Skip to main content

Gene Therapy for Neovascular Retinopathies

  • Chapter
Ocular Angiogenesis

Abstract

Normal control of retinal angiogenesis, the formation of new blood vessels in either the retinal or choroidal beds from preexisting vasculature, is essential for vision. Conversely, pathological neovascularization (NV) of retinal and choroidal vessels is a key process leading to vision loss in several prevalent ocular diseases, including retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and age-related macular degeneration (AMD). PDR and AMD are the leading causes of blindness in developed countries, and ROP is the leading cause of infant blindness. Proper regulation of retinal vascularization is thought to depend on an equilibrium between ocular vascular growth factors, primarily vascular endothelial growth factor (VEGF) (1), and natural inhibitors of angiogenesis, primarily pigment epithelium-derived factor (PEDF) (2). When this balance becomes disturbed—as may happen, for example, during and after the hyperoxic treatment of premature infants—pathological angiogenesis often occurs that ultimately leads to vision loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843–845.

    PubMed  CAS  Google Scholar 

  2. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999;285:245–248.

    PubMed  CAS  Google Scholar 

  3. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: Etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 2003;48:257–293.

    PubMed  Google Scholar 

  4. Smith W, Assink J, Klein R, et al. Risk factors for age related macular degeneration-Pooled findings from three continents. Ophthalmology 2001;108:697–704.

    PubMed  CAS  Google Scholar 

  5. Cousins SW, Espinosa-Heidmann DG, Alexandriou A, Sall J, Dubovy S, Csaky K. The role of aging, high fat diet and blue light exposure in an experimental mouse model for basal laminar deposit formation. Exp Eye Res 2002;75:543–553.

    PubMed  CAS  Google Scholar 

  6. Dithmar S, Sharara NA, Curcio CA, et al. Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Arch Ophthalmol 2001;119:1643–1649.

    PubMed  CAS  Google Scholar 

  7. Majji AB, Cao JT, Chang KY, et al. Age-related retinal pigment epithelium and Bruch’s membrane degeneration in senescence-accelerated mouse. Invest Ophthalmol Vis Sci 2000;41:3936–3942.

    PubMed  CAS  Google Scholar 

  8. Cao J, Majji AB, Chang KY, et al. Retinal pigment epithelium and Bruch’s membrane degeneration in senescence accelerated mouse (SAM). Invest Ophthalmol Vis Sci 2000;41:S23.

    Google Scholar 

  9. Dithmar S, Curcio CA, Le NA, Brown S, Grossniklaus HE. Ultrastructural changes in Bruch’s membrane of apolipoprotein E-deficient mice. Invest Ophthalmol Vis Sci 2000;41:2035–2042.

    PubMed  CAS  Google Scholar 

  10. Lu B, Rutledge BJ, Gu L, et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998; 187:601–608.

    PubMed  CAS  Google Scholar 

  11. Rakoczy PE, Zhang D, Robertson T, et al. Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol 2002; 161:1515–1524.

    PubMed  CAS  Google Scholar 

  12. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch D, Travis GH. Insights into the function of Rim protein in photoreceptors of Statgardt’s disease from the phenotype of the aber knockout mouse. Cell 1999;98:13–23.

    PubMed  CAS  Google Scholar 

  13. Ambati J, Anand A, Fernandez S, et al. An animal model of age-related macular degeneration in senescent Ccl-2-or Ccr-2-deficient mice. Nat Med 2003;9:1390–1397.

    PubMed  CAS  Google Scholar 

  14. Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 2004; 122:598–614.

    PubMed  Google Scholar 

  15. Ohkuma H, Ryan SJ. Experimental subretinal neovascularization in the monkey—permeability of new vessels. Arch Ophthalmol 1983; 101:1102–1110.

    PubMed  CAS  Google Scholar 

  16. Bressler NM, Bressler SB, Gragoudas ES. Clinical characteristics of choroidal neovascular membranes. Arch Ophthalmol 1987;105:209–213.

    PubMed  CAS  Google Scholar 

  17. Folk JC. Aging macular degeneration—Clinical features of treatable disease. Ophthalmology 1985;92:594–602.

    PubMed  CAS  Google Scholar 

  18. Blumenkranz MS, Bressler NM, Potter MJ, et al. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin—two-year results of 2 randomized clinical trials—TAP report 2. Arch Ophthalmol 2001;119:198–207.

    Google Scholar 

  19. Klein R, Klein BEK, Moss SE, Davis MD, Demets DL. The Wisconsin Epidemiologic Study of Diabetic Retinopathy 3. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 1984; 102:527–532.

    PubMed  CAS  Google Scholar 

  20. Chew EY, Ferris FL, Csaky KG, et al. The long-term effects of laser photocoagulation treatment in patients with diabetic retinopathy—The Early Treatment Diabetic Retinopathy Follow-Up Study. Ophthalmology 2003;110:1683–1689.

    PubMed  Google Scholar 

  21. Mcdonald HR, Schatz H. Macular edema following panretinal photocoagulation. Retina 1985;5:5–10.

    PubMed  CAS  Google Scholar 

  22. Simons BD, Flynn JT. Retinopathy of prematurity and associated factors. Internat Ophthalmol Clin 1999;39:29–48.

    CAS  Google Scholar 

  23. Smith LEH. Pathogenesis of retinopathy of prematurity. Sem Neonatol 2003;8:469–473.

    Google Scholar 

  24. Campochiaro PA. Retinal and choroidal neovascularization. J Cell Physiol 2000; 184:301–310.

    PubMed  CAS  Google Scholar 

  25. Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 1995;92:10,457–10,461.

    PubMed  CAS  Google Scholar 

  26. Ohno-Matsui K, Hirose A, et al. Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol 2002; 160:711–719.

    PubMed  CAS  Google Scholar 

  27. Okamoto N, Tobe T, Hackett SF, et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization [see comments]. Am J Pathol 1997;151:281–291.

    PubMed  CAS  Google Scholar 

  28. Lutty GA, McLeod DS, Merges C, Diggs A, Plouet J. Localization of vascular endothelial growth factor in human retina and choroid. Arch Ophthalmol 1996;114:971–977.

    PubMed  CAS  Google Scholar 

  29. Vinores SA, Youssri AI, Luna JD, et al. Upregulation of vascular endothelial growth factor in ischemic and non-ischemic human and experimental retinal disease. Histol Histopathol 1997; 12:99–109.

    PubMed  CAS  Google Scholar 

  30. Derevjanik NL, Vinores SA, Xiao WH, et al. Quantitative assessment of the integrity of the blood-retinal barrier in mice. Invest Ophthalmol Vis Sci 2002;43:2462–2467.

    PubMed  Google Scholar 

  31. Ozaki H, Hayashi H, Vinores SA, Moromizato Y, Campochiaro PA, Oshima K. Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of the blood-retinal barrier in rabbits and primates. Exp Eye Res 1997;64:505–517.

    PubMed  CAS  Google Scholar 

  32. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994;79:315–328.

    PubMed  CAS  Google Scholar 

  33. Mori K, Duh E, Gehlbach P, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol 2001;188:253–263.

    PubMed  CAS  Google Scholar 

  34. Mori K, Gehlbach P, Yamamoto S, et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 2002;43:1994–2000.

    PubMed  Google Scholar 

  35. Duh EJ, Yang HS, Suzuma I, et al. Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci 2002;43:821–829.

    PubMed  Google Scholar 

  36. Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 2002;43:2428–2434.

    PubMed  Google Scholar 

  37. Mori K, Ando A, Gehlbach P, et al. Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am J Pathol 2001; 159:313–320.

    PubMed  CAS  Google Scholar 

  38. Raisler BJ, Berns KI, Grant MB, Beliaev D, Hauswirth WW. Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or kringles 1-3 of angiostatin reduce retinal neovascularization. Proc Natl Acad Sci USA 2002;99:8909–8914.

    PubMed  CAS  Google Scholar 

  39. Lai CC, Wu WC, Chen SL, et al. Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci 2001;42:2401–2407.

    PubMed  CAS  Google Scholar 

  40. Muzyczka N. Use of AAV as a general transducetion vector for mammalian cells. In: Current Topics in Microbiology and Immunology, V. 158. Muzyczka N, ed. Springer Verlag, Berlin: 1992:97–129.

    Google Scholar 

  41. Song S, Laipis PJ, Berns KI, Flotte TR. Effect of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc Natl Acad Sci USA 2001;98:4084–4088.

    PubMed  CAS  Google Scholar 

  42. Miller JW, Adamis AP, Shima DT, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 1994; 145:574–584.

    PubMed  CAS  Google Scholar 

  43. Duan D, Yue Y, Engelhardt JF. Dual vector expansion for the recombinant AAV packaging capacity. Methods Mol Biol 2003;219:29–51.

    PubMed  CAS  Google Scholar 

  44. Cayouette M, Gravel C. Adenovirus-mediated gene transfer of ciliary neurotrophic factor can prevent photoreceptor degeneration in the retinal degeneration (rd) mouse. Hum Gene Ther 1997;8:423–430.

    PubMed  CAS  Google Scholar 

  45. Bennett J, Tanabe T, Sun D, et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med 1996;2:649–654.

    PubMed  CAS  Google Scholar 

  46. Takahashi M, Miyoshi H, Verma IM, Gage FH. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 1999;73:7812–7816.

    PubMed  CAS  Google Scholar 

  47. Kumar-Singh R, Farber DB. Encapsidated adenovirus mini-chromosome-mediated delivery of genes to the retina: application to the rescue of photoreceptor degeneration. Hum Mol Genet 1998;7:1893–1900.

    PubMed  CAS  Google Scholar 

  48. Drenser KA, Timmers AM, Hauswirth WW, Lewin AS. Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 1998;39:681–689.

    PubMed  CAS  Google Scholar 

  49. LaVail MM, Yasumura D, Matthes MT, et al. Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long-term survival and late-stage therapy. Proc Natl Acad Sci USA 2000;97:11,488–11,493.

    PubMed  CAS  Google Scholar 

  50. Lewin AS, Drenser KA, Hauswirth WW, et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med 1998;4:967–971.

    PubMed  CAS  Google Scholar 

  51. Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001;28:92–95.

    PubMed  CAS  Google Scholar 

  52. Acland GM, Aguirre GD, Aleman TS, et al. Continuing evaluation of gene therapy in the Rpe65 mutant dog. Invest Ophthalmol Vis Sci 2002;43:U1306.

    Google Scholar 

  53. Ali RR, Sarra GM, Stephens C, et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 2000;25:306–310.

    PubMed  CAS  Google Scholar 

  54. Sarra GM, Stephens C, De Alwis M, et al. Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet 2001; 10:2353–2361.

    PubMed  CAS  Google Scholar 

  55. Vollrath D, Feng W, Duncan JL, et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci USA 2001;98:12,584–12,589.

    PubMed  CAS  Google Scholar 

  56. Peterson WA, Flannery JG, Hauswirth WW, et al. Enhanced survival of photoreceptors in P23H mutant rhodopsin transgenic rats by adeno-associated virus(AAV)-mediated delivery of neurotrophic genes. Inv Ophthalmol Vis Sci 1999;39:S1117 (Abstr.)

    Google Scholar 

  57. Liang FQ, Dejneka NS, Cohen DR, et al. AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse. Mol Ther 2001;3:241–248.

    PubMed  CAS  Google Scholar 

  58. Bok D, Yasumura D, Matthes MT, et al. Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp Eye Res 2002;74:719–735.

    PubMed  CAS  Google Scholar 

  59. Sanftner LH, Abel H, Hauswirth WW, Flannery JG. Glial Cell Line Derived Neurotrophic Factor Delays Photoreceptor Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Mol Ther 2001;4:622–629.

    Google Scholar 

  60. Smith LE, Wesolowski E, McLellan A, et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994;35:101–111.

    PubMed  CAS  Google Scholar 

  61. D’Amore PA. Mechanisms of retinal and choroidal neovascularization. Invest Ophthalmol Vis Sci 1994;35:3974–3979.

    PubMed  CAS  Google Scholar 

  62. Ryan SJ. The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 1979;77:707–745.

    PubMed  CAS  Google Scholar 

  63. Mousa SA, Lorelli W, Campochiaro PA. Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells. J Cell Biochem 1999;74:135–143.

    PubMed  CAS  Google Scholar 

  64. Shima DT, Gougos A, Miller JW, et al. Cloning and mRNA expression of vascular endothelial growth factor in ischemic retinas of Macaca fascicularis. Invest Ophthalmol Vis Sci 1996;37:1334–1340.

    PubMed  CAS  Google Scholar 

  65. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 1995;92:905–909.

    PubMed  CAS  Google Scholar 

  66. Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 1996;37:290–299.

    PubMed  CAS  Google Scholar 

  67. Adamis AP, Miller JW, Bernal MT, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994; 118:445–450.

    PubMed  CAS  Google Scholar 

  68. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331:1480–1487.

    PubMed  CAS  Google Scholar 

  69. Boulton M, Gregor Z, McLeod D, et al. Intravitreal growth factors in proliferative diabetic retinopathy: correlation with neovascular activity and glycaemic management. Br J Ophthalmol 1997;81:228–233.

    PubMed  CAS  Google Scholar 

  70. Kvanta A, Algvere PV, Berglin L, Seregard S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 1996;37:1929–1934.

    PubMed  CAS  Google Scholar 

  71. Amin R, Puklin JE, Frank RN. Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 1994;35:3178–3188.

    PubMed  CAS  Google Scholar 

  72. Frank RN, Amin RH, Eliott D, Puklin JE, Abrams GW. Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol 1996;122:393–403.

    PubMed  CAS  Google Scholar 

  73. Lopez PF, Sippy BD, Lambert HM, Thach AB, Hinton DR. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1996;37:855–868.

    PubMed  CAS  Google Scholar 

  74. Yi X, Ogata N, Komada M, et al. Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 1997;235:313–319.

    PubMed  CAS  Google Scholar 

  75. Ishibashi T, Hata Y, Yoshikawa H, Nakagawa K, Sueishi K, Inomata H. Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 1997;235:159–167.

    PubMed  CAS  Google Scholar 

  76. .Krzystolik MG, Afshari MA, Adamis AP, et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol 2002; 120:338–346.

    PubMed  CAS  Google Scholar 

  77. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997:277-285.

    Google Scholar 

  78. Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 1996;76:839–885.

    PubMed  CAS  Google Scholar 

  79. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16:4604–4613.

    PubMed  CAS  Google Scholar 

  80. Gerber HP, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 1997;272:23,659–23,667.

    PubMed  CAS  Google Scholar 

  81. Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998;12:149–162.

    PubMed  CAS  Google Scholar 

  82. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993;90:10,705–10,709.

    PubMed  CAS  Google Scholar 

  83. Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR Biochem Biophys Res Commun 1996;226:324–328.

    CAS  Google Scholar 

  84. Bilodeau MT, Cunningham AM, Koester TJ, et al. Design and synthesis of 1,5-diarylben-zimidazoles as inhibitors of the VEGF-receptor KDR Bioorg Med Chem Lett 2003; 13:2485–2488.

    CAS  Google Scholar 

  85. Bilodeau MT, Rodman LD, McGaughey GB, et al. The discovery of N-(1,3-thiazol-2-yl) pyridin-2-amines as potent inhibitors of KDR kinase. Bioorg Med Chem Lett 2004; 14:2941–2945.

    PubMed  CAS  Google Scholar 

  86. Fraley ME, Arrington KL, Hambaugh SR, et al. Discovery and evaluation of 3-(5-thien-3-ylpyridin-3-yl)-1H-indoles as a novel class of KDR kinase inhibitors. Bioorg Med Chem Lett 2003;13:2973–2976.

    PubMed  CAS  Google Scholar 

  87. Sone H, Kawakami Y, Segawa T, et al. Effects of intraocular or systemic administration of neutralizing antibody against vascular endothelial growth factor on the murine experimental model of retinopathy. Life Sci 1999;65:2573–2580.

    PubMed  CAS  Google Scholar 

  88. Adamis AP, Shima DT, Tolentino MJ, et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 1996; 114:66–71.

    PubMed  CAS  Google Scholar 

  89. Berdugo M, Valamanesh F, Andrieu C, et al. Delivery of antisense oligonucleotide to the cornea by iontophoresis. Antisense Nucleic Acid Drug Dev 2003;13:107–114.

    PubMed  CAS  Google Scholar 

  90. Lai CM, Spilsbury K, Brankov M, Zaknich T, Rakoczy PE. Inhibition of corneal neovascularization by recombinant adenovirus mediated antisense VEGF RNA Exp Eye Res 75:625–634.

    Google Scholar 

  91. The Eyetech Study Group. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 2002;22:143–152.

    Google Scholar 

  92. Bold G, Altmann KH, Frei J, et al. New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis. J Med Chem 2000;43:2310–2323.

    PubMed  CAS  Google Scholar 

  93. Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 1997;46:1473–1480.

    PubMed  CAS  Google Scholar 

  94. Robinson GS, Pierce EA, Rook SL, Foley E, Webb R, Smith LE. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci USA 1996;93:4851–4856.

    PubMed  CAS  Google Scholar 

  95. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 2002;29:10–14.

    PubMed  CAS  Google Scholar 

  96. Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol 2001;106:148–156.

    PubMed  CAS  Google Scholar 

  97. Tombran-Tink J, Chader GG, Johnson LV. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity [letter]. Exp Eye Res 1991;53:411–414.

    PubMed  CAS  Google Scholar 

  98. Reichel MB, Ali RR, Thrasher AJ, Hunt DM, Bhattacharya SS, Baker D. Immune responses limit adenovirally mediated gene expression in the adult mouse eye. Gene Ther 1998;5:1038–1046.

    PubMed  CAS  Google Scholar 

  99. Auricchio A, Rivera VM, Clackson T, et al. Pharmacological regulation of protein expression from adeno-associated viral vectors in the eye. Mol Ther 2002;6:238–242.

    PubMed  CAS  Google Scholar 

  100. McGee Sanftner LH, Rendahl KG, Quiroz D, et al. Recombinant AAV-mediated delivery of a tet-inducible reporter gene to the rat retina. Mol Ther 2001;3:688–696.

    PubMed  CAS  Google Scholar 

  101. Nicklin SA, Buening H, Dishart KL, et al. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther 2001;4:174–181.

    PubMed  CAS  Google Scholar 

  102. Muller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003;21:1040–1046.

    PubMed  Google Scholar 

  103. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221–228.

    PubMed  CAS  Google Scholar 

  104. Noden DM. Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 1989; 140:1097–1103.

    PubMed  CAS  Google Scholar 

  105. Choi K. Hemangioblast development and regulation. Biochem Cell Biol 1998;76:947–956.

    PubMed  CAS  Google Scholar 

  106. Grant MB, May WS, Caballero S, et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 2002;8:607–612.

    PubMed  CAS  Google Scholar 

  107. Friedlander M, Theesfeld CL, Sugita M, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA 1996;93:9764–9769.

    PubMed  CAS  Google Scholar 

  108. Luna J, Tobe T, Mousa SA, Reilly TM, Campochiaro PA. Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab Invest 1996;75:563–573.

    PubMed  CAS  Google Scholar 

  109. Beck L Jr, D’Amore PA. Vascular development: cellular and molecular regulation. FASEB J 1997;11:365–373.

    PubMed  CAS  Google Scholar 

  110. Kirsch M, Schackert G, Black PM. Angiogenesis, metastasis, and endogenous inhibition. J Neurooncol 2000;50:173–180.

    PubMed  CAS  Google Scholar 

  111. Cao Y. Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol 2001;33:357–369.

    PubMed  CAS  Google Scholar 

  112. Lucas R, Holmgren L, Garcia I, et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 1998;92:4730–4741.

    PubMed  CAS  Google Scholar 

  113. Griscelli F, Li H, Bennaceur-Griscelli A, Soria J, et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA 1998;95:6367–6372.

    PubMed  CAS  Google Scholar 

  114. OReilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996;2:689–692.

    PubMed  CAS  Google Scholar 

  115. Wu ZG, OReilly MS, Folkman J, Shing Y. Suppression of tumor growth with recombinant murine angiostatin. BBRC 1997;236:651–654.

    PubMed  CAS  Google Scholar 

  116. Gao G, Li Y, Gee S, et al. Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the antiangiogenic activity of plasminogen kringle 5. J Biol Chem 2002;277:9492–9497.

    PubMed  CAS  Google Scholar 

  117. Steele FR, Chader GJ, Johnson LV, Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci USA 1993;90:1526–1530.

    PubMed  CAS  Google Scholar 

  118. Becerra SP. Structure-function studies on PEDF A noninhibitory serpin with neurotrophic activity. Adv Exp Med Biol 1997;425:223–237.

    PubMed  CAS  Google Scholar 

  119. Araki T, Taniwaki T, Becerra SP, Chader GJ, Schwartz JP. Pigment epithelium-derived factor (PEDF) differentially protects immature but not mature cerebellar granule cells against apoptotic cell death. J Neurosci Res 1998;53:7–15.

    PubMed  CAS  Google Scholar 

  120. Cayouette M, Smith SB, Becerra SP, Gravel C. Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 1999;6:523–532.

    PubMed  CAS  Google Scholar 

  121. Rasmussen H, Chu KW, Campochiaro P, et al. Clinical protocol. An open-label, phase I, single administration, dose escalation study of ADGVPEDF1 1D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther 2001; 12:2029–2032.

    PubMed  CAS  Google Scholar 

  122. Zatterstrom UK, Felbor U, Fukai N, Olsen BR. Collagen XVIII/endostatin structure and functional role in angiogenesis. Cell Struct Funct 2000;25:97–101.

    PubMed  CAS  Google Scholar 

  123. Nguyen JT. Adeno-associated virus and other potential vectors for angiostatin and endostatin gene therapy. Adv Exp Med Biol 2000;465:457–466.

    PubMed  CAS  Google Scholar 

  124. Takahashi K, Saishin Y, Saishin Y, et al. Intraocular expression of endostatin reduces VEGF-induced retinal vascular permeability, neovascularization, and retinal detachment. FASEB J 2003;17:896–898.

    PubMed  CAS  Google Scholar 

  125. Noma H, Funatsu H, Yamashita H, Kitano S, Mishima HK, Hori S. Regulation of angiogenesis in diabetic retinopathy: possible balance between vascular endothelial growth factor and endostatin. Arch Ophthalmol 2002; 120:1075–1080.

    PubMed  CAS  Google Scholar 

  126. Auricchio A, Behling KC, Maguire AM, et al. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents. Mol Ther 2002;6:490–494.

    PubMed  CAS  Google Scholar 

  127. Bainbridge JW, Mistry A, De Alwis M, et al. Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Ther 2002;9:320–326.

    PubMed  CAS  Google Scholar 

  128. Lai CM, Brankov M, Zaknich T, et al. Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization. Hum Gene Ther 2001; 12:1299–1310.

    PubMed  CAS  Google Scholar 

  129. Bainbridge JW, Jia H, Bagherzadeh A, Selwood D, Ali RR, Zachary I. A peptide encoded by exon 6 of VEGF (EG3306) inhibits VEGF-induced angiogenesis in vitro and ischaemic retinal neovascularisation in vivo. Biochem Biophys Res Commun 2003;302:793–799.

    PubMed  CAS  Google Scholar 

  130. Jia HY, Jezequel S, Lohr M, et al. Peptides encoded by exon 6 of VEGF inhibit endothelial cell biological responses and angiogenesis induced by VEGF. Biochem Biophys Res Commun 2001;283:164–173.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Raisler, B.J., Berns, K.I., Hauswirth, W.W. (2006). Gene Therapy for Neovascular Retinopathies. In: Tombrain-Tink, J., Barnstable, C.J. (eds) Ocular Angiogenesis. Opthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-047-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-047-8_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-514-9

  • Online ISBN: 978-1-59745-047-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics