 1997;78(6):3039ā€“3046.

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. Huemmeke M, Eysel UT, Mittmann T. Metabotropic glutamate receptors mediate expression of LTP in slices of rat visual cortex. Eur J Neurosci 2002;15(10):1641ā€“1645.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  25. Lu YM, Jia Z, Janus C, et al. Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 1997;17(13):5196ā€“5205.

    PubMedĀ  CASĀ  Google ScholarĀ 

  26. Gubellini P, Saulle E, Centonze D, et al. Corticostriatal LTP requires combined mGluR1 and mGluR5 activation. Neuropharmacology 2003;44(1):8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Hsia AY, Salin PA, Castillo PE, et al. Evidence against a role for metabotropic glutamate receptors in mossy fiber LTP: the use of mutant mice and pharmacological antagonists. Neuropharmacology 1995;34(11):1567ā€“1572.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Selig DK, Lee HK, Bear MF, et al. Reexamination of the effects of MCPG on hippocampal LTP, LTD, and depotentiation. J Neurophysiol 1995;74(3): 1075ā€“1082.

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Thomas MJ, Oā€™Dell TJ. The molecular switch hypothesis fails to explain the inconsistent effects of the metabotropic glutamate receptor antagonist MCPG on long-term potentiation. Brain Res 1995;695(1):45ā€“52.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Brown RE, Rabe H, Reymann KG. (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG) does not block theta burst-induced long-term potentiation in area CA1 of rat hippocampal slices. Neurosci Lett 1994;170(1):17ā€“21.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Wilsch VW, Behnisch T, Jager T, et al. When are class I metabotropic glutamate receptors necessary for long-term potentiation? J Neurosci 1998;18(16): 6071ā€“6080.

    PubMedĀ  CASĀ  Google ScholarĀ 

  32. Izumi Y, Zorumski CF. Developmental changes in the effects of metabotropic glutamate receptor antagonists on CA1 long-term potentiation in rat hippocampal slices. Neurosci Lett 1994;176(1):89ā€“92.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Sergueeva OA, Fedorov NB, Reymann KG. An antagonist of glutamate metabotropic receptors, (RS)-alpha-methyl-4-carboxyphenylglycine, prevents the LTP-related increase in postsynaptic AMPA sensitivity in hippocampal slices. Neuropharmacology 1993;32(9):933ā€“935.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Fitzjohn SM, Bortolotto ZA, Palmer MJ, et al. The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. Neuropharmacology 1998;37(12):1445.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Oā€™Mara SM, Rowan MJ, Anwyl R. Metabotropic glutamate receptor-induced homosynaptic long-term depression and depotentiation in the dentate gyrus of the rat hippocampus in vitro. Neuropharmacology 1995;34(8):983ā€“989.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Overstreet LS, Pasternak JF, Colley PA, et al. Metabotropic glutamate receptor mediated long-term depression in developing hippocampus. Neuropharmacology 1997;36(6):831ā€“844.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Palmer MJ, Irving AJ, Seabrook GR, et al. The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 1997;36(11ā€“12):1517ā€“1532.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Fitzjohn SM, Kingston AE, Lodge D, et al. DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 1999;38(10):1577.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Huang CC, You JL, Wu MY, et al. Rap1-induced p38 mitogen-activated protein kinase activation facilitates AMPA receptor trafficking via the GDI.Rab5 complex. Potential role in (S)-3,5-dihydroxyphenylglycene-induced long term depression. J Biol Chem 2004;279(13):12286ā€“12292.

    Google ScholarĀ 

  40. Moult PR, Gladding CM, Sanderson TM, et al. Tyrosine phosphatases regulate AMPA receptor trafficking during metabotropic glutamate receptorā€“mediated long-term depression. J Neurosci 2006;26(9):2544ā€“2554.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Huber KM, Roder JC, Bear MF. Chemical induction of mGluR5- and protein synthesisā€“dependent long-term depression in hippocampal area CA1. J Neurophysiol 2001;86(1):321ā€“325.

    PubMedĀ  CASĀ  Google ScholarĀ 

  42. Volk LJ, Daly CA, Huber KM. Differential roles for group 1 mGluR subtypes in induction and expression of chemically induced hippocampal long-term depression. J Neurophysiol 2006;95(4):2427ā€“2438.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Kleppisch T, Voigt V, Allmann R, et al. G(alpha)q-deficient mice lack metabotropic glutamate receptor-dependent long-term depression but show normal long-term potentiation in the hippocampal CA1 region. J Neurosci 2001;21(14):4943ā€“4948.

    PubMedĀ  CASĀ  Google ScholarĀ 

  44. Heinke B, Sandkuhler J. Signal transduction pathways of group I metabotropic glutamate receptorā€“induced long-term depression at sensory spinal synapses. Pain 2005;118(1ā€“2):145ā€“154.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Tolchard S, Clarke G, Collingridge GL, et al. Modulation of synaptic transmission in the rat ventral septal area by the pharmacological activation of metabotropic glutamate receptors. Eur J Neurosci 2000;12(5):1843ā€“1847.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Jin XT, Beaver CJ, Ji Q, et al. Effect of the group I metabotropic glutamate agonist DHPG on the visual cortex. J Neurophysiol 2001;86(4):1622ā€“1631.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Rao Y, Daw NW. Layer variations of long-term depression in rat visual cortex. J Neurophysiol 2004;92(5):2652ā€“2658.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Choi SY, Chang J, Jiang B, et al. Multiple receptors coupled to phospholipase C gate long-term depression in visual cortex. J Neurosci 2005;25(49):11433ā€“11443.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Camodeca N, Breakwell NA, Rowan MJ, et al. Induction of LTD by activation of group I mGluR in the dentate gyrus in vitro. Neuropharmacology 1999;38(10):1597.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Grueter BA, Gosnell HB, Olsen CM, et al. Extracellular-signal regulated kinase 1ā€“dependent metabotropic glutamate receptor 5ā€“induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J Neurosci 2006;26(12):3210ā€“3219.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Bellone C, Luscher C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur J Neurosci 2005;21(5):1280ā€“1288.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  52. Renger JJ, Hartman KN, Tsuchimoto Y, et al. Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex. Proc Natl Acad Sci USA 2002;99(2):1041ā€“1046.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Lin HC, Wang SJ, Luo MZ, et al. Activation of group II metabotropic glutamate receptors induces long-term depression of synaptic transmission in the rat amygdala. J Neurosci 2000;20(24):9017ā€“9024.

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Otani S, Auclair N, Desce JM, et al. Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. J Neurosci 1999;19(22):9788ā€“9802.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Otani S, Daniel H, Takita M, et al. Long-term depression induced by postsynaptic group II metabotropic glutamate receptors linked to phospholipase C and intracellular calcium rises in rat prefrontal cortex. J Neurosci 2002;22(9):3434ā€“3444.

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. Kahn L, Alonso G, Robbe D, et al. Group 2 metabotropic glutamate receptors induced long term depression in mouse striatal slices. Neurosci Lett 2001;316(3):178ā€“182.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Robbe D, Alonso G, Chaumont S, et al. Role of p/q-Ca2+ channels in metabotropic glutamate receptor 2/3ā€“dependent presynaptic long-term depression at nucleus accumbens synapses. J Neurosci 2002;22(11):4346ā€“4356.

    PubMedĀ  CASĀ  Google ScholarĀ 

  58. Robbe D, Bockaert J, Manzoni OJ. Metabotropic glutamate receptor 2/3ā€“dependent long-term depression in the nucleus accumbens is blocked in morphine withdrawn mice. Eur J Neurosci 2002;16(11):2231ā€“2235.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  59. Huang L, Killbride J, Rowan MJ, et al. Activation of mGluRII induces LTD via activation of protein kinase A and protein kinase C in the dentate gyrus of the hippocampus in vitro. Neuropharmacology 1999;38(1):73ā€“83.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Anwyl R. Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression. Prog Neurobiol 2006;78(1): 17ā€“37.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Oliet SH, Malenka RC, Nicoll RA. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 1997;18(6):969ā€“982.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Kemp N, Bashir ZI. Induction of LTD in the adult hippocampus by the synaptic activation of AMPA/kainate and metabotropic glutamate receptors. Neuropharmacology 1999;38(4):495ā€“504.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001;81(3):1143ā€“1195.

    PubMedĀ  CASĀ  Google ScholarĀ 

  64. Lovinger DM, Tyler E. Synaptic transmission and modulation in the neostriatum. Int Rev Neurobiol 1996;39:77ā€“111.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Gubellini P, Saulle E, Centonze D, et al. Selective involvement of mGlu1 receptors in corticostriatal LTD. Neuropharmacology 2001;40(7):839.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Sung KW, Choi S, Lovinger DM. Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. J Neurophysiol 2001;86(5):2405ā€“2412.

    PubMedĀ  CASĀ  Google ScholarĀ 

  67. Aiba A, Kano M, Chen C, et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 1994;79(2):377ā€“388.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. Kobayashi K, Manabe T, Takahashi T. Presynaptic long-term depression at the hippocampal mossy fiberā€“CA3 synapse. Science 1996;273(5275):648ā€“650.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Yokoi M, Kobayashi K, Manabe T, et al. Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 1996;273(5275):645ā€“647.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Puyal J, Grassi S, Dieni C, et al. Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors. J Physiol 2003;553(Pt 2):427ā€“443.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. Jo J, Ball SM, Seok H, et al. Experience-dependent modification of mechanisms of long-term depression. Nat Neurosci 2006;9(2):170ā€“172.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Fitzjohn SM, Palmer MJ, May JE, et al. A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. J Physiol 2001;537(Pt 2):421.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Schnabel R, Kilpatrick IC, Collingridge GL. An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology 1999;38(10):1585ā€“1596.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Bolshakov VY, Siegelbaum SA. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 1994;264(5162): 1148ā€“1152.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  75. Wu J, Rush A, Rowan MJ, et al. NMDA receptor- and metabotropic glutamate receptorā€“dependent synaptic plasticity induced by high frequency stimulation in the rat dentate gyrus in vitro. J Physiol 2001;533(Pt 3):745ā€“755.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Egger V, Feldmeyer D, Sakmann B. Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 1999;2(12):1098ā€“1105.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. Cho K, Kemp N, Noel J, et al. A new form of long-term depression in the perirhinal cortex. Nat Neurosci 2000;3(2):150.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  78. Wang Y, Rowan MJ, Anwyl R. Induction of LTD in the dentate gyrus in vitro is NMDA receptor independent, but dependent on Ca2+ influx via low-voltage-activated Ca2+ channels and release of Ca2+ from intracellular stores. J Neurophysiol 1997;77(2):812ā€“825.

    PubMedĀ  CASĀ  Google ScholarĀ 

  79. Otani S, Connor JA. Requirement of rapid Ca2+ entry and synaptic activation of metabotropic glutamate receptors for the induction of long-term depression in adult rat hippocampus. J Physiol 1998;511(Pt 3):761ā€“770.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  80. Kobayashi K, Manabe T, Takahashi T. Calcium-dependent mechanisms involved in presynaptic long-term depression at the hippocampal mossy fibreā€“CA3 synapse. Eur J Neurosci 1999;11(5):1633ā€“1638.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  81. Rammes G, Eder M, Dodt HU, et al. Long-term depression in the basolateral amygdala of the mouse involves the activation of interneurons. Neuroscience 2001;107(1):85ā€“97.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  82. Huang CC, Hsu KS. Sustained activation of metabotropic glutamate receptor 5 and protein tyrosine phosphatases mediate the expression of (S)-3,5-dihydroxyphenylglycineā€“induced long-term depression in the hippocampal CA1 region. J Neurochem 2006;96(1):179ā€“194.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  83. Gallagher SM, Daly CA, Bear MF, et al. Extracellular signal-regulated protein kinase activation is required for metabotropic glutamate receptor-dependent long-term depression in hippocampal area CA1. J Neurosci 2004;24(20):4859ā€“4864.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  84. Mulkey RM, Endo S, Shenolikar S, et al. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 1994; 369(6480):486ā€“488.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  85. Schnabel R, Kilpatrick IC, Collingridge GL. Protein phosphatase inhibitors facilitate DHPG-induced LTD in the CA1 region of the hippocampus. Br J Pharmacol 2001;132(5):1095ā€“1101.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  86. Moult PR, Schnabel R, Kilpatrick IC, et al. Tyrosine dephosphorylation underlies DHPG-induced LTD. Neuropharmacology 2002;43(2):175ā€“180.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Huber KM, Kayser MS, Bear MF. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 2000;288(5469):1254ā€“1257.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Nosyreva ED, Huber KM. Developmental switch in synaptic mechanisms of hippocampal metabotropic glutamate receptorā€“dependent long-term depression. J Neurosci 2005;25(11):2992ā€“3001.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Hou L, Klann E. Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 2004;24(28):6352ā€“6361.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  90. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci 2004;27(7):370ā€“377.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  91. Huber KM, Gallagher SM, Warren ST, et al. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 2002;99(11):7746ā€“7750.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  92. Nosyreva ED, Huber KM. Metabotropic receptorā€“dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol 2006;95(5):3291ā€“3295.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  93. Snyder EM, Philpot BD, Huber KM, et al. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 2001;4(11):1079ā€“1085.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. Xiao MY, Zhou Q, Nicoll RA. Metabotropic glutamate receptor activation causes a rapid redistribution of AMPA receptors. Neuropharmacology 2001;41(6):664ā€“671.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. Watabe AM, Carlisle HJ, Oā€™Dell TJ. Postsynaptic induction and presynaptic expression of group 1 mGluRā€“dependent LTD in the hippocampal CA1 region. J Neurophysiol 2002;87(3):1395ā€“1403.

    PubMedĀ  CASĀ  Google ScholarĀ 

  96. Tan Y, Hori N, Carpenter DO. The mechanism of presynaptic long-term depression mediated by group I metabotropic glutamate receptors. Cell Mol Neurobiol 2003;23(2):187ā€“203.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. Rammes G, Palmer M, Eder M, et al. Activation of mGlu receptors induces LTD without affecting postsynaptic sensitivity of CA1 neurons in rat hippocampal slices. J Physiol 2003;546(Pt 2):455ā€“460.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. Qian J, Noebels JL. Exocytosis of vesicular zinc reveals persistent depression of neurotransmitter release during metabotropic glutamate receptor long-term depression at the hippocampal CA3-CA1 synapse. J Neurosci 2006;26(22): 6089ā€“6095.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  99. Shigemoto R, Kinoshita A, Wada E, et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 1997;17(19):7503ā€“7522.

    PubMedĀ  CASĀ  Google ScholarĀ 

  100. Feinmark SJ, Begum R, Tsvetkov E, et al. 12-Lipoxygenase metabolites of arachidonic acid mediate metabotropic glutamate receptorā€“dependent long-term depression at hippocampal CA3ā€“CA1 synapses. J Neurosci 2003;23(36): 11427ā€“11435.

    PubMedĀ  CASĀ  Google ScholarĀ 

  101. Rouach N, Nicoll RA. Endocannabinoids contribute to short-term but not long-term mGluR-induced depression in the hippocampus. Eur J Neurosci 2003;18(4):1017ā€“1020.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  102. Gerdeman GL, Ronesi J, Lovinger DM. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 2002;5(5):446.

    PubMedĀ  CASĀ  Google ScholarĀ 

  103. Calabresi P, Pisani A, Centonze D, et al. Role of Ca2+in striatal LTD and LTP. Semin Neurosci 1996;8(5):321ā€“328.

    ArticleĀ  CASĀ  Google ScholarĀ 

  104. Robbe D, Alonso G, Manzoni OJ. Exogenous and endogenous cannabinoids control synaptic transmission in mice nucleus accumbens. Ann N Y Acad Sci 2003;1003:212ā€“225.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  105. Sakurai M. Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. Proc Natl Acad Sci USA 1990;87(9): 3383ā€“3385.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  106. Linden DJ, Connor JA. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 1991;254(5038):1656ā€“1659.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  107. Ito M, Karachot L. Protein-kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar purkinje cells. Neurosci Res 1992;14(1):27ā€“38.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  108. Matsuda S, Launey T, Mikawa S, et al. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J 2000;19(12):2765ā€“2774.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  109. Chung HJ, Steinberg JP, Huganir RL, et al. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 2003;300(5626):1751ā€“1755.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  110. Karachot L, Shirai Y, Vigot R, et al. Induction of long-term depression in cerebellar Purkinje cells requires a rapidly turned over protein. J Neurophysiol 2001;86(1):280ā€“289.

    PubMedĀ  CASĀ  Google ScholarĀ 

  111. Koekkoek SK, Yamaguchi K, Milojkovic BA, et al. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome. Neuron 2005;47(3):339ā€“352.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  112. Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 1982;324:113ā€“134.

    PubMedĀ  CASĀ  Google ScholarĀ 

  113. Crepel F, Krupa M. Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res 1988;458(2):397ā€“401.

    Google ScholarĀ 

  114. Wang YT, Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 2000;25(3):635ā€“647.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  115. Liu YB, Disterhoft JF, Slater NT. Activation of metabotropic glutamate receptors induces long-term depression of GABAergic inhibition in hippocampus. J Neurophysiol 1993;69(3):1000ā€“1004.

    PubMedĀ  CASĀ  Google ScholarĀ 

  116. Chevaleyre V, Castillo PE. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 2003;38(3):461ā€“472.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  117. Chevaleyre V, Castillo PE. Endocannabinoid-mediated metaplasticity in the hippocampus. Neuron 2004;43(6):871ā€“881.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  118. Fourgeaud L, Mato S, Bouchet D, et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J Neurosci 2004;24(31):6939ā€“6945.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  119. Chiamulera C, Epping-Jordan MP, Zocchi A, et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 2001;4(9):873ā€“874.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  120. Bellone C, Luscher C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 2006;9(5):636ā€“641.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Humana Press

About this chapter

Cite this chapter

Fitzjohn, S.M., Bashir, Z.I. (2008). Metabotropic Glutamate Receptor-Dependent Synaptic Plasticity. In: Gereau, R.W., Swanson, G.T. (eds) The Glutamate Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-055-3_13

Download citation

Publish with us

Policies and ethics