Skip to main content

Mechanisms of the Formation and Stability of Retinal Blood Vessels

  • Chapter
Ocular Angiogenesis

Part of the book series: Opthalmology Research ((OPHRES))

  • 894 Accesses

Abstract

As an introduction, we restate briefly several major themes of retinal vascularization. All have been reviewed previously. Some are common to the formation of vessels in any tissue; others are unique to the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michaelson IC. Retinal Circulation in Man and Animals. Charles C. Thomas, Springfield, IL, 1954.

    Google Scholar 

  2. Chase J. The evolution of retinal vascularization in mammals. Ophthalmology 1982;89: 1518–1525.

    PubMed  CAS  Google Scholar 

  3. Michaelson IC. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Transactions Ophthalmol Soc UK 1948;68:137–181.

    Google Scholar 

  4. Stone J, Maslim J. Mechanisms of Retinal Angiogenesis. Prog Retinal Eye Res 1997;16:157–181.

    Article  CAS  Google Scholar 

  5. Graymore C. Metabolism of the developing retina. III. Respiration in the developing normal rat retina and the effect of an inherited degeneration of the retinal neuroepithelium. Br J Ophthalmol 1960;44:363–369.

    Article  PubMed  CAS  Google Scholar 

  6. Graymore C. Metabolism of the developing retina. Exp Eye Res 1963;3:5–8.

    Article  Google Scholar 

  7. Ashton N. Oxygen and the growth and development of retinal vessels. Am J Ophthalmol 1966;62:412–435.

    PubMed  CAS  Google Scholar 

  8. Patz A. The effect of oxygen on immature retinal vessels. In: Vascular Disorders of the Eye. Mosby, St. Louis: 1966:16–27.

    Google Scholar 

  9. Chan-Ling T, Stone J. Retinopathy of prematurity: Its origins in the architecture of the retina. Prog Retinal Res 1993;12:155–178.

    Article  Google Scholar 

  10. Chan-Ling T, Gock B, Stone J. The effect of oxygen on vasoformative cell division: Evidence that “physiological hypoxia” is the stimulus for normal retinal vasculogenesis. Invest Ophthalmol Vis Sci 1995;36:1201–1214.

    PubMed  CAS  Google Scholar 

  11. Ashton N. The mode of development of the retinal vessels in man. The William Mackenzie Centenary Symposium on Ocular Circulation in Health and Disease. Can JS. H. Kimpton, London: 1969:7–17.

    Google Scholar 

  12. Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 1996;37:290–299.

    PubMed  CAS  Google Scholar 

  13. Benjamin LE, Hemo I, Kashet E. A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998;125:1591–1598.

    PubMed  CAS  Google Scholar 

  14. Chan-Ling T, Stone J. Degeneration of astrocytes in the feline model of retinopathy of prematurity causes failure of the blood-retinal barrier. Investi Ophthalmol Vis Sci 1992;33:2148–2159.

    CAS  Google Scholar 

  15. Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987;325:253–257.

    Article  PubMed  CAS  Google Scholar 

  16. Tout S, Chan-Ling T, Hollander H, Stone J. The role of Muller cells in the formation of the blood-retinal barrier. Neuroscience 1993;55:291–301.

    Article  PubMed  CAS  Google Scholar 

  17. Greenwood J, Penfold PL, Provis JM. Evidence for the intrinsic innervation of retinal vessels: anatomical substrate of autoregulation in the retina? In: Nervous Control of the Eye. Burnstock GG, Sillito A, eds. 2001, Harwood Academic, Singapore: pp. 155–169.

    Google Scholar 

  18. Zhang Y, Stone J. Role of astrocytes in the control of developing retinal vessels. Investi Ophthalmol Vis Sci 1997;38:1653–1666.

    CAS  Google Scholar 

  19. Donahue ML, Phelps D, Watkins RH, LoMonaco MB, Horowitz S. Retinal vascular endothelial growth factor (VEGF) mRNA expression is altered in relation to neovasculatization in oxygen induced retinopathy. Curr Eye Res 1996; 15:175–184.

    PubMed  CAS  Google Scholar 

  20. Gerhardinger C, Brown LF, Roy S, Mizutani M, Zucker CL, Lorenzi M. Expression of vascular endothelial growth factor in the human retina and in nonproliferative diabetic retinopathy. Am J Pathol 1998; 152:1453–1462.

    PubMed  CAS  Google Scholar 

  21. Lewis G, Mervin K, Valter K, et al. Limiting the proliferation and reactivity of retinal müller cells during detachment: the value of oxygen supplementation. Am J Ophthalmol 1999; 128:165–172.

    Article  PubMed  CAS  Google Scholar 

  22. Mervin K, Valter K, Maslim J, Lewis G, Fisher S, Stone J. Limiting photoreceptor death and deconstruction during experimental retinal detachment: the value of oxygen supplementation. Am J Ophthalmol 1999; 128:155–164.

    Article  PubMed  CAS  Google Scholar 

  23. Linsenmeier RA, Padnick-Silver L. Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci 2000;41:3117–3123.

    PubMed  CAS  Google Scholar 

  24. Stone J, Maslim J, Valter-Kocsi K, et al. Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retinal Eye Res 1999;18:689–735.

    Article  CAS  Google Scholar 

  25. Yu DY, Cringle SJ, Su EN, Yu PK. Intraretinal oxygen levels before and after photoreceptor loss in the RCS Rat. Investi Ophthalmol Vis Sci, 2000;41:3999–4006.

    CAS  Google Scholar 

  26. Yu DY, Cringle S, Valter K, Walsh N, Lee D, Stone J. Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat. Invest Ophthalmol Vis Sci 2004;45:2013–2019.

    Article  PubMed  Google Scholar 

  27. Yamada H, Yamada E, Ando A, et al. Fibroblast growth factor-2 decreases hyperoxiainduced photoreceptor cell death in mice. Am J Pathol 2001;159:1113–1120.

    PubMed  CAS  Google Scholar 

  28. Walsh N, Bravo-Nuevo A, Geller S, Stone J. Resistance of photoreceptors in the C57BL/6C2J, C57BL/6J and BALB/CJ mouse strains to oxygen stress: evidence of an oxygen phenotype. Current Eye Research 2004;29:441–447.

    Article  PubMed  CAS  Google Scholar 

  29. Heckenlively J. Retinitis Pigmentosa. Lippincott, Philadelphia: 1988.

    Google Scholar 

  30. Penn JS, Li S, Naash MI. Ambient hypoxia reverses retinal vascular attenuation in a transgenic mouse model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2000;41:4007–4013.

    PubMed  CAS  Google Scholar 

  31. Schnitzer J. Retinal astrocytes: their restriction to vascularized parts of the mammalian retina. Neurosci Lett 1987;78:29–34.

    Article  PubMed  CAS  Google Scholar 

  32. Stone J, Dreher Z. Relationship between astrocytes, ganglion cells, and vasculature of the retina. J Comp Neurol 1987;255:35–49.

    Article  PubMed  CAS  Google Scholar 

  33. Schnitzer J. Astrocytes in the guinea pig, horse, and monkey retina: their occurence coincides with the presence of blood vessels. Glia 1988; 1:74–89.

    Article  PubMed  CAS  Google Scholar 

  34. Liu Y, Rao MS. Glial progenitors in the CNS and possible lineage relationships among them. Biol Cell 2004;96:279–290.

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe T, Raff MC. Retinal astrocytes are immigrants from the optic nerve. Nature 1988;332:834–837.

    Article  PubMed  CAS  Google Scholar 

  36. Ling T, Mitrofanis J, Stone J. The origin of astrocytes in the developing retina of the rat:evidence of a migration from the optic nerve. J Comp Neurol 1989;286:345–352.

    Article  PubMed  CAS  Google Scholar 

  37. Huxlin KR, Dreher Z, Schulz M, Dreher B. Glial reactivity in the retinal of adult rats. Glia 1995;15:105–118.

    Article  PubMed  CAS  Google Scholar 

  38. Chan-Ling T, Stone J. Factors determining the migration of astrocytes into the developing retina: migration does not depend on intact axons or patent vessels. J Comp Neurology 1991;303:375–386.

    Article  CAS  Google Scholar 

  39. Kopatz K, Distler C. Astrocyte invasion and vasculogenesis in the developing ferret retina. J Neurocytol 2000;29:157–172.

    Article  PubMed  CAS  Google Scholar 

  40. Stone J, Itin A, Alon T, et al. Development of retinal vasculature is mediated by hypoxiainduced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 1995; 15:4738–4747.

    PubMed  CAS  Google Scholar 

  41. Huxlin KR, Sefton AJ, Furby JH. The origin and development of retinal astrocytes in the mouse. J Neurocytol 1992;21:530–544.

    Article  PubMed  CAS  Google Scholar 

  42. Dorrell MI, Aguilar E, Friedlander M. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 2002;43:3500–3510.

    PubMed  Google Scholar 

  43. Gariano RF, Sage EH, Kaplan HJ, Hendrickson AE. Development of astrocytes and their relation to blood vessels in fetal monkey retina. Invest Ophthalmol Vis Sci 1996;37:2367–2375.

    PubMed  CAS  Google Scholar 

  44. Provis JM, Sandercoe T, Hendrickson AE. Astrocytes and blood vessels define the foveal rim during primate retinal development. Invest Ophthalmol Vis Sci 2000;41:2827–2836.

    PubMed  CAS  Google Scholar 

  45. Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E. Development of the human retinal vasculature: cellular relations and VEGF expression. Exp Eye Res 1997;65:555–568.

    Article  PubMed  CAS  Google Scholar 

  46. Mi H, Barres BA. Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J Neurosci 1999;19:1049–1061.

    PubMed  CAS  Google Scholar 

  47. Cunliffe HE, McNoe LA, Ward TA, Devriendt K, Brunner HG, Eccles MR. The prevalence of PAX2 mutations in patients with isolated colobomas or colobomas associated with urogenital anomalies. J Med Genet 1998;35:806–812.

    Article  PubMed  CAS  Google Scholar 

  48. Mudhar HS, Pollock RA, Wang C, Stiles CD, Richardson WD. PDGF and its receptors in the developing rodent retina and optic nerve. Development 1993;118:539–552.

    PubMed  CAS  Google Scholar 

  49. Reneker WL, Overbeek PA. Lens-specific expression of PDGF-A in transgenic mice results in retinal astrocytic hamartomas. Invest Ophthalmol Vis Sci 1996;37:2455–2466.

    PubMed  CAS  Google Scholar 

  50. Mi H, Haeberle H, Barres BA. Induction of astrocyte differentiation by endothelial cells. J Neurosci 2001;21:1538–1547.

    PubMed  CAS  Google Scholar 

  51. Chan-Ling T, McLeod DS, Hughes S, et al. Astrocyte-endothelial cell relationships during human retinal vascular development. Invest Ophthalmol Vis Sci 2004;45:2020–2032.

    Article  PubMed  Google Scholar 

  52. Sandercoe TM, Madigan MC, Billson FA, Penfold PL, Provis JM. Astrocyte proliferation during development of the human retinal vasculature. Exp Eye Res 1999;69:511–523.

    Article  PubMed  CAS  Google Scholar 

  53. Ling T, Stone J. The development of astrocytes in the cat retina: Evidence of migration from the optic nerve. Dev Brain Res 1988;44:73–85.

    Article  CAS  Google Scholar 

  54. Zhang Y, Porat RM, Alon T, Keshet E, Stone J. Tissue oxygen levels control astrocyte movement and differentiation in developing retina. Dev Brain Res 1999;118:135–145.

    Article  CAS  Google Scholar 

  55. Risau W. Induction of blood-brain barrier endothelial cell differentiation. [review]. Ann NYAcad Sci 1991;633:405–419.

    Article  CAS  Google Scholar 

  56. Gardner TW, Lieth E, Khin SA, et al. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 1997;38:2423–2427.

    PubMed  CAS  Google Scholar 

  57. Holländer H, Makarov F, Dreher Z, van Driel D, Chan-Ling T, Stone J. Structure of the macroglia of the retina: Sharing and division of labour between astrocytes and Müller cells. J Comp Neurol 1991;313:587–603.

    Article  PubMed  Google Scholar 

  58. Furukawa T, Mukherjee S, Bao Z, Morrow E, Cepko C. rax, Hes1, and notch1 promote the formation of Müller glia by postnatal retinal progenitor cells. Neuron 2000;26:383–394.

    Article  PubMed  CAS  Google Scholar 

  59. Walcott JC, Provis JM. Muller cells express the neuronal progenitor cell marker nestin in both differentiated and undifferentiated human foetal retina. Clin Exper Ophthalmol 2003;31:246–249.

    Article  Google Scholar 

  60. Chan-Ling T, Halasz P, Stone J. Development of retinal vasculature in the cat: processes and mechanisms. Curr Eye Res 1990;9:459–478.

    PubMed  CAS  Google Scholar 

  61. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435–439.

    Article  PubMed  CAS  Google Scholar 

  62. Poellinger L, Johnson RS. HIF-1 and hypoxic response: the plot thickens. Curr Opin Genet Dev 2004; 14:81–85.

    Article  PubMed  CAS  Google Scholar 

  63. Fandrey J. Hypoxia-inducible gene expression. [review] [47 refs]. Respiration Physiol 1995;101:1–10.

    Article  CAS  Google Scholar 

  64. Mazure NM, Brahimi-Horn MC, Berta MA, et al. HIF-1: master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs. Biochem Pharmacol 2004;68:971–980.

    Article  PubMed  CAS  Google Scholar 

  65. Bert P. Sur la richesse en hémoglobine du sang des animaux vivant sur les haux lieux. CR. Acad Sci Paris 1882;94:805–807.

    Google Scholar 

  66. Obach M, Navarro-Sabate A, Caro J, et al. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem 2004;279:53,562–53,570.

    Article  PubMed  CAS  Google Scholar 

  67. Ashton N. Retinal vascularization in health and disease. Am J Ophthalmol 1957;44(suppl):7–17.

    PubMed  CAS  Google Scholar 

  68. Ashton N. Retinal angiogenesis in the human embryo. Brit Med Bull 1970;26:103–106.

    PubMed  CAS  Google Scholar 

  69. D’ Angio CT, LoMonaco MB, Johnston CJ, Reed CK, Finkelstein JN. Differential roles for NF-kappa B in endotoxin and oxygen induction of interleukin-8 in the macrophage. Am J Physiol Lung Cell Mol Physiol 2004;286:L30–L36.

    Article  CAS  Google Scholar 

  70. Josko J, Mazurek M. Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Med Sci Monit 2004;10:RA89–RA98.

    PubMed  CAS  Google Scholar 

  71. Ausprunk D, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977:14.

    Google Scholar 

  72. Risau W, Flamme I. Vasculogenesis. Ann Rev Cell Dev Biol 1995;11:73–91.

    Article  CAS  Google Scholar 

  73. Hughes S, Yang H, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci 2000;41:1217–1228.

    PubMed  CAS  Google Scholar 

  74. Shakib M, De Oliveira LF, Henkind P. Development of retinal vessels. II Earliest stages of vessel formation. Invest Ophthalmol 1968;7:689–700.

    PubMed  CAS  Google Scholar 

  75. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002; 109:337–346.

    Article  PubMed  CAS  Google Scholar 

  76. Annabi B, Naud E, Lee Y, Eliopoulos N, Galipeau J. Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J Cell Biochemis 2004;91:1146–1158.

    Article  CAS  Google Scholar 

  77. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.

    Article  PubMed  CAS  Google Scholar 

  78. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000;86:1198–1202.

    PubMed  CAS  Google Scholar 

  79. Isner JM, Kalka C, Kawamoto A, Asahara T. Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair. Ann NY Acad Sci 2001;953:75–84.

    Article  PubMed  CAS  Google Scholar 

  80. Csaky K, Baffi J, Byrnes G, et al. Recruitment of marrow-derived endothelial cells to experimental choroidal neovascularization by local expression of vascular endothelial growth factor. Exper Eye Res 2004;78:1107–1116.

    Article  CAS  Google Scholar 

  81. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M. Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. [comment]. Nat Med 2002;8:1004–1010.

    Article  PubMed  CAS  Google Scholar 

  82. Otani A, Dorrell M, Kinder K, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin invest 2004; 114:765–774.

    Article  PubMed  CAS  Google Scholar 

  83. Dorrell IM, Otani A, Aguilar E, Moreno SK, Friedlander M. Adult bone marrow-derived stem cells use R-cadherin to target sites of neovascularization in the developing retina. Blood 2004; 103:3420–3427.

    Article  PubMed  CAS  Google Scholar 

  84. Espinosa-Heidmann GD, Caicedo A, Hernandez EP, Csaky KG, Cousins SW. Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003;44:4914–4919.

    Article  PubMed  Google Scholar 

  85. Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB. The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 2003;44:4908–4913.

    Article  PubMed  Google Scholar 

  86. Prockop D. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;27:71–74.

    Article  Google Scholar 

  87. Drake JC, LaRue A, Ferrara N, Little CD. VEGF regulates cell behavior during vasculogenesis. Dev Biol 2000;224:178–188.

    Article  PubMed  CAS  Google Scholar 

  88. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380:439–442.

    Article  PubMed  CAS  Google Scholar 

  89. Gerber PH, Hillan KJ, Ryan AM, et al. VEGF is required for growth and survival in neonatal mice. Development 1999; 126:1149–1159.

    PubMed  CAS  Google Scholar 

  90. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retinal Eye Res 2003;22:1–29.

    Article  CAS  Google Scholar 

  91. Thakker GD, Hajjar DP, Muller WA, Rosengart TK. The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling. J Biol Chem 1999;274:10,002–10,007.

    Article  PubMed  CAS  Google Scholar 

  92. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998;273:13,313–13,316.

    Article  PubMed  CAS  Google Scholar 

  93. Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998;273:30,336–30,343.

    Article  PubMed  CAS  Google Scholar 

  94. Stalmans I, Ng YS, Rohan R, et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 2002; 109:327–336.

    Article  PubMed  CAS  Google Scholar 

  95. Oh H, Takagi H, Otani A, et al. Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): a mechanism contributing to VEGF-induced angiogenesis. Proc Natl Acad Sci USA 2002;99:383–388.

    Article  PubMed  CAS  Google Scholar 

  96. Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989;84:1470–1478.

    Article  PubMed  CAS  Google Scholar 

  97. Ferrara N, Henzel W. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161:851–858.

    Article  PubMed  CAS  Google Scholar 

  98. Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. 3801–3806.

    Google Scholar 

  99. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. NatMed 1995;1:1024–1028.

    CAS  Google Scholar 

  100. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999;18:3964–3972.

    Article  PubMed  CAS  Google Scholar 

  101. Haigh JJ, Morelli PI, Gerhardt H, et al. Cortical and retinal defects caused by dosagedependent reductions in VEGF-A paracrine signaling. Developmental Biology 2003;262:225–241.

    Article  PubMed  CAS  Google Scholar 

  102. Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002;417:954–958.

    Article  PubMed  CAS  Google Scholar 

  103. Kalka C, Tehrani H, Laudenberg B, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg 2000;70:829–834.

    Article  PubMed  CAS  Google Scholar 

  104. Helmlinger G, Endo M, Ferrara N, Hlatky L, Jain RK. Formation of endothelial cell networks. Nature 2000;405:139–141.

    Article  PubMed  CAS  Google Scholar 

  105. Andrews GL, Mastick GS. R-cadherin is a Pax6-regulated, growth-promoting cue for pioneer axons. J Neurosci 2003;23:9873–9880.

    PubMed  CAS  Google Scholar 

  106. Liu Q, Marrs JA, Raymond PA. Spatial correspondence between R-cadherin expression domains and retinal ganglion cell axons in developing zebrafish. J Comp Neurol 1999;410:290–302.

    Article  PubMed  CAS  Google Scholar 

  107. Liu Q, Sanborn KL, Cobb N, Raymond PA, Marrs JA. R-cadherin expression in the developing and adult zebrafish visual system. J Comp Neurol 1999;410:303–319.

    Article  PubMed  CAS  Google Scholar 

  108. Gerhardt H, Rascher G, Schuck J, Weigold U, Redies C, Wolburg H. R-and B-cadherin expression defines subpopulations of glial cells involved in axonal guidance in the optic nerve head of the chicken. Glia 2000;31:131–143.

    Article  PubMed  CAS  Google Scholar 

  109. Honjo M, Tanihara H, Suzuki S, Tanaka T, Honda Y, Takeichi M. Differential expression of cadherin adhesion receptors in neural retina of the postnatal mouse. Invest Ophthalmol Vis Sci 2000;41:546–551.

    PubMed  CAS  Google Scholar 

  110. Tombran-Tink, J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exper Eye Res 1991;53:411–414.

    Article  CAS  Google Scholar 

  111. Becerra P, Fariss RN, Wu YQ, Montuenga LM, Wong P, Pfeffer BA. Pigment epitheliumderived factor in the monkey retinal pigment epithelium and interphotoreceptor matrix: apical secretion and distribution. Exper Eye Res 2004;78:223–234.

    Article  CAS  Google Scholar 

  112. Tombran-Tink J, Lara N, Apricio SE, et al. Retinoic acid and dexamethasone regulate the expression of PEDF in retinal and endothelial cells. Exper Eye Res 2004;78:945–955.

    Article  CAS  Google Scholar 

  113. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999;285:245–248.

    Article  PubMed  CAS  Google Scholar 

  114. Mori K, Duh E, Gehlbach P, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol 2001;188:253–263.

    Article  PubMed  CAS  Google Scholar 

  115. Stellmach V, Crawford SE, Zhou W, Bouck N. Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor.[see comment]. Proc Nat Acad Sci USA 2001;98:2593–2597.

    Article  PubMed  CAS  Google Scholar 

  116. Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 2002;43:2428–2434.

    PubMed  Google Scholar 

  117. Ohno-Matsui K, Morita I, Tombran-Tink J, et al. Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol 2001;189:323–333.

    Article  PubMed  CAS  Google Scholar 

  118. Ohno-Matsui K, Yoshida T, Uetama T, Mochizuki M, Morita I. Vascular endothelial growth factor upregulates pigment epithelium-derived factor expression via VEGFR-1 in human retinal pigment epithelial cells. Biochem Biophys Res Comm 2003;303:962–967.

    Article  PubMed  CAS  Google Scholar 

  119. Stone J, Mervin K, Walsh N, Valter K, Provis J, Penfold P. Photoreceptor stability and degeneration in mammalian retina: lessons from the edge. In: Macular Degeneration. Penfold P, Provis J, eds. Springer, Berlin-Heidelberg-New York 2004;149–165.

    Google Scholar 

  120. Mervin K, Stone J. Developmental death of photoreceptors in the C57BL/6J mouse: association with retinal function and self-protection. Exp Eye Res 2002;75:703–713.

    Article  PubMed  CAS  Google Scholar 

  121. Bell FC, Stenstrom WJ. Atlas of the Peripheral Retina. WB Saunders Co., Philadelphia: 1998.

    Google Scholar 

  122. Hendrickson AE, Yuodelis C. The morphological development of the human fovea. Ophthalmology 1984;91:603–612.

    PubMed  CAS  Google Scholar 

  123. Hendrickson A. A morphological comparison of foveal development in man and monkey. Eye 1992;6:136–144.

    PubMed  Google Scholar 

  124. Provis JM, Diaz CM, Dreher B. Ontogeny of the primate fovea: a central issue in retinal development. Prog Neurobiol 1998;54:549–580.

    Article  PubMed  CAS  Google Scholar 

  125. Springer A, Hendrickson A. Development of the primate area of high acuity. 1. Use of finite element analysis models to idently mechanical variables affecting pit formation. Vis Neurosci 2004;21:53–62.

    Article  PubMed  CAS  Google Scholar 

  126. Sandercoe TM, Geller SF, Hendrickson AE, Stone J, Provis JM. VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: evidence of developmental hypoxia. J Comp Neurol 2003;462:42–54.

    Article  PubMed  CAS  Google Scholar 

  127. Distler C, Kopatz K, Telkes I. Developmental changes in astrocyte density in the macaque perifoveal region. Eur J Neurosci 2000;12:1331–1341.

    Article  PubMed  CAS  Google Scholar 

  128. Curcio CE, Sloan KR, Kalina RE, Hendrickson A. Human photoreceptor topography. J Comp Neurol 1990;292:497–523.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Stone, J., Sandercoe, T., Provis, J. (2006). Mechanisms of the Formation and Stability of Retinal Blood Vessels. In: Tombrain-Tink, J., Barnstable, C.J. (eds) Ocular Angiogenesis. Opthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-047-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-047-8_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-514-9

  • Online ISBN: 978-1-59745-047-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics