Skip to main content

In Vivo Resistance

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The EMT6 mammary carcinoma sublines resistant to antitumor alkylating agents were produced by repeated exposure of fresh tumor-bearing hosts to each drug. These tumor lines have been used to extend understanding of drug resistance in a host organism. It is becoming clear as our knowledge of growth factors and cytokines has increased that the proliferation and metabolism of tumor cells, like those of normal cells, are influenced by these naturally occurring growth regulators. Our findings and those of others support the notion that the metabolism of tumor cells can be altered to enhance their survival via mechanisms that involve the autocrine and paracrine functions of growth factors and cytokines. Therapeutic resistance of a tumor in a host organism can evolve by a phenotypic change in the tumor cells that does not confer drug resistance on the isolated tumor cells but, which, through alterations in the handling of the drug by host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teicher B A, Ara G, Keyes SR, Herbst RS, Frei E III. Acute in vivo resistance in high-dose therapy. Clin Cancer Res 1998; 4:483–491.

    PubMed  CAS  Google Scholar 

  2. Teicher B A. In vivo resistance to antitumor alkylating agents. In: Teicher B A, ed. Drug resistance in oncology. New York: Marcel Dekker, 1993:263–290.

    Google Scholar 

  3. Schabel FM, Griswold DP, Corbett TH, Laster WR. Increasing therapeutic response rates to anticancer drugs by applying the basic principles of pharmacology. Pharmacol Therap 1983; 20:282–305.

    Article  Google Scholar 

  4. Corringham R, Gilmore M, Prentice HG. High-dose melphalan with autologous bone marrow transplant: treatment of poor prognosis tumors. Cancer 1983; 52:1783–1787.

    Article  PubMed  CAS  Google Scholar 

  5. Fay JW, Levine MN, Phillips GL. Treatment of metastatic melanoma with intensive 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and autologous marrow transplantation (AMTX). Proc Amer Soc Clin Oncol 1981; 17:532.

    Google Scholar 

  6. Frei E III. Curative cancer chemotherapy. Cancer Res 1985; 45:6523–6537.

    PubMed  Google Scholar 

  7. Frei E III, Antman K, Teicher B A. Bone marrow autotransplantation for solid tumors: prospects. J Clin Oncol 1989; 7:515–526.

    PubMed  Google Scholar 

  8. Glode LM. Dose limiting extramedullary toxicity of high dose chemotherapy. Exp Hematol 1979; 7:265–278.

    PubMed  Google Scholar 

  9. Knight WA III, Page CP, Kuhn JG. High-dose L-PAM and autologous marrow infusion for refractory solid tumors. Proc Amer Soc Clin Oncol 1984; 3:150.

    Google Scholar 

  10. McElwain TJ, Hedley DW, Burton G. Marrow autotransplantation accelerates hematological recovery in patients with malignant melanoma treated with high-dose melphalan. Brit J Cancer 1979; 40:72–80.

    PubMed  CAS  Google Scholar 

  11. Peters WP, Eder JP, Henner WD, et al. High-dose combination alkylating agents with autologous bone marrow support: a Phase I trial. J Clin Oncol 1986; 4:646–654.

    PubMed  CAS  Google Scholar 

  12. Phillips GL, Fay JW, Herzig GP, et al. Intensive 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), NSC4366650 and cyropreserved autologous marrow transplantation for refractory cancer. Cancer 1983; 10:1892–1802.

    Google Scholar 

  13. Thomas ED. The role of marrow transplantation in the eradication of malignant disease. Cancer 1982; 49:1963–1969.

    Article  PubMed  CAS  Google Scholar 

  14. Ayash L, Elias A, Schwartz G, et al. Double dose-intensive chemotherapy with autologous stem cell support for metastatic breast cancer: no improvement in progression free survival by the sequence of high-dose melphalan followed by cyclophosphamide, thiotepa and carboplatin. J Clin Oncol 1996; 14:2984–2992.

    PubMed  CAS  Google Scholar 

  15. Hill RP. Excision assays. In: RF Kallman, ed. Rodent tumor models in experimental cancertherapy. New York: Pergamon, 1987:67–75.

    Google Scholar 

  16. Teicher BA. Preclinical models for high dose therapy. In: Armitage JO, Antman KH, eds. High-dose cancer therapy: pharmacology, hematopoietins, stem cells, 3rd edition. Baltimore: Lippincott Williams &Wilkins, 2000:15–48.

    Google Scholar 

  17. Teicher B A, Northey D, Yuan J, Frei E III. High-dose therapy/stem cell support: comparison of mice and humans. Int J Cancer 1996; 65:695–699.

    Article  PubMed  CAS  Google Scholar 

  18. Teicher B A, Holden SA, Jacobs JL. Approaches to defining the mechanism of enhancement by Fluosol-DA 20% with carbogen of melphalan antitumor activity. Cancer Res 1987; 47:513–518.

    PubMed  CAS  Google Scholar 

  19. Teicher B A, Herman TS, Holden SA, et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247:1457–1461.

    Article  PubMed  CAS  Google Scholar 

  20. Teicher B A, Chatterjee D, Liu J, Holden S A, Ara G. Protection of bone marrow granulocyte macrophage colony-forming units in mice bearing in vivo alkylating agent resistant EMT-6 tumors. Cancer Chemother Pharmacol 1993; 32:315–319.

    Article  PubMed  CAS  Google Scholar 

  21. Frei E III, Teicher BA, Holden SA, Cathcart KNS, Wand Y. Preclinical studies and clinical correlation of the effect of alkylating agent dose. Cancer Res 1988; 48:6417–6423.

    PubMed  CAS  Google Scholar 

  22. Frei E III, Teicher B A, Cucchi CA, et al. Resistance to alkylating agents: basic studies and therapeutic implications. In: Wooley PVI, Tew TD, eds. Mechanisms of drug resistance in neoplastic cells. New York: Academic, 1988:69–87.

    Google Scholar 

  23. Teicher BA Frei E III. Development of alkylating agent-resistant human tumor cell lines. Cancer Chemother Pharmacol 1988; 21:292–298.

    PubMed  CAS  Google Scholar 

  24. Teicher BA, Frei E III. Alkylating agents. In: Gupta RS, ed. Drug resistance in mammalian cells: anticancer and other drugs. Boca Raton: CRC Press, 1989:1–31.

    Google Scholar 

  25. Teicher B A, Holden SA, Herman TS, et al. Characteristics of five human tumor cell lines and sublines resistant to cis-diamminedichloroplatinum II. Int J Cancer 1991; 47:252–260.

    Article  PubMed  CAS  Google Scholar 

  26. Holden S A Teicher B A, Frei EIII. Long-term persistence and cytokinetics of human tumor cells in vitro following high-dose alkylating agent exposure. Cancer Lett 1994; 87:211–222.

    Article  PubMed  CAS  Google Scholar 

  27. Holden SA, Teicher B A, Ayash L, Frei E III. A preclinical model for sequential high dose chemotherapy. Cancer Chemother Pharmacol 1995; 36:61–64.

    Article  PubMed  CAS  Google Scholar 

  28. Holden SA, Emi Y, Kakeji Y, Northey D, Teicher BA. Host distribution and response to antitumor alkylating agents of EMT-6 tumor cells from subcutaneous tumor implants. Cancer Chemother Pharmacol 1997; 40:87–93.

    Article  PubMed  CAS  Google Scholar 

  29. Elias A. Dose-intensive therapy in lung cancer. Cancer Chemother Pharmacol 1997; 40(Suppl):S64–S69.

    Article  PubMed  Google Scholar 

  30. Chatterjee D, Liu CJ, Northey D, Teicher B A. Molecular characterization of the in vivo alkylating agent resistant murine EMT-6 mammary carcinoma tumors. Cancer Chemother Phamacol 1995; 35:423–431.

    Article  CAS  Google Scholar 

  31. Teicher BA, Holden SA, Ara G, Chen G. Transforming growth factor-β in in vivo resistance. Cancer Chemother Pharmacol 1996; 37:601–609.

    Article  PubMed  CAS  Google Scholar 

  32. Anscher MS, Jirtle RL. Role of transforming growth factor-b abd hepatocyte growth factor in late normal tissue effects of radiation. Radiat Oncol Invest 1994; 1:305–313.

    Article  Google Scholar 

  33. McBride WH. Cytokine cascades in late normal tissue radiation responses. Int J Radiat Oncol Biol Phys 1996; 33:232–234.

    Google Scholar 

  34. Randall K, Coggle JE. Expression of transforming growth factor-b 1 in mouse skin during the acute phase of radiation damage. Int J Radiat Biol 1995; 68:301–309.

    Article  PubMed  CAS  Google Scholar 

  35. Rodemann HP, Bamberg M. Cellular basis of radiation-induced fibrosis. Radiotherap Oncol 1995; 35:83–90.

    Article  CAS  Google Scholar 

  36. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 1995; 33:99–109.

    Article  PubMed  CAS  Google Scholar 

  37. Zhan Y, Purton JF, Godfrey DJ, Cole TJ, Heath WR, Lew AM. Without peripheral interference, thymic deletion is mediated in a cohort of double-positive cells without classical activation. Proc Natl Acad Sci USA 2003; 100:1197–1202.

    Article  PubMed  CAS  Google Scholar 

  38. Hatada T, Miki C. Nutritional status and postoperative cytokine response in colorectal cancer patients. Cytokine 2000; 12:1331–1336.

    Article  PubMed  CAS  Google Scholar 

  39. Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale forthe use of cytokine shields in allogeneic bone marrow transplantation. Blood 2000; 95:2754–2759.

    PubMed  CAS  Google Scholar 

  40. Andratschke N, Grosu AL, Molls M, Nieder C. Perspectives in the treatment of malignant gliomas in adults. Anticancer Res 2001; 21:3541–3550.

    PubMed  CAS  Google Scholar 

  41. Ellis LM, Takahashi Y, Liu W, Shaheen RM. Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. Oncologist 2000; 5(Suppl 1):S11–S15.

    Article  Google Scholar 

  42. Xia P, Aiello LP, Ishii H, et al. Characterization of vascular endothelial growth factor’s effect on the activation of protein kinaseC, its isoforms, and endothelial cell growth. JClinical Invest 1996; 98:2018–2026.

    Article  CAS  Google Scholar 

  43. Guo D, Jia Q, Song HY, Warren RS, Donner DB. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 1995; 270:6729–6733.

    Article  PubMed  CAS  Google Scholar 

  44. Sawano A, Takahashi T, Yamaguchi S, Shibuya M. The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLC?. Biochem Biophys Res Commun 1997; 238:487–491.

    Article  PubMed  CAS  Google Scholar 

  45. McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist 5(Suppl 1):3–11.

    Google Scholar 

  46. Buchner K. The role of protein kinase C in the regulation of cell growth and in signaling to the cell nucleus. J Cancer Res Clin Oncol 2000; 126:1–11.

    Article  PubMed  CAS  Google Scholar 

  47. Goekjian PG, Jirousek MR. Protein kinase C inhibitors as novel anticancer drugs. Exp Opin Invest Drugs 2001; 10:2117–2140.

    Article  CAS  Google Scholar 

  48. O’Brian CA, Ward NE, Stewart JR, Chu F. Prospects for targeting protein kinase C isozymes in the therapy of drug-resistant cancer-an evolving story. Cancer Mets Rev 2001; 20:95–100.

    Article  CAS  Google Scholar 

  49. Swannie HC, Kaye SB. Protein kinase C inhibitors. Curr Oncol Rep 2002; 4:37–46.

    Article  PubMed  Google Scholar 

  50. Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci 2000; 21:181–187.

    Article  PubMed  CAS  Google Scholar 

  51. Nishizuka Y, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;8:607–614.

    Article  Google Scholar 

  52. Blumberg PM, Acs P, Bhattacharyya DK, Lorenzo PS. Inhibitors of protein kinase C and related receptors for the lipophilic second-messenger sn-1,2-diacylglycerol. In: Gutkind JS, ed. Cell cycle control: the molecular basis of cancer and other diseases. Totowa: Humana Press, 2000:349–366.

    Google Scholar 

  53. Shen B-Q, Lee D Y, Zioncheck TF. Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/flk-1 receptor and protein kinase C signaling pathway. J Biol Chem 1999;274:33, 057–33, 063.

    CAS  Google Scholar 

  54. Shih S-C, Mullen A, Abrams K, Mukhopadhyay M, Claffey KP. Role of protein kinase C isoforms in phorbol ester-induced vascular endothelial growth factor expression in human glioblastoma cells. J Biol Chem 1999;274:15, 407–15, 414.

    CAS  Google Scholar 

  55. Silva D, English D, Lyons D, Lloyd FP. Protein kinase C induces motility of breast cancers by upregulating secretion of urokinase-type plsaminogen activator through activation of AP-1 and NF-?B. Biochem Biophys Res Commun 2002;290:552–557.

    Article  CAS  Google Scholar 

  56. Bhat-Nakshatri P, Sweeney CJ, Nakshatri H. Identification of signal transduction pathways involved in constitutive NF-?B activation in breast cancer cells. Oncogene 2002;21:2066–2078.

    CAS  Google Scholar 

  57. Kim YW, Hur SY, Kim TE, et al. Protein kinase C modulates telomerase activity in human cervical cancer cells. Exp Mol Med 2001;33:156–163.

    PubMed  CAS  Google Scholar 

  58. Flescher E, Rotem R. Protein kinase C epsilon mediates the induction of P-glycoprotein in LNCaP prostate carcinoma cells. Cell Signal 2002;14:37–43.

    Article  PubMed  CAS  Google Scholar 

  59. Sumitomo M, Ohba M, Asakuma J, et al. Protein kinase C delta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest 2002;109:827–836.

    Article  PubMed  CAS  Google Scholar 

  60. Ghosh PM, Bedolla R, Mikhailova M, Kreisberg JI. RhoA-dependent murine prostate cancer cell proliferation and apoptosis: role of protein kinase C zeta. Cancer Res 2002;62:2630–2636.

    PubMed  CAS  Google Scholar 

  61. Lin MF, Zhang XQ, Dean J, Lin FF. Protein kinase C pathway is involved in regulating the secretion of prostatic phosphatase in human prostate cancer cells. Cell Biol Int 2001;25:1139–1148.

    Article  PubMed  CAS  Google Scholar 

  62. Da Rocha AB, Mans DR, Regner A, Schwartsmann G. Targeting protein kinase C: new therapeutic opportunity against high-grade malignant glioma? Oncologist 2002;7:17–33.

    Article  PubMed  Google Scholar 

  63. Martelli AM, Sang N, Borgatti P, Capitani S, Neri LM. Multiple biological responses activated by nuclear protein kinase C. J Cellular Biochem 1999;74:499–521.

    Article  CAS  Google Scholar 

  64. Jirousek MR, Gilli JR, Gonzalez CM, etal. (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4, 9:16, 21-dimetheno-1H, 13H-dibenzo[e,k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)dione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C-β. J Med Chem 1996;39:2664–2671.

    Article  PubMed  CAS  Google Scholar 

  65. Danis RP, Bingaman DP, Jirousek M, Yang Y. Inhibition of intraocular neovascularization caused by retinal ischemia in pigs by PKCβ inhibition with LY333531. Invest Ophthalmol Vis Sci 1998;39:171–179.

    PubMed  CAS  Google Scholar 

  66. Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective β-isoform-selective inhibitor. Diabetes 1997;46:1473–1480.

    Article  PubMed  CAS  Google Scholar 

  67. Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC β inhibitor [see comments], Science 1996;272:728–731.

    Article  PubMed  CAS  Google Scholar 

  68. Yoshiji H, Kuriyama S, Ways DK, et al. Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res 1999;59:4413–4418.

    PubMed  CAS  Google Scholar 

  69. TeicherB A, Alvarez E, Mendelsohn LG, Ara G, Menon K, Ways DK. Enzymatic rationale and preclinical support for apotent protein kinase Cb inhibitor in cancer therapy. Adv Enzyme Regul 1999;39:313–327.

    Article  PubMed  CAS  Google Scholar 

  70. Sausville EA, Arbuck SG, Messmann R, et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001;19:2319–2333.

    PubMed  CAS  Google Scholar 

  71. Dees E, O’Reilly S, Figg W, et al. A phase I and pharmacologic study of UCN-01, a protein kinase C inhibitor. Proc Am Soc Clin Oncol 2000;19:797a.

    Google Scholar 

  72. Grosios K. UCN-01 Kyowa Hakko Kogyo Co. Curr Opin Invest Drugs 2001;2:287–297.

    CAS  Google Scholar 

  73. Abe S, Kubot T, Otani Y, et al. UCN-01 (7-hydroxystaurosporine) inhibits in vivo growth of human cancer cells through selective perturbation of G1 phase checkpoint machinery. Jpn J Cancer Res 2001;92:537–545.

    PubMed  CAS  Google Scholar 

  74. Akinaga S, Gomi K, Morimoto M, Tamaoki T, Okabe M. Antitumor activity of UCN-01, a selective inhibitor of protein kinase C, in murine and human models. Cancer Res 1991;51:4888–4892.

    PubMed  CAS  Google Scholar 

  75. Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 2000;92:376–387.

    Article  PubMed  CAS  Google Scholar 

  76. Akiyama T, Yoshida T, Tsujita T, et al. G1 phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21/Cip1 /WAF1/ Sdi1 in p53-mutated human epidermoid carcinoma A431 cells. Cancer Res 1997;57:1495–1501.

    PubMed  CAS  Google Scholar 

  77. Sugiyama K, Akiyama T, Shimizu M, et al. Decrease in susceptibility toward induction of apoptosis and alteration in G1 checkpoint function as determinants of resistance of human lung cancer cells against the antisignaling drug UCN-01 (7-hydroxystaurosporine). Cancer Res 1999;59:4406–4412.

    PubMed  CAS  Google Scholar 

  78. Sarkaria JN, Busby EC, Tibbetts RS, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 1999;59:4375–4382.

    PubMed  CAS  Google Scholar 

  79. Busby EC, Leistritz DF, Abraham RT, Karnitz LM, Sarkaria JN. The radiosensitizing agent 7-hydroxy staurosporine (UCN-01) inhibits the DN A damage checkpoint kinase hChk1. Cancer Res 2000;60:2108–2112.

    PubMed  CAS  Google Scholar 

  80. Graves PR, Yu L, Schwarz JK, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 2000;275:5600–5605.

    Article  PubMed  CAS  Google Scholar 

  81. Chen X, Lowe M, Keyomarsi K. UCN-01-mediated G1 arrest in normal but not tumor breast cells is Rbdependent and p53-independent. Oncogene 1999;18:5691–5702.

    Article  CAS  Google Scholar 

  82. Kruger EA, Blagosklonny MV, Dixon SC, Figg WD. UCN-01, a protein kinase C inhibitor, inhibits endothelial cell proliferation and angiogenic hypoxic response. Invasion Metastasis 1999;18:209–218.

    Article  CAS  Google Scholar 

  83. Teicher B A, Alvarez E, Menon K, et al. Antiangiogenic effects of a protein kinase C β-selective small molecule. Cancer Chemother Pharmacol 2002;49:69–77.

    Article  PubMed  CAS  Google Scholar 

  84. TeicherB A, Menon K, Alvarez E, Galbreath E, Shih C, Faul MM. Antiangiogenic and antitumor effects of a protein kinase C β inhibitor in human HT-29 colon carcinoma and human Caki-1 renal cell carcinoma xenografts. Anticancer Res 2001;21:3175–3184.

    PubMed  CAS  Google Scholar 

  85. Teiche BA, Meno K, Alvarre E, Galbreat E, Shih C, Fau MM. Antiangiogenic and antitumor effects of a protein kinase C β inhibitor in murine Lewis lung carcinoma and human Calu-6 non-small cell lung carcinoma xenografts. Cancer Chemother Pharmacol 2001;48:473–480.

    Article  CAS  Google Scholar 

  86. Teicher B A, Menon K, Alvarez E, Liu P, Shih C, Faul MM. Antiangiogenic and antitumor effects of a protein kinase C β inhibitor in human hepatocellular and gastric cancer xenografts. In Vivo 2001;15:185–193.

    PubMed  CAS  Google Scholar 

  87. Teiche BA, Menon K, Alvarez E, Galbreath E, Shih C, Faul MM. Antiangiogenic and antitumor effects of aprotein kinase C Beta inhibitor in human T98G glioblastoma multiform xenografts. Clin Cancer Res 2001;7:634–640.

    Google Scholar 

  88. Thornton DE, Keyes K, Mann L, et al. Determination of cancer growth factor biomarkers in plasma from mice bearing subcutaneous human tumor xenografts using Luminex Multiplex technology. Proc Am Assoc Cancer Res 2002;43:897.

    Google Scholar 

  89. Keyes K, Cox K, Treadway P, et al. An in vitro tumor model: analysis of angiogenic factor expression after chemotherapy. Cancer Res 2002;62:5597–5602.

    PubMed  CAS  Google Scholar 

  90. Keyes K, Mann L, Cox K, et al. Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex multiplex technology. Cancer Chemother Pharmacol 51: 321–327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Teicher, B.A. (2006). In Vivo Resistance. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics