Skip to main content

Defining Myocardial Infarction

  • Chapter
Cardiovascular Biomarkers

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The diagnosis of acute myocardial infarction (AMI) as defined by the World Health Organization (WHO) was based for many years on the presence of two of three possible criteria: clinical symptoms compatible with AMI, typical electrocardiogram changes, and increases in markers of cardiac injury. However, because of the very good sensitivity and specificity of creatine kinase-MB (CK-MB), it eventually became rare to diagnose AMI in the absence of elevations of this biomarker. Thus, although never formally embraced by WHO, the clinical diagnosis of AMI became dependent on elevation of a biomarker of myocardial injury in the appropriate clinical setting. This approach evolved further with the development of cardiac troponin and its integration into the definition of MI by the European Society of Cardiology and the American College of Cardiology. The present diagnostic standard for MI is thus based on the following biomarker criteria: Maximal concentration of troponin T or I exceeding the decision limit (99th percentile of the values for a reference control group) manifesting a dynamic pattern on at least one occasion during the first 24 h after the index clinical event; if the value is between the 99th percentile and the 10% coefficient of variation level, caution is warranted because analytic false-positive results can occur. In the unusual situation in which troponin assays are not available, the value of CK-MB (preferably CK-MB mass) exceeding the 99th percentile of the value for a reference control group and manifesting a dynamic pattern can be used for diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project: registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 1994; pp. 583–612.

    Google Scholar 

  2. WHO Expert Committee on Cardiovascular Disease and Hypertension. Hypertension and coronary heart disease: classification and criteria for epidemiological studies. World Health Organization Tech Support Ser 1959;168:3–28.

    Google Scholar 

  3. Karmen A, Wroblewski F, Ladue JS. Transaminase activity in human blood. J Clin Invest 1955; pp. 126–131.

    Google Scholar 

  4. Anonymous. The pathological diagnosis of acute myocardial infarction: preliminary results of a WHO cooperative study. Bull World Health Org 1973; pp. 23–25.

    Google Scholar 

  5. Shell WE, Kjekshus JK, Sobel BE, eds. Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine phosphokinase activity. J Clin Invest 1971;50:2614–2625.

    Google Scholar 

  6. Roberts R, Henry PD, Witteeveen SA, Sobel BE. Quantification of serum creatine phosphokinase isoenzyme activity. Am J Cardiol 1974; pp. 650–654.

    Google Scholar 

  7. Roberts R, Gowda KS, Ludbrook PA, Sobel BE. Specificity of elevated serum MB creatine phosphokinase activity in the diagnosis of acute myocardial infarction. Am J Cardiol 1975; pp. 433–437.

    Google Scholar 

  8. Jaffe AS, Serota H, Grace A, Sobel BE. Diagnostic changes in plasma creatine kinase isoforms early after the onset of acute myocardial infarction. Circulation 1986; pp. 105–109.

    Google Scholar 

  9. Abendschein D, Seacord LM, Nohara R, Sobel BE, Jaffe AS. Prompt detection of myocardial injury by assay of creatine kinase isoforms in initial plasma samples. Clin Cardiol 1988; pp. 661–664.

    Google Scholar 

  10. Lee TH, Rouan GW, Weisberg MC, et al. Sensitivity of routine clinical criteria for diagnosing myocardial infarction within 24 hours of hospitalization. Ann Intern Med 1987; pp. 181–186.

    Google Scholar 

  11. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Eur Heart J 2000; pp. 1502–1513.

    Google Scholar 

  12. Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; pp. 959–969.

    Google Scholar 

  13. Adams JE 3rd, Schechtman KB, Landt Y, Ladenson JH, Jaffe AS. Comparable detection of acute myocardial infarction by creatine kinase MB isoenzyme and cardiac troponin I. Clin Chem 1994; pp. 1291–1295.

    Google Scholar 

  14. Wu AH, Lane PL. Metaanalysis in clinical chemistry: validation of cardiac troponin T as a marker for ischemic heart diseases. Clin Chem 1995; pp. 1228–1233.

    Google Scholar 

  15. Jaffe AS, Ravkilde J, Roberts R, et al. It’s time for a change to a troponin standard. Circulation 2000; pp. 1216–1220.

    Google Scholar 

  16. Adams JE 3rd, Abendschein DR, Jaffe AS. Biochemical markers of myocardial injury: is MB creatine kinase the choice for the 1990s? Circulation 1993; pp. 750–763.

    Google Scholar 

  17. Grenadier E, Keidar S, Kahana L, Alpan G, Marmur A, Palant A. The roles of serum myoglobin, total CPK, and CK-MB isoenzyme in the acute phase of myocardial infarction. Am Heart J 1983; pp. 408–416.

    Google Scholar 

  18. Klocke FJ, Copley DP, Krawczyk JA, Reichlin M. Rapid renal clearance of immunoreactive canine plasma myoglobin. Circulation 1982; pp. 1522–1528.

    Google Scholar 

  19. Katus HA, Remppis A, Scheffold T, Diederich KW, Kuebler W. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 1991; pp. 1360–1367.

    Google Scholar 

  20. Bleier J, Vorderwinkler KP, Falkensammer J, et al. Different intracellular compartmentations of cardiac troponins and myosin heavy chains: a causal connection to their different early release after myocardial damage. Clin Chem 1998; pp. 1912–1918.

    Google Scholar 

  21. Bertinchant JP, Larue C, Pernel I, et al. Release kinetics of serum cardiac troponin I in ischemic myocardial injury. Clin Biochem 1996; pp. 587–594.

    Google Scholar 

  22. Sobel BE, Shell WE. Serum enzyme determinations in the diagnosis and assessment of myocardial infarction. Circulation 1972; pp. 471–482.

    Google Scholar 

  23. Cox DA, Stone PH, Muller JE, et al. Prognostic implications of an early peak in plasma MB creatine kinase in patients with acute myocardial infarction. J Am Coll Cardiol 1987; pp. 979–990.

    Google Scholar 

  24. Vallins WJ, Brand NJ, Dabhade N, Butler-Browne G, Yacoub MH, Barton PJ. Molecular cloning of human cardiac troponin I using polymerase chain reaction. FEBS Lett 1990; pp. 57–61.

    Google Scholar 

  25. Wade R, Eddy R, Shows TB, Kedes L. cDNA sequence, tissue-specific expression, and chromosomal mapping of the human slow-twitch skeletal muscle isoform of troponin I. Genomics 1990; pp. 346–357.

    Google Scholar 

  26. Zhu L, Perez-Alvarado G, Wade R. Sequencing of a cDNA encoding the human fast-twitch skeletal muscle isoform of troponin I. Biochim Biophys Acta 1994; pp. 338–340.

    Google Scholar 

  27. Katrukha A. Antibody selection strategies in cardiac troponin assay. In: Wu AHB, ed. Cardiac Markers, 2nd ed. Humana Press, Totowa, NJ, 2003; pp. 173–185.

    Google Scholar 

  28. Toyota N, Shimada Y. Differentiation of troponin in cardiac and skeletal muscles in chicken embryos as studied by immunofluorescence microscopy. J Cell Biol 1981; pp. 497–504.

    Google Scholar 

  29. Perry SV. Troponin T: genetics, properties and function. J Muscle Res Cell Motil 1998; pp. 575–602.

    Google Scholar 

  30. Anderson PA, Greig A, Mark TM, et al. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res 1995; pp. 681–686.

    Google Scholar 

  31. Filatov VL, Katrukha AG, Bulargina TV, Gusev NB. Troponin: structure, properties, and mechanism of functioning. Biochemistry (Mosc) 1999; pp. 969–985.

    Google Scholar 

  32. Gahlmann R, Troutt AB, Wade RP, Gunning P, Kedes L. Alternative splicing generates variants in important functional domains of human slow skeletal troponin T. J Biol Chem 1987; pp. 16,122–16,126.

    Google Scholar 

  33. Mesnard L, Logeart D, Taviaux S, Diriong S, Mercadier JJ, Samson F. Human cardiac troponin T: cloning and expression of new isoforms in the normal and failing heart. Circ Res 1995; pp. 687–692.

    Google Scholar 

  34. Katus HA, Looser S, Hallermayer K, et al. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem 1992; pp. 386–393.

    Google Scholar 

  35. Muller-Bardorff M, Hallermayer K, Schroder A, et al. Improved troponin T ELISA specific for cardiac troponin T isoform: assay development and analytical and clinical validation. Clin Chem 1997; pp. 458–466.

    Google Scholar 

  36. Bodor GS, Survant L, Voss EM, Smith S, Porterfield D, Apple FS. Cardiac troponin T composition in normal and regenerating human skeletal muscle. Clin Chem 1997; pp. 476–484.

    Google Scholar 

  37. Haller C, Zehelein J, Remppis A, Muller-Bardorff M, Katus HA. Cardiac troponin T in patients with end-stage renal disease: absence of expression in truncal skeletal muscle. Clin Chem 1998; pp. 930–938.

    Google Scholar 

  38. Ricchiuti V, Voss EM, Ney A, Odland M, Anderson PA, Apple FS. Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim. Clin Chem 1998; pp. 1919–1924.

    Google Scholar 

  39. Ricchiuti V, Apple FS. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin Chem 1999; pp. 2129–2135.

    Google Scholar 

  40. Jacobs H, Heldt HW, Klingenberg M. High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem Biophys Res Commun 1964; pp. 516–521.

    Google Scholar 

  41. Dawson DM, Eppenberger HM, Kaplan NO. Creatine kinase: evidence for a dimeric structure. Biochem Biophys Res Commun 1965; pp. 346–353.

    Google Scholar 

  42. Tsung JS, Tsung SS. Creatine kinase isoenzymes in extracts of various human skeletal muscles. Clin Chem 1986; pp. 1568–1570.

    Google Scholar 

  43. Wilhelm AH, Alberts KM, Todd JK. Creatine phosphokinase isoenzyme distribution in human skeletal and heart muscles. IRCS Med Sci 1976; pp. 418–420.

    Google Scholar 

  44. Mair J. Cardiac troponin I and troponin T: are enzymes still relevant as cardiac markers? Clin Chim Acta 1997; pp. 99–115.

    Google Scholar 

  45. Larca LJ, Coppola JT, Honig S. Creatine kinase MB isoenzyme in dermatomyositis: a noncardiac source. Ann Intern Med 1981; pp. 341–343.

    Google Scholar 

  46. Lee TH, Goldman L. Serum enzyme assays in the diagnosis of acute myocardial infarction: recommendations based on a quantitative analysis. Ann Intern Med 1986; pp. 221–233.

    Google Scholar 

  47. Mair J, Puschendorf B, Michel G. Clinical significance of cardiac contractile proteins for the diagnosis of myocardial injury. Adv Clin Chem 1994; pp. 63–98.

    Google Scholar 

  48. Kagen LJ. Myoglobin: Biochemical, Physiological and Clinical Aspects. Columbia University Press, New York, 1973.

    Google Scholar 

  49. Roberts R. Myoglobinemia as index to myocardial infarction. Ann Intern Med 1977; pp. 788, 789.

    Google Scholar 

  50. Groth T, Hakman M, Sylven C. Prediction of myocardial infarct size from early serum myoglobin observations. Scand J Clin Lab Invest 1987; pp. 599–603.

    Google Scholar 

  51. Gerhardt W, Nordin G, Ljungdahl L. Can troponin T replace CK MBmass as “gold standard” for acute myocardial infarction (”AMI“)? Scand J Clin Lab Invest Suppl 1999; pp. 83–89.

    Google Scholar 

  52. Katus HA, Remppis A, Neumann FJ, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 1991; pp. 902–912.

    Google Scholar 

  53. Wu AH, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Valdes R Jr. National Academy of Clinical Biochemistry Standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 1999; pp. 1104–1121.

    Google Scholar 

  54. Apple FS, Falahati A, Paulsen PR, Miller EA, Sharkey SW. Improved detection of minor ischemic myocardial injury with measurement of serum cardiac troponin I. Clin Chem 1997; pp. 2047–2051.

    Google Scholar 

  55. Voss EM, Sharkey SW, Gernert AE, et al. Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium: infarct sizing using serum profiles. Arch Pathol Lab Med 1995; pp. 799–806.

    Google Scholar 

  56. Vatner SF, Baig H, Manders WT, Maroko PR. Effects of coronary artery reperfusion on myocardial infarct size calculated from creatine kinase. J Clin Invest 1978; pp. 1048–1056.

    Google Scholar 

  57. Tanaka H, Abe S, Yamashita T, et al. Serum levels of cardiac troponin I and troponin T in estimating myocardial infarct size soon after reperfusion. Coron Artery Dis 1997; pp. 433–439.

    Google Scholar 

  58. Jaffe AS, Landt Y, Parvin CA, Abendschein DR, Geltman EM, Ladenson JH. Comparative sensitivity of cardiac troponin I and lactate dehydrogenase isoenzymes for diagnosing acute myocardial infarction. Clin Chem 1996; pp. 1770–1776.

    Google Scholar 

  59. Zimmerman J, Fromm R, Meyer D, et al. Diagnostic marker cooperative study for the diagnosis of myocardial infarction. Circulation 1999; pp. 1671–1677.

    Google Scholar 

  60. McCord J, Nowak RM, McCullough PA, et al. Ninety-minute exclusion of acute myocardial infarction by use of quantitative point-of-care testing of myoglobin and troponin I. Circulation 2001; pp. 1483–1488.

    Google Scholar 

  61. Apple FS, Christenson RH, Valdes R Jr, et al. Simultaneous rapid measurement of whole blood myoglobin, creatine kinase MB, and cardiac troponin I by the triage cardiac panel for detection of myocardial infarction. Clin Chem 1999; pp. 199–205.

    Google Scholar 

  62. Apple FS, Anderson FP, Collinson P, et al. Clinical evaluation of the first medical whole blood, pointofcare testing device for detection of myocardial infarction. Clin Chem 2000; pp. 1604–1609.

    Google Scholar 

  63. Penttila K, Koukkunen H, Halinen M, et al. Myoglobin, creatine kinase MB isoforms and creatine kinase MB mass in early diagnosis of myocardial infarction in patients with acute chest pain. Clin Biochem 2002; pp. 647–653.

    Google Scholar 

  64. Newby LK, Storrow AB, Gibler WB, et al. Bedside multimarker testing for risk stratification in chest pain units: the chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study. Circulation 2001; pp. 1832–1837.

    Google Scholar 

  65. Abendschein DR, Serota H, Plummer TH Jr, et al. Conversion of MM creatine kinase isoforms in human plasma by carboxypeptidase N. J Lab Clin Med 1987; pp. 798–806.

    Google Scholar 

  66. Puleo PR, Meyer D, Wathen C, et al. Use of a rapid assay of subforms of creatine kinase-MB to diagnose or rule out acute myocardial infarction. N Engl J Med 1994; pp. 561–566.

    Google Scholar 

  67. Wu AH, Ford L. Release of cardiac troponin in acute coronary syndromes: ischemia or necrosis? Clin Chim Acta 1999; pp. 161–174.

    Google Scholar 

  68. Ishikawa Y, Saffitz JE, Mealman TL, Grace AM, Roberts R. Reversible myocardial ischemic injury is not associated with increased creatine kinase activity in plasma. Clin Chem 1997; pp. 467–475.

    Google Scholar 

  69. Sobel BE, LeWinter MM. Ingenuous interpretation of elevated blood levels of macromolecular markers of myocardial injury: a recipe for confusion. J Am Coll Cardiol 2000; pp. 1355–1358.

    Google Scholar 

  70. Wu AH, Feng YJ, Moore R, et al. Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. American Association for Clinical Chemistry Subcommittee on cTnI Standardization. Clin Chem 1998; pp. 1198–1208.

    Google Scholar 

  71. Katrukha AG, Bereznikova AV, Esakova TV, et al. Troponin I is released in bloodstream of patients with acute myocardial infarction not in free form but as complex. Clin Chem 1997; pp. 1379–1385.

    Google Scholar 

  72. Carlson RJ, Navone A, McConnell JP, et al. Effect of myocardial ischemia on cardiac troponin I and T. Am J Cardiol 2002; pp. 224–226.

    Google Scholar 

  73. Ooi DS, Isotalo PA, Veinot JP. Correlation of antemortem serum creatine kinase, creatine kinase-MB, troponin I, and troponin T with cardiac pathology. Clin Chem 2000; pp. 338–344.

    Google Scholar 

  74. Chen Y, Serfass RC, Mackey-Bojack SM, Kelly KL, Titus JL, Apple FS. Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise. J Appl Physiol 2000; pp. 1749–1755.

    Google Scholar 

  75. Neumayr G, Gaenzer H, Pfister R, et al. Plasma levels of cardiac troponin I after prolonged strenuous endurance exercise. Am J Cardiol 2001; pp. 369–371, A10.

    Google Scholar 

  76. Rifai N, Douglas PS, O’Toole M, Rimm E, Ginsburg GS. Cardiac troponin T and I, echocardiographic [correction of electrocardiographic] wall motion analyses, and ejection fractions in athletes participating in the Hawaii Ironman Triathlon. Am J Cardiol 1999; pp. 1085–1089.

    Google Scholar 

  77. Shave RE, Dawson E, Whyte G, George K, Gaze D, Collinson P. Effect of prolonged exercise in a hypoxic environment on cardiac function and cardiac troponin T. Br J Sports Med 2004; pp. 86–88.

    Google Scholar 

  78. Muller-Bardorff M, Weidtmann B, Giannitsis E, Kurowski V, Katus HA. Release kinetics of cardiac troponin T in survivors of confirmed severe pulmonary embolism. Clin Chem 2002; pp. 673–675.

    Google Scholar 

  79. La Vecchia L, Ottani F, Favero L, et al. Increased cardiac troponin I on admission predicts in-hospital mortality in acute pulmonary embolism. Heart 2004; pp. 633–637.

    Google Scholar 

  80. Goldstein JA. Right heart ischemia: pathophysiology, natural history, and clinical management. Prog Cardiovasc Dis 1998; pp. 325–341.

    Google Scholar 

  81. Apple FS, Murakami M, Panteghini M, et al. International survey on the use of cardiac markers. Clin Chem 2001; pp. 587, 588.

    Google Scholar 

  82. Panteghini M, Pagani F, Yeo KT, et al. Evaluation of imprecision for cardiac troponin assays at lowrange concentrations. Clin Chem 2004; pp. 327–332.

    Google Scholar 

  83. James SK, Lindahl B, Armstrong P, et al. A rapid troponin I assay is not optimal for determination of troponin status and prediction of subsequent cardiac events at suspicion of unstable coronary syndromes. Int J Cardiol 2004; pp. 113–120.

    Google Scholar 

  84. Lindahl B, Venge P, Wallentin L. Relation between troponin T and the risk of subsequent cardiac events in unstable coronary artery disease. The FRISC study group. Circulation 1996; pp. 1651–1657.

    Google Scholar 

  85. Antman EM, Tanasijevic MJ, Thompson B, et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med 1996; pp. 1342–1349.

    Google Scholar 

  86. Luscher MS, Thygesen K, Ravkilde J, Heickendorff L. Applicability of cardiac troponin T and I for early risk stratification in unstable coronary artery disease. TRIM Study Group. Thrombin Inhibition in Myocardial Ischemia. Circulation 1997; pp. 2578–2585.

    Google Scholar 

  87. Ottani F, Galvani M, Nicolini FA, et al. Elevated cardiac troponin levels predict the risk of adverse outcome in patients with acute coronary syndromes. Am Heart J 2000; pp. 917–927.

    Google Scholar 

  88. Luepker RV, Apple FS, Christenson RH, et al. Case definitions for acute coronary heart disease in epidemiology and clinical research studies: a statement from the AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on Epidemiology and Prevention; the European Society of Cardiology Working Group on Epidemiology and Prevention; Centers for Disease Control and Prevention; and the National Heart, Lung, and Blood Institute. Circulation 2003; pp. 2543–2549.

    Google Scholar 

  89. Ferguson JL, Beckett GJ, Stoddart M, Walker SW, Fox KA. Myocardial infarction redefined: the new ACC/ESC definition, based on cardiac troponin, increases the apparent incidence of infarction. Heart 2002; pp. 343–347.

    Google Scholar 

  90. Lin JC, Apple FS, Murakami MM, Luepker RV. Rates of positive cardiac troponin I and creatine kinase MB mass among patients hospitalized for suspected acute coronary syndromes. Clin Chem 2004; pp. 333–338.

    Google Scholar 

  91. Apple FS, Johari V, Hoybook KJ, Weber-Shrikant E, Davis GK, Murakami MM. Operationalizing cardiac troponin I testing along ESC/ACC consensus guidelines for defining myocardial infarction: increasing rate of detection. Clin Chim Acta 2003; pp. 165, 166.

    Google Scholar 

  92. Green GB, Beaudreau RW, Chan DW, DeLong D, Kelley CA, Kelen GD. Use of troponin T and creatine kinase-MB subunit levels for risk stratification of emergency department patients with possible myocardial ischemia. Ann Emerg Med 1998; pp. 19–29.

    Google Scholar 

  93. Ohman EM, Armstrong PW, Christenson RH, et al. Cardiac troponin T levels for risk stratification in acute myocardial ischemia. GUSTO IIA Investigators. N Engl J Med 1996; pp. 1333–1341.

    Google Scholar 

  94. Koukkunen H, Penttila K, Kemppainen A, et al. Differences in the diagnosis of myocardial infarction by troponin T compared with clinical and epidemiologic criteria. Am J Cardiol 2001; pp. 727–731.

    Google Scholar 

  95. Meier MA, Al-Badr WH, Cooper JV, et al. The new definition of myocardial infarction: diagnostic and prognostic implications in patients with acute coronary syndromes. Arch Intern Med 2002; pp. 1585–1589.

    Google Scholar 

  96. Kontos MC, Fritz LM, Anderson FP, Tatum JL, Ornato JP, Jesse RL. Impact of the troponin standard on the prevalence of acute myocardial infarction. Am Heart J 2003; pp. 446–452.

    Google Scholar 

  97. Stubbs P, Collinson P, Moseley D, Greenwood T, Noble M. Prognostic significance of admission troponin T concentrations in patients with myocardial infarction. Circulation 1996; pp. 1291–1297.

    Google Scholar 

  98. Wiviott SD, Cannon CP, Morrow DA, et al. Differential expression of cardiac biomarkers by gender in patients with unstable angina/non-ST-elevation myocardial infarction: a TACTICS-TIMI 18 (Treat Angina with Aggrastat and Determine Cost of Therapy with an Invasive or Conservative Strategy-Thrombolysis In Myocardial Infarction 18) substudy. Circulation 2004; pp. 580–586.

    Google Scholar 

  99. Apple FS, Murakami MM. Serum 99th percentile reference cutoffs for seven cardiac troponin assays. Clin Chem 2004; pp. 1477–1479.

    Google Scholar 

  100. Venge P, Johnston N, Lagerqvist B, Wallentin L, Lindahl B. Clinical and analytical performance of the liaison cardiac troponin I assay in unstable coronary artery disease, and the impact of age on the definition of reference limits. A FRISC-II substudy. Clin Chem 2003; pp. 880–886.

    Google Scholar 

  101. Uettwiller-Geiger D, Wu AH, Apple FS, et al. Multicenter evaluation of an automated assay for troponin I. Clin Chem 2002; pp. 869–876.

    Google Scholar 

  102. Sheehan P, Blennerhassett J, Vasikaran SD. Decision limit for troponin I and assay performance. Ann Clin Biochem 2002; pp. 231–236.

    Google Scholar 

  103. Heeschen C, Hamm CW, Goldmann B, Deu A, Langenbrink L, White HD. Troponin concentrations for stratification of patients with acute coronary syndromes in relation to therapeutic efficacy of tirofiban. PRISM Study Investigators. Platelet Receptor Inhibition in Ischemic Syndrome Management. Lancet 1999; pp. 1757–1762.

    Google Scholar 

  104. Januzzi JL, Hahn SS, Chae CU, et al. Effects of tirofiban plus heparin versus heparin alone on troponin I levels in patients with acute coronary syndromes. Am J Cardiol 2000; pp. 713–717.

    Google Scholar 

  105. Leoncini M, Bellandi F, Sciagra R, et al. Gated SPECT evaluation of the relationship between admission troponin I, myocardial salvage, and functional recovery in acute myocardial infarction treated by abciximab and early primary angioplasty. J Nucl Med 2004; pp. 739–744.

    Google Scholar 

  106. Morrow DA, Antman EM, Tanasijevic M, et al. Cardiac troponin I for stratification of early outcomes and the efficacy of enoxaparin in unstable angina: a TIMI-11B substudy. J Am Coll Cardiol 2000; pp. 1812–1817.

    Google Scholar 

  107. Invasive compared with non-invasive treatment in unstable coronary-artery disease: FRISC II prospective randomised multicentre study. FRagmin and Fast Revascularisation during InStability in Coronary artery disease Investigators. Lancet 1999; pp. 708–715.

    Google Scholar 

  108. Cannon CP, Weintraub WS, Demopoulos LA, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Engl J Med 2001; pp. 1879–1887.

    Google Scholar 

  109. Neumann FJ, Kastrati A, Pogatsa-Murray G, et al. Evaluation of prolonged antithrombotic pretreatment (“cooling-off” strategy) before intervention in patients with unstable coronary syndromes: a randomized controlled trial. JAMA 2003; pp. 1593–1599.

    Google Scholar 

  110. Morrow DA, Cannon CP, Rifai N, et al. Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: results from a randomized trial. JAMA 2001; pp. 2405–2412.

    Google Scholar 

  111. Christenson RH, Cervelli DR, Bauer RS, Gordon M. Stratus CS cardiac troponin I method: performance characteristics including imprecision at low concentrations. Clin Biochem 2004;37:679–683.

    Article  CAS  PubMed  Google Scholar 

  112. Panteghini M, Apple FS, Christenson RH, Dati F, Mair J, Wu AH. Proposals from IFCC Committee on Standardization of Markers of Cardiac Damage (C-SMCD): recommendations on use of biochemical markers of cardiac damage in acute coronary syndromes. Scand J Clin Lab Invest Suppl 1999; pp. 103–112.

    Google Scholar 

  113. Apple FS, Wu AH, Jaffe AS. European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: how to use existing assays clinically and for clinical trials. Am Heart J 2002; pp. 981–986.

    Google Scholar 

  114. James S, Armstrong P, Califf R, et al. Troponin T levels and risk of 30-day outcomes in patients with the acute coronary syndrome: prospective verification in the GUSTO-IV trial. Am J Med 2003; pp. 178–184.

    Google Scholar 

  115. Lehrke S, Steen H, Sievers HH, et al. Cardiac troponin T for prediction of short-and long-term morbidity and mortality after elective open heart surgery. Clin Chem 2004;50:1560–1567.

    Article  CAS  PubMed  Google Scholar 

  116. Lindahl B, Diderholm E, Lagerqvist B, Venge P, Wallentin L. Mechanisms behind the prognostic value of troponin T in unstable coronary artery disease: a FRISC II substudy. J Am Coll Cardiol 2001; pp. 979–986.

    Google Scholar 

  117. Chaitman BR, Jaffe AS. What is the true periprocedure myocardial infarction rate? Does anyone know for sure? The need for clarification. Circulation 1995; pp. 1609, 1610.

    Google Scholar 

  118. Califf RM, Abdelmeguid AE, Kuntz RE, et al. Myonecrosis after revascularization procedures. J Am Coll Cardiol 1998; pp. 241–351.

    Google Scholar 

  119. Pelletier LC, Carrier M, Leclerc Y, Cartier R, Wesolowska E, Solymoss BC. Intermittent antegrade warm versus cold blood cardioplegia: a prospective, randomized study. Ann Thorac Surg 1994; pp. 41–48; discussion 48, 49.

    Google Scholar 

  120. Katus HA, Schoeppenthau M, Tanzeem A, et al. Non-invasive assessment of perioperative myocardial cell damage by circulating cardiac troponin T. Br Heart J 1991; pp. 259–264.

    Google Scholar 

  121. Sadony V, Korber M, Albes G, et al. Cardiac troponin I plasma levels for diagnosis and quantitation of perioperative myocardial damage in patients undergoing coronary artery bypass surgery. Eur J Cardiothorac Surg 1998; pp. 57–65.

    Google Scholar 

  122. Alyanakian MA, Dehoux M, Chatel D, et al. Cardiac troponin I in diagnosis of perioperative myocardial infarction after cardiac surgery. J Cardiothorac Vasc Anesth 1998; pp. 288–294.

    Google Scholar 

  123. Eggers KM, Oldgren J, Nordenskjold A, Lindahl B. Diagnostic value of serial measurement of cardiac markers in patients with chest pain: limited value of adding myoglobin to troponin I for exclusion of myocardial infarction. Am Heart J 2004;148:574–581.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jaffe, A.S., Babuin, L. (2006). Defining Myocardial Infarction. In: Morrow, D.A. (eds) Cardiovascular Biomarkers. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-051-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-051-5_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-526-2

  • Online ISBN: 978-1-59745-051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics