Skip to main content

Integrins in Ocular Angiogenesis

  • Chapter
Ocular Angiogenesis

Abstract

The integrin family of membrane proteins are ubiquitously expressed cell surface receptors that not only mediate cell anchorage to the surrounding extracellular matrix, but are also critically important in transducing environmental cues to subcellular signaling pathways. Integrins play important roles in cell differentiation and survival and have generated interest in diverse fields ranging from structural biology and immunology to tumor biology and ophthalmology. Much of the interest has centered on the roles of integrins during cell-cell adhesion, such as that which occurs between endothelial cells and leukocytes during arrest and extravasation from blood vessels during inflammation. Another major area of interest has been the function of integrins and their interaction with the extracellular matrix (ECM). Integrins specifically bind components of the ECM such as fibronectin and vitronectin, but also non-ECM molecules such as von Willebrand factor and thrombospondin. The specificity of interaction with various ligands is a result of the noncovalently linked α/β chains that form the functional integrin heterodimer. The α-subunit is comprised of approx 1000 amino acids and contains calcium-binding motifs that are critical to integrin function (1). Integrin β-subunits are made up of approx 750 amino acids and introduce additional variability through alternative splicing of the cytoplasmic regions. Different pairings of α- and β-subunits produce at least 20 different integrin heterodimers with distinct but overlapping binding specificities (2). In turn, each ECM component may be recognized by several integrins. In general, integrins recognize amino acid sequences that contain a key acidic residue that is critical for binding (3). A common example of an integrin ligand sequence is the RGD (Arg-Gly-Asp) sequence, which is found in a number of integrin-binding proteins (4). Integrin-binding sequences that are unrelated to the RGD motif show structural and topological similarities to the RGD sequence, suggesting that specific spatial elements are required for recognition (5). Some integrins are known to require activation in order to bind their corresponding ligands, a mechanism referred to as “inside-out” signaling. For example, the αIIbβ3 integrin is a constitutively expressed receptor on platelets but is able to bind its primary ligand, fibrinogen, only after a conformational change induced by platelet activation (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tuckwell DS, Brass A, Humphries MJ, Homology modelling of integrin EF-hands. Evidence for widespread use of a conserved cation-binding site. Biochem J 1992;285:325–331.

    PubMed  CAS  Google Scholar 

  2. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  3. Pierschbacher MD, Ruoslahti E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion New perspectives in cell adhesion: RGD and integrins. J Biol Chem 1987;262:17,294–17,298.

    PubMed  CAS  Google Scholar 

  4. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491–497.

    Article  PubMed  CAS  Google Scholar 

  5. Main AL, Harvey TS, Baron M, Boyd J, Campbell ID. The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 1992;71:671–678.

    Article  PubMed  CAS  Google Scholar 

  6. Plow EF, Ginsberg MH. Cellular adhesion: GPIIb-IIIa as a prototypic adhesion receptor. Prog Hemost Thromb 1989;9:117–156.

    PubMed  CAS  Google Scholar 

  7. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285:1028–1032.

    Article  PubMed  CAS  Google Scholar 

  8. Sastry SK, Horwitz AF. Integrin cytoplasmic domains: mediators of cytoskeletal linkages and xtra-and intracellular initiated transmembrane signaling. Curr Opin Cell Biol 1993;5:819–831.

    Article  PubMed  CAS  Google Scholar 

  9. Barry ST, Flinn HM, Humphries MJ, Critchley DR, Ridley AJ. Requirement for Rho in integrin signalling. Cell Adhes Commun 1997;4:387–398.

    PubMed  CAS  Google Scholar 

  10. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992;70:389–399.

    Article  PubMed  CAS  Google Scholar 

  11. Kornberg LJ, Earp HS, Turner CE, Prockop C, Juliano RL. Signal transduction by integrins: Increased protein tyrosine phosphorylation caused by clustering of β1 integrins. Proc Natl Acad Sci USA 1991;88:8392–8396.

    Article  PubMed  CAS  Google Scholar 

  12. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autopho-sphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60c. Mol Cell Biol 1994;14:1680–1688.

    PubMed  CAS  Google Scholar 

  13. Harder KW, Moller NP, Peacock JW, Jirik FR. Protein-tyrosine phosphatase alpha regulates Src family kinases and alters cell-substratum adhesion. J Biol Chem 1998;273:31,890–31,900.

    Article  PubMed  CAS  Google Scholar 

  14. Garton AJ, Tonks NK. Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST. J Biol Chem 1999;274:3811–3818.

    Article  PubMed  CAS  Google Scholar 

  15. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 1993;363:45–51.

    Article  PubMed  CAS  Google Scholar 

  16. Vuori K, Ruoslahti E. Association of insulin receptor substrate-1 with integrins. Science 1994;266:1576–1578.

    Article  PubMed  CAS  Google Scholar 

  17. Cybulsky AV, McTavish AJ, Cyr MD. Extracellular matrix modulates epidermal growth factor receptor activation in rat glomerular epithelial cells. J Clin Invest 1994;94:68–78.

    Article  PubMed  CAS  Google Scholar 

  18. Jones PL, Crack J, Rabinovitch M. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 1997; 139:279–293.

    Article  PubMed  CAS  Google Scholar 

  19. Chen Q, Kinch MS, Lin TH, Burridge K, Juliano RL. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem 1994;269:26,602–26,605.

    PubMed  CAS  Google Scholar 

  20. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 1997;90:859–869.

    Article  PubMed  CAS  Google Scholar 

  21. Klein R, Klein BE, Moss SE, Cruickshanks KJ. The Wisconsin Epidemiologic Study of diabetic retinopathy. XIV. Ten-year incidence and progression of diabetic retinopathy. Arch Ophthalmol 1994; 112:1217–1228.

    PubMed  CAS  Google Scholar 

  22. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 1999;18:882–892.

    Article  PubMed  CAS  Google Scholar 

  23. Brooks PC, Stromblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 1996;85:683–693.

    Article  PubMed  CAS  Google Scholar 

  24. Seftor RE, Seftor EA, Gehlsen KR, et al. Role of the alpha v beta 3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 1992;89:1557–1561.

    Article  PubMed  CAS  Google Scholar 

  25. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995;270:1500–1502.

    Article  PubMed  CAS  Google Scholar 

  26. Friedlander M, Theesfeld CL, Sugita M, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA 1996;93:9764–9769.

    Article  PubMed  CAS  Google Scholar 

  27. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med 1996;2:529–533.

    Article  PubMed  CAS  Google Scholar 

  28. Luna J, Tobe T, Mousa SA, Reilly TM, Campochiaro PA. Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab Invest 1996;75:563–573.

    PubMed  CAS  Google Scholar 

  29. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264:569–571.

    Article  PubMed  CAS  Google Scholar 

  30. Casaroli Marano RP, Vilaro S. The role of fibronectin, laminin, vitronectin and their receptors on cellular adhesion in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 1994;35:2791–2803.

    Google Scholar 

  31. Casaroli Marano RP, Preissner KT, Vilaro S. Fibronectin, laminin, vitronectin and their receptors at newly-formed capillaries in proliferative diabetic retinopathy. Exp Eye Res 1995;60:5–17.

    Article  Google Scholar 

  32. Smith LE, Wesolowski E, McLellan A, et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994;35:101–111.

    PubMed  CAS  Google Scholar 

  33. Dorrell MI, Aguilar E, Friedlander M. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 2002;43:3500–3510.

    PubMed  Google Scholar 

  34. Stromblad S, Fotedar A, Brickner H, et al. Loss of p53 compensates for alpha v-integrin function in retinal neovascularization. J Biol Chem 2002;277:13,371–13,374.

    Article  PubMed  CAS  Google Scholar 

  35. Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA. Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 2003; 162:933–943.

    Article  PubMed  CAS  Google Scholar 

  36. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 1998;95:507–519.

    Article  PubMed  CAS  Google Scholar 

  37. Hodivala-Dilke KM, McHugh KP, Tsakiris DA, et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999; 103:229–238.

    PubMed  CAS  Google Scholar 

  38. Huang X, Griffiths M, Wu J, Farese RV Jr, Sheppard D. Normal development, wound healing, and adenovirus susceptibility in beta5-deficient mice. Mol Cell Biol 2000; 20: 755–759.

    Article  PubMed  CAS  Google Scholar 

  39. Reynolds LE, Wyder L, Lively JC, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 2002;8:27–34.

    Article  PubMed  CAS  Google Scholar 

  40. Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med 2002;8: 918–921.

    Article  PubMed  CAS  Google Scholar 

  41. Ritter MR, Zhou Q, Markland FS Jr. Contortrostatin, a snake venom disintegrin, induces alphavbeta3-mediated tyrosine phosphorylation of CAS and FAK in tumor cells. J Cell Biochem 2000;79:28–37.

    Article  PubMed  CAS  Google Scholar 

  42. Ritter MR, Zhou Q, Markland FS Jr. Contortrostatin, a homodimeric disintegrin, actively disrupts focal adhesion and cytoskeletal structure and inhibits cell motility through a novel mechanism. Cell Commun Adhes 2001;8:71–86.

    PubMed  CAS  Google Scholar 

  43. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 2001; 155:459–470.

    Article  PubMed  CAS  Google Scholar 

  44. Smith JW. Cilengitide Merck. Curr Opin Investig Drugs 2003;4:741–745.

    PubMed  CAS  Google Scholar 

  45. Eskens FA, Dumez H, Hoekstra R, et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 2003;39:917–926.

    Article  PubMed  CAS  Google Scholar 

  46. Cheresh DA, Stupack DG. Integrin-Mediated death: an explanation of the integrinknockout phenotype? Nat Med 2002;8:193–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ritter, M.R., Friedlander, M. (2006). Integrins in Ocular Angiogenesis. In: Tombrain-Tink, J., Barnstable, C.J. (eds) Ocular Angiogenesis. Opthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-047-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-047-8_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-514-9

  • Online ISBN: 978-1-59745-047-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics