Skip to main content

Biomarkers of Necrosis for Risk Assessment and Management of ST-Elevation Myocardial Infarction

  • Chapter
Cardiovascular Biomarkers

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The diagnosis and immediate initiation of reperfusion therapy in patients with acute ST-elevation myocardial infarction (STEMI) are based on results of the standard 12-lead electrocardiogram. Because the appearance of cardiac markers of myocardial injury in the blood is delayed relative to the onset of symptom, cardiac markers are neither helpful for early diagnosis nor should their results be awaited before initiation of reperfusion therapy. Nevertheless, there are four important reasons to measure cardiac markers of necrosis in patients with STEMI: (1) confirmation of diagnosis, (2) monitoring of efficiency of reperfusion, (3) assessment of risk, and (4) infarct sizing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction—executive summary. A report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). J Am Coll Cardiol 2004;44:671–719.

    Article  PubMed  Google Scholar 

  2. Chan CP, Sanderson JE, Glatz JF, Cheng WS, Hempel A, Renneberg R. A superior early myocardial infarction marker: human heart-type fatty acid-binding protein. Z Kardiol 2004;93:388–397.

    Article  PubMed  CAS  Google Scholar 

  3. Report of the Joint International Society and Federation of Cardiology/World Health Organization Task Force on standardization of clinical nomenclature. Circulation 1979;59:607–609.

    Google Scholar 

  4. The Joint European Society of Cardiology/American College of Cardiology Committee. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Eur Heart J 2000;21: 1502–1513.

    Article  Google Scholar 

  5. Katus HA, Remppis A, Neumann FJ, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 1991;83:902–912.

    PubMed  CAS  Google Scholar 

  6. Katus HA, Remppis A, Scheffold T, et al. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 1991; 67:1360–1367.

    Article  PubMed  CAS  Google Scholar 

  7. Krucoff MW, Croll MA, Pope JE, et al., for the TAMI 7 study. Performance of a noninvasive method for real-time detection of failed myocardial reperfusion. Circulation 1993;88:437–446.

    PubMed  CAS  Google Scholar 

  8. Langer A, Krucoff MW, Klootwijk P, et al. Noninvasive assessment of speed and stability of infarctrelated artery reperfusion: results of the GUSTO ST segment monitoring study: global utilization of streptokinase and tissue plasminogen activator for occluded coronary arteries. J Am Coll Cardiol 1995;25: 1552–1557.

    Article  PubMed  CAS  Google Scholar 

  9. Katus HA, Diederich KW, Scheffold T, Uellner M, Schwarz F, Kübler W. Non-invasive assessment of infarct reperfusion: the predictive power of the time to peak value of myoglobin, CKMB, and CK in serum. Eur Heart J 1988;9:619–624.

    PubMed  CAS  Google Scholar 

  10. Apple FS. Value of soluble markers in the diagnosis of reperfusion. In: Kaski JC, Holt DW, eds. Developments in Cardiovascular Medicine: Myocardial Damage—Early Detection by Novel Biochemical Markers. Kluwer Academic, Dordrecht, The Netherlands, 1998, pp. 149–157.

    Google Scholar 

  11. Stewart JT, French JK, Theroux P, et al. Early non-invasive identification of failed reperfusion after intravenous thrombolytic therapy in acute myocardial infarction. J Am Coll Cardiol 1998;31:1499–1505.

    Article  PubMed  CAS  Google Scholar 

  12. Tanasijevic MJ, Cannon CP, Antman EM, et al., for the TIMI 10B Investigators. Myoglobin, creatine kinase MB and cardiac troponin I 60-minute ratios predict infarct-related artery patency after thrombolysis for acute myocardial infarction. J Am Coll Cardiol 1999;34:739–747.

    Article  PubMed  CAS  Google Scholar 

  13. Apple FS, Henry TD, Berger CR, Landt YA. Early monitoring of serum cardiac troponin I for assessment of coronary reperfusion following thrombolytic therapy. Am J Clin Pathol 1996;105:6–10.

    PubMed  CAS  Google Scholar 

  14. Zabel M, Hohnloser SH, Koster W, Prinz M, Kasper W, Just H. Analysis of creatine kinase, CK-MB, myoglobin, and troponin T time-activity curves for early assessment of coronary artery reperfusion after intravenous thrombolysis. Circulation 1993;87:1542–1550.

    PubMed  CAS  Google Scholar 

  15. Wu K, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97:765–772.

    PubMed  CAS  Google Scholar 

  16. Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis: a predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992;85:1699–1705.

    PubMed  CAS  Google Scholar 

  17. Laperche T, Steg PG, Benessiano J, et al. Patterns of myoglobin and MM creatine kinase isoforms release early after intravenous thrombolysis or direct percutaneous transluminal coronary angioplasty for acute myocardial infarction, and implications for the early noninvasive diagnosis of reperfusion. Am J Cardiol 1992;70:1129–1134.

    Article  PubMed  CAS  Google Scholar 

  18. Frostfeldt G, Gustafsson G, Lindahl B, Nygren A, Venge P, Wallentin L. Possible reasons for the prognostic value of troponin-T on admission in patients with ST-elevation myocardial infarction. Coron Artery Dis 2001;12:227–237.

    Article  PubMed  CAS  Google Scholar 

  19. Lehrke S, Katus HA, Giannitsis E. Admission troponin T predicts benefits abciximab administration after successful primary percutaneous intervention for acute ST-segment myocardial infarction. Thromb Haemost 2004;92:1214–1220.

    PubMed  CAS  Google Scholar 

  20. Wong GC, Morrow DA, Murphy S, et al. Elevations in troponin T and I are associated with abnormal tissue level perfusion: a TACTICS-TIMI 18 substudy. Treat Angina with Aggrastat and Determine Cost of Therapy with an Invasive or Conservative Strategy-Thrombolysis in Myocardial Infarction. Circulation 2002;106:202–207.

    Article  PubMed  CAS  Google Scholar 

  21. Kurowski V, Hartmann F, Killermann DP, et al. Prognostic significance of admission cardiac troponin T in patients treated successfully with direct percutaneous interventions for acute ST-segment elevation myocardial infarction. Crit Care Med 2002;30:2229–2235.

    Article  PubMed  CAS  Google Scholar 

  22. Topol EJ; GUSTO V Investigators. Reperfusion therapy for acute myocardial infarction with fibrinolytic therapy or combination reduced fibrinolytic therapy and platelet glycoprotein IIb/IIIa inhibition: the GUSTO V randomised trial. Lancet 2001;357:1905–1914.

    Article  PubMed  CAS  Google Scholar 

  23. Ohman EM, Armstrong PW, White HD, for the GUSTO-III Investigators. Risk stratification with a point-of care cardiac troponin T test in acute myocardial infarction. Am J Cardiol 1999;84:1281–1286.

    Article  PubMed  CAS  Google Scholar 

  24. Stubbs P, Collinson P, Moseley D, et al. Prognostic significance of admission troponin T concentrations in patients with myocardial infarction. Circulation 1996;94:1291–1297.

    PubMed  CAS  Google Scholar 

  25. Giannitsis E, Lehrke S, Wiegand U, et al. Risk stratification in patients with inferior acute myocardial infarction treated by percutaneous coronary interventions—the role of admission troponin T. Circulation 2000;102:2038–2044.

    PubMed  CAS  Google Scholar 

  26. Matetzky S, Sharir T, Domingo M, et al. Elevated troponin I level on admission is associated with adverse outcome of primary angioplasty in acute myocardial infarction. Circulation 2000;102:1611–1616.

    PubMed  CAS  Google Scholar 

  27. Bjorklund E, Lindahl B, Johanson P, et al. Admission Troponin T and measurement of ST-segment resolution at 60 min improve early risk stratification in ST-elevation myocardial infarction. Eur Heart J 2004; 25:113–120.

    Article  PubMed  CAS  Google Scholar 

  28. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985;71:699–708.

    PubMed  CAS  Google Scholar 

  29. Gibbons RJ, Valeti US, Araoz PA, Jaffe AS. The quantification of infarct size. J Am Coll Cardiol 2004; 44:1533–1542.

    Article  PubMed  Google Scholar 

  30. Grande P, Christiansen C, Alstrup K. Comparison of ASAT, CK, CK-MB, and LD for the estimation of acute myocardial infarct size in man. Clin Chim Acta 1983;128:329–335.

    Article  PubMed  CAS  Google Scholar 

  31. Al Saady NM, Camm AJ. New soluble markers for assessment of infarct size. In: Kaski JC, Holt DW, eds. Myocardial Damage: Early Detection by Novel Biochemical Markers. Kluwer Academic, Dordrecht, The Netherlands, 1998, pp. 137–148.

    Google Scholar 

  32. Smith JL, Ambos HD, Gold HK, et al. Enzymatic estimation of myocardial infarct size when early creatine kinase values are not available. Am J Cardiol 1983;51:1294–1300.

    Article  PubMed  CAS  Google Scholar 

  33. Vatner SF, Baig H, Manders WT, Maroko PR. Effects of coronary artery reperfusion on myocardial infarct size calculated from creatine kinase. J Clin Investig 1977;61:1048–1056.

    Article  Google Scholar 

  34. Remppis A, Ehlermann P, Giannitsis E, et al. Cardiac troponin T levels at 96 hours reflect myocardial infarct size: a pathoanatomical study. Cardiology 2000;93:249–253.

    Article  PubMed  CAS  Google Scholar 

  35. Licka M, Zimmermann R, Zehelein J, Dengler TJ, Katus HA, Kubler W. Troponin T concentrations 72 athours after myocardial infarction as a serological estimate of infarct size. Heart 2002;87:520–524.

    Article  PubMed  CAS  Google Scholar 

  36. Panteghini M, Cuccia C, Bonetti G, Giubbini R, Pagani F, Bonini E. Single-point cardiac troponin T at coronary care unit discharge after myocardial infarction correlates with infarct size and ejection fraction. Clin Chem 2002;48:1432–1436.

    PubMed  CAS  Google Scholar 

  37. Korosoglou G, Labadze N, Hansen A, et al. Usefulness of real-time myocardial perfusion imaging in the evaluation of patients with first time chest pain. Am J Cardiol 2004;94:1225–1231.

    Article  PubMed  Google Scholar 

  38. Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE. Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 2004;43:2253–2259.

    Article  PubMed  Google Scholar 

  39. Ricciardi MJ, Wu E, Davidson CJ, et al. Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 2001;103:2780–2783.

    Article  PubMed  CAS  Google Scholar 

  40. Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003;361:374–379.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Giannitsis, E., Katus, H.A. (2006). Biomarkers of Necrosis for Risk Assessment and Management of ST-Elevation Myocardial Infarction. In: Morrow, D.A. (eds) Cardiovascular Biomarkers. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-051-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-051-5_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-526-2

  • Online ISBN: 978-1-59745-051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics