Skip to main content

Resistance To Taxanes

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Resistance to two taxanes, paclitaxel and docetaxel, is frequently observed in cancer patients and limits successful therapy. In experimental systems, resistance to paclitaxel and docetaxel are mediated by alterations in tubulin (the primary site of action of taxanes), proteins that interact with microtubules, energy-dependent efflux pumps, apoptotic proteins, and signal transduction pathways. Clinical correlations with some of these alterations exist, but have not been fully elucidated. Strategies to overcome or circumvent resistance to paclitaxel or docetaxel include inhibition of efflux pumps (which have largely proven to be unsuccessful), the use of novel taxanes or other chemically distinct classes of polymerizing agents that do not interact with drug efflux pumps (currently in clinical trials), and regulation of apoptotic or signal transduction pathways that would restore sensitivity to taxanes. Understanding the basis of resistance at the clinical level is likely to be difficult and complex, but holds the promise of providing a therapeutic opportunity specific to taxane-resistant cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lucas H. Ueber ein in den blattern von Taxus baccata L. enthaltenes alkaloid (das Taxin) (in German). Arch Pharm 1856; 85:145–149.

    Article  Google Scholar 

  2. Hoernel A. The Bower manuscript. In: Dept. of Government Printing. Calcutta, India, 1912.

    Google Scholar 

  3. Hartwell J. Plants used against cancer: a survey. Lawrence, MA: Quarterman, 1982.

    Google Scholar 

  4. Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971;93:23 25–2327.

    Google Scholar 

  5. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature 1979; 277:665–667.

    Article  PubMed  CAS  Google Scholar 

  6. Rowinsky EK, Tolcher AW. Antimicrotubule agents. In: Devita VT Jr, Hellman S, Rosenberg SA, eds. Cancer principles and practice, 6th edition. Philadelphia: Lippincott Williams andWilkins, 2001:431–52.

    Google Scholar 

  7. Rose WC. Taxol: a review of its preclinical in vivo antitumor activity. Anticancer Drugs 1992; 3:311–321.

    Article  PubMed  CAS  Google Scholar 

  8. Einzig AI. Review of phase II trials of Taxol (paclitaxel) in patients with advanced ovarian cancer. Ann Oncol 1994; 5:S29–S32.

    PubMed  Google Scholar 

  9. Legha SS, Ring S, Papadopoulos N, etal. A phase II trial of taxol in metastatic melanoma. Cancer 1990; 65:2478–2481.

    Article  PubMed  CAS  Google Scholar 

  10. Einzig AI, Gorowski E, Sasloff J, et al. Phase II trial of taxol in patients with metastatic renal cell carcinoma. Cancer Invest 1991; 9:133–136.

    PubMed  CAS  Google Scholar 

  11. Oncology/Immunology BMS. Taxol (paclitaxel). In: Physicians’ Desk Reference. Montvale: Medical Economics, 2002:1129–1138.

    Google Scholar 

  12. Gueritte-Voegelein F, Guenard D, Lavelle F, et al. Relationships between the structure of taxol analogues and their antimitotic activity. J Med Chem 1991; 34:992–998.

    Article  PubMed  CAS  Google Scholar 

  13. Bissery MC, Nohynek G, Sanderink GJ, et al. Docetaxel (Taxotere): a review of preclinical and clinical experience. Part I: Preclinical experience. Anticancer Drugs 1995; 6:339–368.

    Article  PubMed  CAS  Google Scholar 

  14. Kingston DG. The chemistry of taxol. Pharmacol Ther 1991; 52:1–34.

    Article  PubMed  CAS  Google Scholar 

  15. Jordan MA. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anti-Canc Agents 2002; 2:1–17.

    Article  CAS  Google Scholar 

  16. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13:83–117.

    Article  PubMed  CAS  Google Scholar 

  17. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci US A 1980; 77:1561–1565.

    Article  CAS  Google Scholar 

  18. Nogales E. Structural insight into microtubule function. Annu Rev Biophys Biomol Struct 2001; 30:397–120.

    Article  PubMed  CAS  Google Scholar 

  19. Parness J, Horwitz SB. Taxol binds to polymerized tubulin in vitro. J Cell Biol 1981; 91:479–187.

    Article  PubMed  CAS  Google Scholar 

  20. Orr GA, Verdier-Pinard P, McDaid H, et al. Mechanisms of taxol resistance related to microtubules. Oncogene 2003; 22:7280–7295.

    Article  PubMed  CAS  Google Scholar 

  21. Li Y, Poliks B, Cegelski L, et al. Conformation of microtubule-bound paclitaxel determined by fluorescence spectroscopy and REDOR NMR. Biochemistry 2000; 39:281–291.

    Article  PubMed  CAS  Google Scholar 

  22. Snyder JP, Nettles JH, Cornett B, et al. The binding conformation of Taxol in β-tubulin: a model based on electron crystallographic density. Proc Natl Acad Sci U S A 2001; 98:5312–536

    Article  PubMed  CAS  Google Scholar 

  23. Nettles JH, Li H, Cornett B, et al. The binding mode of epothilone A on a,β-tubulin by electron crystallography. Science 2004; 305:866–869.

    Article  PubMed  CAS  Google Scholar 

  24. Sullivan KF, Cleveland DW. Identification of conserved isotype-defining variable region sequences for four vertebrate β tubulin polypeptide classes. Proc Natl Acad Sci U S A 1986; 83:4327–1331.

    Article  PubMed  CAS  Google Scholar 

  25. Stanchi F, Corso V, Scannapieco P, et al. TUB A8: A new tissue-specific isoform of alpha-tubulin that is highly conserved in human and mouse. Biochem Biophys Res Commun 2000; 270:1111–1118.

    Article  PubMed  CAS  Google Scholar 

  26. Sullivan KF. Structure and utilization of tubulin isotypes. Annu Rev Cell Biol 1988; 4:687–716.

    Article  PubMed  CAS  Google Scholar 

  27. Andersen SS. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/ Op18. Trends Cell Biol 2000; 10:261–267.

    Article  PubMed  CAS  Google Scholar 

  28. Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 2002; 14:18–24.

    Article  PubMed  CAS  Google Scholar 

  29. Nicoletti MI, Valoti G, Giannakakou P, et al. Expression of β-tubulin isotypes in human ovarian carcinoma xenografts and in a sub-panel of human cancer cell lines from the NCI-Anticancer Drug Screen: correlation with sensitivity to microtubule active agents. Clin Cancer Res 2001; 7:2912–2922.

    PubMed  CAS  Google Scholar 

  30. Loganzo F, Annable T, Xingzhi T, et al. Cells made resistant to paclitaxel in the presence of an MDR1-reversal agent express a b-tubulin mutation (Asp26Glu), are less resistant to the novel taxane MAC-321, and are collaterally sensitive to tubulin depolymerizing agents. Proc Am Assoc Cancer Res 2003; 44, 2nd ed: 1152.

    Google Scholar 

  31. Wang Y, Veeraraghavan S, Cabral F. Intra-allelic suppression of a mutation that stabilizes microtubules and confers resistance to colcemid. Biochemistry 2004; 43:8965–8973.

    Article  PubMed  CAS  Google Scholar 

  32. Goncalves A, Braguer D, Kamath K, et al. Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc Natl Acad Sci U S A 2001; 98:11, 737–11,742.

    Google Scholar 

  33. Giannakakou P, Sackett DL, Kang YK, et al. Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 1997; 272:17, 118–17,125.

    Google Scholar 

  34. He L, Yang C-PH, Horwitz SB. Mutations in β-tubulin map to domains involved in regulation of microtubule stability in epothilone-resistant cell lines. Mol Cancer Ther 2001; 1:3–10.

    PubMed  CAS  Google Scholar 

  35. Verrills NM, Flemming CL, Liu M, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol 2003; 10:597–607.

    Article  PubMed  CAS  Google Scholar 

  36. Giannakakou P, Gussio R, Nogales E, et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci U S A 2000; 97:2904–2909.

    Article  PubMed  CAS  Google Scholar 

  37. Martello LA, Verdier-Pinard P, Shen HJ, et al. Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Res 2003; 63:1207–1213.

    PubMed  CAS  Google Scholar 

  38. Minotti AM, Barlow SB, Cabral F. Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem 1991; 266:3987–3994.

    PubMed  CAS  Google Scholar 

  39. Gonzalez-Garay ML, Chang L, Blade K, et al. A β-tubulin leucine cluster involved in microtubule assembly and paclitaxel resistance. J Biol Chem 1999; 274:23, 875–23,882.

    Google Scholar 

  40. Verdier-Pinard P, Wang F, Martello L, et al. Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry 2003; 42:5349–5357.

    Article  PubMed  CAS  Google Scholar 

  41. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350:2129–2139.

    Article  PubMed  CAS  Google Scholar 

  42. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304:1497–1500.

    Article  PubMed  CAS  Google Scholar 

  43. Monzo M, Rosell R, Sanchez JJ, et al. Paclitaxel resistance in non-small-cell lung cancer associated with β-tubulin gene mutations. J Clin Oncol 1999; 17:1786–1793.

    PubMed  CAS  Google Scholar 

  44. Kohonen-Corish MR, Qin H, Daniel JJ, et al. Lack of β-tubulin gene mutations in early stage lung cancer. Int J Cancer 2002; 101:398–399.

    Article  PubMed  CAS  Google Scholar 

  45. Sale S, Sung R, Shen P, et al. Conservation of the class I β-tubulin gene in human populations and lack of mutations in lung cancers and paclitaxel-resistant ovarian cancers. Mol Cancer Ther 2002; 1:215–225.

    PubMed  CAS  Google Scholar 

  46. Kelley MJ, Li S, Harpole DH. Genetic analysis of the β-tubulin gene, TUBB, in non-small-cell lung cancer. J Natl Cancer Inst 2001; 93:1886–1888.

    Article  PubMed  CAS  Google Scholar 

  47. Tsurutani J, Komiya T, Uejima H, et al. Mutational analysis of the β-tubulin gene in lung cancer. Lung Cancer 2002; 35:11–16.

    Article  PubMed  Google Scholar 

  48. Hasegawa S, Miyoshi Y, Egawa C, et al. Mutational analysis of the class I β-tubulin gene in human breast cancer. Int J Cancer 2002; 101:46–51.

    Article  PubMed  CAS  Google Scholar 

  49. Burkhart CA, Kavallaris M, Horwitz SB. The role of β-tubulin isotypes in resistance to antimitotic drugs. Biochim Biophys Acta 2001; 1471:1–9.

    Google Scholar 

  50. Dozier JH, Hiser L, Davis JA, et al. Beta class II tubulin predominates in normal and tumor breast tissues. Breast Cancer Res 2003; 5:R157–R169.

    Article  PubMed  CAS  Google Scholar 

  51. Rao S, Aberg F, Nieves E, et al. Identification by mass spectrometry of a new a-tubulin isotype expressed in human breast and lung carcinoma cell lines. Biochemistry 2001; 40:2096–2103.

    Article  PubMed  CAS  Google Scholar 

  52. Lu Q, Luduena RF. In vitro analysis of microtubule assembly of isotypically pure tubulin dimers. Intrinsic differences in the assembly properties of a β II, a β III, and a β IV tubulin dimers in the absence of microtubule-associated proteins. J Biol Chem 1994; 269:2041–2047.

    PubMed  CAS  Google Scholar 

  53. Lu Q, Luduena RF. Removal of β III isotype enhances taxol induced micro tubule assembly. Cell Struct Funct 1993; 18:173–182.

    PubMed  CAS  Google Scholar 

  54. Derry WB, Wilson L, Khan IA, et al. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified β-tubulin isotypes. Biochemistry 1997; 36:3554–3562.

    Article  PubMed  CAS  Google Scholar 

  55. Panda D, Miller HP, Banerjee A, et al. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci U S A 1994; 91:11, 358–11,362.

    Google Scholar 

  56. Kavallaris M, Kuo DY, Burkhart CA, et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific β-tubulin isotypes. J Clin Invest 1997; 100:1282–1293.

    Article  PubMed  CAS  Google Scholar 

  57. Kyu-Ho Han E, Gehrke L, Tahir SK, et al. Modulation of drug resistance by a-tubulin in paclitaxel-resistant human lung cancer cell lines. Eur J Cancer 2000; 36:1565–1571.

    Article  PubMed  CAS  Google Scholar 

  58. Kavallaris M, Burkhart CA, Horwitz SB. Antisense oligonucleotides to class III β-tubulin sensitize drug-resistant cells to Taxol. Br J Cancer 1999; 80:1020–1025.

    Article  PubMed  CAS  Google Scholar 

  59. Hari M, Yang H, Zeng C, et al. Expression of class III β-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskeleton 2003; 56:45–56.

    Article  PubMed  CAS  Google Scholar 

  60. Blade K, Menick DR, Cabral F. Overexpression of class I, II or IVb β-tubulin isotypes in CHO cells is insufficient to confer resistance to paclitaxel. J Cell Sci 1999; 112(Pt 13):2213–2221.

    PubMed  CAS  Google Scholar 

  61. Ranganathan S, McCauley RA, Dexter DW, et al. Modulation of endogenous β-tubulin isotype expression as a result of human beta(III)cDNA transfection into prostate carcinoma cells. Br J Cancer 2001; 85:735–740.

    Article  PubMed  CAS  Google Scholar 

  62. Veitia R, Bissery MC, Martinez C, et al. Tau expression in model adenocarcinomas correlates with docetaxel sensitivity in tumour-bearing mice. Br J Cancer 1998; 78:871–877.

    PubMed  CAS  Google Scholar 

  63. Poruchynsky MS, Giannakakou P, Ward Y, et al. Accompanying protein alterations in malignant cells with a microtubule-polymerizing drug-resistance phenotype and a primary resistance mechanism. Biochem Pharmacol 2001; 62:1469–1480.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang CC, Yang JM, White E, et al. The role of MAP4 expression in the sensitivity to paclitaxel and resistance to vinca alkaloids in p53 mutant cells. Oncogene 1998; 16:1617–1624.

    Article  PubMed  CAS  Google Scholar 

  65. Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996; 84:623–631.

    Article  PubMed  CAS  Google Scholar 

  66. Ravelli RB, Gigant B, Curmi PA, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004; 428:198–202.

    Article  PubMed  CAS  Google Scholar 

  67. Gigant B, Curmi PA, Martin-Barbey C, et al. The 4 Å X-ray structure of a tubulin: stathmin-like domain complex. Cell 2000; 102:809–816.

    Article  PubMed  CAS  Google Scholar 

  68. Larsson N, Segerman B, Gradin HM, et al. Mutations of oncoprotein 18/stathmin identify tubulindirected regulatory activities distinct from tubulin association. Mol Cell Biol 1999; 19:2242–2250.

    PubMed  CAS  Google Scholar 

  69. Balachandran R, Welsh MJ, Day BW. Altered levels and regulation of stathmin in paclitaxel-resistant ovarian cancer cells. Oncogene 2003; 22:8924–8930.

    Article  PubMed  CAS  Google Scholar 

  70. Iancu C, Mistry SJ, Arkin S, et al. Taxol and anti-stathmin therapy: a synergistic combination that targets the mitotic spindle. Cancer Res 2000; 60:3537–3541.

    PubMed  CAS  Google Scholar 

  71. Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature 2000; 407:41–17.

    Article  PubMed  CAS  Google Scholar 

  72. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003; 22:8581–8589.

    Article  PubMed  CAS  Google Scholar 

  73. Carvalho P, Tirnauer JS, Pellman D. Surfing on microtubule ends. Trends Cell Biol 2003; 13:229–237.

    Article  PubMed  CAS  Google Scholar 

  74. Howard J, Hyman AA. Dynamics andmechanics of the microtubule plus end. Nature 2003; 422:753–758.

    Article  PubMed  CAS  Google Scholar 

  75. Banerjee A. Increased levels of tyrosinated a-, β(III)-, and β(IV)-tubulin isotypes in paclitaxel-resistant MCF-7 breast cancer cells. Biochem Biophys Res Commun 2002; 293:598–601.

    Article  PubMed  CAS  Google Scholar 

  76. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2:48–58.

    Article  PubMed  CAS  Google Scholar 

  77. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71:537–592.

    Article  PubMed  CAS  Google Scholar 

  78. Childs S, Yeh RL, Hui D, et al. Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein. Cancer Res 1998; 58:4160–1167.

    PubMed  CAS  Google Scholar 

  79. Lecureur V, Sun D, Hargrove P, et al. Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol 2000; 57:24–35.

    PubMed  CAS  Google Scholar 

  80. Smith AJ, van Helvoort A, van Meer G, et al. MDR3 P-glycoprotein, aphosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 2000; 275:23, 530–23,539.

    Google Scholar 

  81. Hopper-Borge E, Chen ZS, Shchaveleva I, et al. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 2004; 64:4927–1930.

    Article  PubMed  CAS  Google Scholar 

  82. Shen DW, Cardarelli C, Hwang J, et al. Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin, or vinblastine show changes in expression of specific proteins. J Biol Chem 1986; 261:7762–7770.

    PubMed  CAS  Google Scholar 

  83. Dumontet C, Duran GE, Steger KA, et al. Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res 1996; 56:1091–1097.

    PubMed  CAS  Google Scholar 

  84. Goldstein LJ. MDR1 gene expression in solid tumours. Eur J Cancer 1996; 32A: 1039–1050.

    Article  PubMed  CAS  Google Scholar 

  85. Goldstein LJ, Galski H, Fojo A, et al. Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 1989; 81:116–124.

    Article  PubMed  CAS  Google Scholar 

  86. Sampath D, Discafani CM, Loganzo F, et al. MAC-321, A novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. Mol Cancer Thera 2003; 2:873–994.

    CAS  Google Scholar 

  87. Sorrentino BP, Brandt SJ, Bodine D, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 1992; 257:99–103.

    Article  PubMed  CAS  Google Scholar 

  88. Licht T, Haskins M, Henthorn P, et al. Drug selection with paclitaxel restores expression of linked IL-2 receptor ?-chain and multidrug resistance (MDR1) transgenes in canine bone marrow. Proc Natl Acad Sci U S A 2002; 99:3123–3128.

    Article  PubMed  CAS  Google Scholar 

  89. Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997; 94:2031–2035.

    Article  PubMed  CAS  Google Scholar 

  90. van Asperen J, van Tellingen O, Sparreboom A, et al. Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br J Cancer 1997; 76:1181–1183.

    PubMed  Google Scholar 

  91. van Asperen J, van Tellingen O, van der Valk MA, et al. Enhanced oral absorption and decreased elimination of paclitaxel in mice cotreated with cyclosporin A. Clin Cancer Res 1998; 4:2293–2297.

    PubMed  Google Scholar 

  92. Britten CD, Baker SD, Denis LJ, et al. Oral paclitaxel and concurrent cyclosporin A: targeting clinically relevant systemic exposure to paclitaxel. Clin Cancer Res 2000; 6:3459–3468.

    PubMed  CAS  Google Scholar 

  93. Meerum Terwogt JM, Malingre MM, Beijnen JH, et al. Coadministration of oral cyclosporin A enables oral therapy with paclitaxel. Clin Cancer Res 1999; 5:3379–3384.

    PubMed  CAS  Google Scholar 

  94. Wils P, Phung-Ba V, Warnery A, et al. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol 1994; 48:1528–1530.

    Article  PubMed  CAS  Google Scholar 

  95. Shirakawa K, Takara K, Tanigawara Y, et al. Interaction of docetaxel (&quote;Taxotere&quote;) with human P-glycoprotein. Jpn J Cancer Res 1999; 90:1380–1386.

    PubMed  CAS  Google Scholar 

  96. Loganzo F, Discafani CM, Annable T, et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res 2003; 63:1838–1845.

    PubMed  CAS  Google Scholar 

  97. Malingre MM, Richel DJ, Beijnen JH, et al. Coadministration of cyclosporine strongly enhances the oral bioavailability of docetaxel. J Clin Oncol 2001; 19:1160–1166.

    PubMed  CAS  Google Scholar 

  98. Bardelmeijer HA, Ouwehand M, Buckle T, et al. Low systemic exposure of oral docetaxel in mice resulting from extensive first-pass metabolism is boosted by ritonavir. Cancer Res 2002; 62:6158–6164.

    PubMed  CAS  Google Scholar 

  99. Wacher VJ, Silverman JA, Zhang Y, et al. Role of P-glycoprotein and cytochrome P450 3 A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998; 87:1322–1330.

    Article  PubMed  CAS  Google Scholar 

  100. Sparreboom A, van Tellingen O, Nooijen WJ, et al. Preclinical pharmacokinetics of paclitaxel and docetaxel. Anticancer Drugs 1998; 9:1–17.

    Article  PubMed  CAS  Google Scholar 

  101. Schneider J, Bak M, Efferth T, et al. P-glycoprotein expression in treated and untreated human breast cancer. Br J Cancer 1989; 60:815–818.

    PubMed  CAS  Google Scholar 

  102. Charpin C, Vielh P, Duffaud F, et al. Quantitative immunocytochemical assays of P-glycoprotein in breast carcinomas: correlation to messenger RN A expression and to immunohistochemical prognostic indicators. J Natl Cancer Inst 1994; 86:1539–1545.

    Article  PubMed  CAS  Google Scholar 

  103. Rudas M, Filipits M, Taucher S, et al. Expression of MRP1, LRP andPgp in breast carcinoma patients treated with preoperative chemotherapy. Breast Cancer Res Treat 2003; 81:149–157.

    Article  PubMed  CAS  Google Scholar 

  104. Scagliotti GV, Michelotto F, Kalikatzaros G, et al. Detection of multidrug resistance associated P-170 glycoprotein in previously untreated non small cell lung cancer. Anticancer Res 1991; 11:2207–2210.

    PubMed  CAS  Google Scholar 

  105. Kreisholt J, Sorensen M, Jensen PB, et al. Immunohistochemical detection of DNA topoisomerase IIalpha, P-glycoprotein and multidrug resistance protein (MRP) in small-cell and non-small-cell lung cancer. Br J Cancer 1998; 77:1469–1473.

    PubMed  CAS  Google Scholar 

  106. Yeh JJ, Hsu WH, Wang JJ, et al. Predicting chemotherapy response to paclitaxel-based therapy in advanced non-small-cell lung cancer with P-glycoprotein expression. Respiration 2003; 70:32–35.

    Article  PubMed  CAS  Google Scholar 

  107. Izquierdo MA, van der Zee AG, Vermorken JB, et al. Drug resistance-associated marker LRP for prediction of response to chemotherapy and prognoses in advanced ovarian carcinoma. J Natl Cancer Inst 1995; 87:1230–1237.

    Article  PubMed  CAS  Google Scholar 

  108. Schneider J, Jimenez E, Marenbach K, et al. Co-expression of the MDR1 gene and HSP27 in human ovarian cancer. Anticancer Res 1998; 18:2967–2971.

    PubMed  CAS  Google Scholar 

  109. Baekelandt MM, Holm R, Nesland JM, etal. P-glycoprotein expression is a marker for chemotherapy resistance and prognosis in advanced ovarian cancer. Anticancer Res 2000; 20:1061–1067.

    PubMed  CAS  Google Scholar 

  110. Trock BJ, Leonessa F, Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/ gp170 expression and its possible functional significance. J Natl Cancer Inst 1997; 89:917–931.

    Article  PubMed  CAS  Google Scholar 

  111. Beck WT, Grogan TM, Willman CL, et al. Methods to detect P-glycoprotein-associated multidrug resistance in patients’ tumors: consensus recommendations. Cancer Res 1996; 56:3010–3020.

    PubMed  CAS  Google Scholar 

  112. Bates S. Solving the problem of multidrug resistance: ABC transporters in clinical oncology. In: Holland BI, Cole SPC, Kuchler K, Higgins, CF, eds. ABC proteins: from bacteria to man. London: Academic, 2003:359–3291.

    Google Scholar 

  113. Lee CH. Reversing agents for ATP-binding cassette (ABC) transporters: application in modulating multidrug resistance (MDR). Curr Med Chem Anti-Canc Agents 2004; 4:43–52.

    Article  CAS  Google Scholar 

  114. Campos L, Guyotat D, Archimbaud E, etal. Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 1992; 79:473–76.

    PubMed  CAS  Google Scholar 

  115. Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR 1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997; 89:3323–3329.

    CAS  Google Scholar 

  116. Leith CP, Kopecky KJ, Chen IM, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 1999; 94:1086–1099.

    PubMed  CAS  Google Scholar 

  117. List AF, Kopecky KJ, Willman CL, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001; 98:3212–3220.

    Article  PubMed  CAS  Google Scholar 

  118. Baer MR, George SL, Dodge RK, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002; 100:1224–1232.

    PubMed  CAS  Google Scholar 

  119. Gruber A, Bjorkholm M, Brinch L, et al. A phase I/II study of the MDR modulator Valspodar (PSC 833) combined with daunorubicin and cytarabine in patients with relapsed and primary refractory acute myeloid leukemia. Leuk Res 2003; 27:323–328.

    Article  PubMed  CAS  Google Scholar 

  120. Greenberg PL, Lee SJ, Advani R, et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelody splastic syndrome: a phase III trial (E2995). J Clin Oncol 2004; 22:1078–1086.

    Article  PubMed  CAS  Google Scholar 

  121. Garraway LA, Chabner B. MDR1 inhibition: less resistance or less relevance? Eur J Cancer 2002; 38:2337–2340.

    Article  PubMed  CAS  Google Scholar 

  122. Fracasso PM, Brady MF, Moore DH, et al. Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. J Clin Oncol 2001; 19:2975–2982.

    PubMed  CAS  Google Scholar 

  123. Patnaik A, Warner E, Michael M, et al. Phase I dose-finding and pharmacokinetic study of paclitaxel and carboplatin with oral valspodar in patients with advanced solid tumors. J Clin Oncol 2000; 18:3677–3689.

    PubMed  CAS  Google Scholar 

  124. Fracasso PM, Westervelt P, Fears CL, etal. Phase I study of paclitaxel in combination with a multidrug resistance modulator, PSC 833 (Valspodar), in refractory malignancies. J Clin Oncol 2000; 18:1124–1134.

    PubMed  CAS  Google Scholar 

  125. Advani R, Fisher GA, Lum BL, et al. A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance. Clin Cancer Res 2001; 7:1221–1229.

    PubMed  CAS  Google Scholar 

  126. Chico I, Kang MH, Bergan R, et al. Phase I study of infusional paclitaxel in combination with the P-glycoprotein antagonist PSC 833. J Clin Oncol 2001; 19:832–842.

    PubMed  CAS  Google Scholar 

  127. Mistry P, Stewart AJ, Dangerfield W, et al. In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res 2001; 61:749–758.

    PubMed  CAS  Google Scholar 

  128. Starling JJ, Shepard RL, Cao J, et al. Pharmacological characterization of LY335979: a potent cyclopropyldibenzosuberane modulator of P-glycoprotein. Adv Enzyme Regul 1997; 37:335–347.

    Article  PubMed  CAS  Google Scholar 

  129. Dantzig AH, Law KL, Cao J, et al. Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem 2001; 8:39–50.

    PubMed  CAS  Google Scholar 

  130. van Zuylen L, Sparreboom A, van der Gaast A, et al. The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin Cancer Res 2000; 6:1365–1371.

    PubMed  Google Scholar 

  131. Newman MJ, Rodarte JC, Benbatoul KD, et al. Discovery and characterization of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Res 2000; 60:2964–2972.

    PubMed  CAS  Google Scholar 

  132. Allen JD, Brinkhuis RF, Wijnholds J, et al. The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res 1999; 59:4237–241.

    PubMed  CAS  Google Scholar 

  133. Ojima I, Slater JC, Michaud E, et al. Syntheses and structure-activity relationships of the secondgeneration antitumor taxoids: exceptional activity against drug-resistant cancer cells. J Med Chem 1996; 39:3889–3896.

    Article  PubMed  CAS  Google Scholar 

  134. Polizzi D, Pratesi G, Tortoreto M, et al. A novel taxane with improved tolerability and therapeutic activity in a panel of human tumor xenografts. Cancer Res 1999; 59:1036–1040.

    PubMed  CAS  Google Scholar 

  135. Shionoya M, Jimbo T, Kitagawa M, et al. DJ-927, a novel oral taxane, overcomes P-glycoproteinmediated multidrug resistance in vitro and in vivo. Cancer Sci 2003; 94:459–66.

    Article  PubMed  CAS  Google Scholar 

  136. Longley RE, Fasciani G, Sander L, et al. In vitro mechanism of action studies with the taxane analog, TL-909 (MST-997). Proc Am Assoc Cancer Res 2004; 45:LB–90.

    Google Scholar 

  137. Kurata T, Shimada Y, Tamura T, et al. Phase I and pharmacokinetic study of a new taxoid, RPR 109881 A, given as a 1-hour intravenous infusion in patients with advanced solid tumors. J Clin Oncol 2000; 18:3164–3171.

    PubMed  CAS  Google Scholar 

  138. Cisternino S, Bourasset F, Archimbaud Y, et al. Nonlinear accumulation in the brain of the new taxoid TXD258 following saturation of P-glycoprotein at the blood-brain barrier in mice and rats. Br J Pharmacol 2003; 138:1367–1375.

    Article  PubMed  CAS  Google Scholar 

  139. Rose WC, Fairchild C, Lee FY. Preclinical antitumor activity of two novel taxanes. Cancer Chemother Pharmacol 2001; 47:97–105.

    Article  PubMed  CAS  Google Scholar 

  140. Rose WC, Long BH, Fairchild CR, et al. Preclinical pharmacology of BMS-275183, an orally active taxane. Clin Cancer Res 2001; 7:2016–2021.

    PubMed  CAS  Google Scholar 

  141. Broker LE, De Vos FY, Gall H, et al. A phase I trial of the novel oral taxane BMS-275183 in patients with advanced solid tumors. ASCO meeting abstract. 2004; abstract no. 2029.

    Google Scholar 

  142. Sampath D, Discafani D, Beyer C, et al. MST-997: A novel taxane with superior efficacy that overcomes paciltaxel and docetaxel resistance in vitro and in vivo. EORTC/NCI/AACR meeting, 2004; abstract no. 524.

    Google Scholar 

  143. Nicoletti MI, Colombo T, Rossi C, et al. IDN5109, a taxane with oral bioavailability and potent antitumor activity. Cancer Res 2000; 60:842–846.

    PubMed  CAS  Google Scholar 

  144. Dieras VC, Limantani S A, Lortholary A, et al. A multicentre, non randomized phase II study with RPR 109881A in metastatic breast cancer (MBC) patients (pts). ASCO meeting. 2004; abstract no. 565.

    Google Scholar 

  145. Sessa C, Perotti A, Salvatorelli E, et al. Phase IB and pharmacological study of the novel taxane BMS-184476 in combination with doxorubicin. Eur J Cancer 2004; 40:563–570.

    Article  PubMed  CAS  Google Scholar 

  146. Hidalgo M, Aylesworth C, Hammond LA, et al. Phase I and pharmacokinetic study of BMS-184476, a taxane with greater potency and solubility than paclitaxel. J Clin Oncol 2001; 19:2493–2503.

    PubMed  CAS  Google Scholar 

  147. Advani R, Fisher GA, Lum BL, et al. Phase I and pharmacokinetic study of BMS-188797, a new taxane analog, administered on a weekly schedule in patients with advanced malignancies. Clin Cancer Res 2003; 9:5187–5194.

    PubMed  CAS  Google Scholar 

  148. Brahmer JR, Shapiro M, Carducci K, et al. Phase I trial of a potent novel taxane, TL00139 (MAC-321), in patients with advanced malignant solid tumors. ASCO meeting. 2004: abstract no. 527.

    Google Scholar 

  149. Zhu AX, Bukowski R, Lockhart AC, et al. Phase 1 trial of oral MAC-321 in subjects with advanced malignant solid tumors. ASCO meeting. 2004; abstract no. 2040.

    Google Scholar 

  150. Cobb PW, Joly F, Venner P, et al. An uncontrolled phase II multi-center trial evaluating anti-tumor efficacy and safety of BAY 59-8862 in patients with advanced renal cell cancer. ASCO meeting. 2004; abstract no. 1640.

    Google Scholar 

  151. Amadori D, Santoro A, Hoffken K, et al. A phase II trial of a novel taxane BAY 59-8862 in patients with advanced taxane-resistant breast cancer. ASCO meeting. 2004; abstract no. 176.

    Google Scholar 

  152. Gurtler JS, Von Pawel J, Spiridonidis CH, et al. An uncontrolled phase II study evaluating anti-tumor efficacy and safety of ortataxel (BAY 59-8862) in patients with taxane-resistant non-small cell lung cancer. ASCO meeting. 2004; abstract no. 7136.

    Google Scholar 

  153. Syed SK, Beeram M, Takimoto CH, et al. Phase I and pharmacokinetics (PK) of DJ-927, an oral taxane, in patients (Pts) with advanced cancers. ASCO meeting. 2004; abstract no. 2028.

    Google Scholar 

  154. Altmann KH. Epothilone B and its analogs-a new family of anticancer agents. Mini Rev Med Chem 2003; 3:149–158.

    Article  PubMed  CAS  Google Scholar 

  155. Mani S, Macapinlac M Jr, Goel S, et al. The clinical development of new mitotic inhibitors that stabilize the microtubule. Anticancer Drugs 2004; 15:553–558.

    Article  PubMed  CAS  Google Scholar 

  156. Mooberry SL, Tien G, Hernandez AH, et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999; 59:653–660.

    PubMed  CAS  Google Scholar 

  157. Pryor DE, O’Brate A, Bilcer G, et al. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 2002; 41:9109–9115.

    Article  PubMed  CAS  Google Scholar 

  158. Woods CM, Zhu J, McQueney PA, et al. Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol Med 1995; 1:506–526.

    PubMed  CAS  Google Scholar 

  159. van Loo G, Saelens X, van Gurp M, et al. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 2002; 9:1031–1042.

    Article  PubMed  CAS  Google Scholar 

  160. Schulze-Osthoff K, Ferrari D, Los M, et al. Apoptosis signaling by death receptors. Eur J Biochem 1998; 254:439–59.

    Article  PubMed  CAS  Google Scholar 

  161. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11:255–260.

    Article  PubMed  CAS  Google Scholar 

  162. Manthey CL, Brandes ME, Perera PY, et al. Taxol increases steady-state levels of lipopolysaccharide-inducible genes and protein-tyrosine phosphorylation in murine macrophages. J Immunol 1992; 149:2459–2465.

    PubMed  CAS  Google Scholar 

  163. Bogdan C, Ding A. Taxol, a microtubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor alpha and interleukin-1 in macrophages. J Leukoc Biol 1992; 52:119–121.

    PubMed  CAS  Google Scholar 

  164. Lanni JS, Lowe SW, Licitra EJ, et al. p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc Natl Acad Sci U S A 1997; 94:9679–9683.

    Article  PubMed  CAS  Google Scholar 

  165. Asakuma J, Sumitomo M, Asano T, et al. Selective Akt inactivation and tumor necrosis actor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res 2003; 63:1365–1370.

    PubMed  CAS  Google Scholar 

  166. Vignati S, Codegoni A, Polato F, et al. Trail activity in human ovarian cancer cells: potentiation of the action of cytotoxic drugs. Eur J Cancer 2002; 38:177–183.

    Article  PubMed  CAS  Google Scholar 

  167. Singh TR, Shankar S, Chen X, et al. Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 2003; 63:5390–5400.

    PubMed  CAS  Google Scholar 

  168. Jiang X, Wang X. Cytochrome c-mediated apoptosis. Annu Rev Biochem 2004; 73:87–106.

    Article  PubMed  CAS  Google Scholar 

  169. Budihardjo I, Oliver H, Lutter M, etal. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15:269–290.

    Article  PubMed  CAS  Google Scholar 

  170. Korsmeyer SJ. BCL-2 gene family and the regulation of programmed cell death. Cancer Res 1999; 59:1693s–1700s.

    PubMed  CAS  Google Scholar 

  171. Srivastava RK, Srivastava AR, Korsmeyer SJ, etal. Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol 1998; 18:3509–3517.

    PubMed  CAS  Google Scholar 

  172. Haldar S, Basu A, Croce CM. Bcl2 is the guardian of microtubule integrity. Cancer Res 1997; 57:229–233.

    PubMed  CAS  Google Scholar 

  173. Fan W. Possible mechanisms of paclitaxel-induced apoptosis. Biochem Pharmacol 1999; 57:1215–1221.

    Article  PubMed  CAS  Google Scholar 

  174. Rodi DJ, Janes RW, Sanganee HJ, et al. Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 1999; 285:197–203.

    Article  PubMed  CAS  Google Scholar 

  175. Ibrado AM, Liu L, Bhalla K. Bcl-xL overexpression inhibits progression of molecular events leading to paclitaxel-induced apoptosis of human acute myeloid leukemia HL-60 cells. Cancer Res 1997; 57:1109–1115.

    PubMed  CAS  Google Scholar 

  176. Huang Y, Ibrado AM, Reed JC, et al. Co-expression of several molecular mechanisms of multidrug resistance and their significance for paclitaxel cytotoxicity in human AML HL-60 cells. Leukemia 1997; 11:253–257.

    Article  PubMed  CAS  Google Scholar 

  177. Ibrado AM, Kim CN, Bhalla K. Temporal relationship of CDK1 activation and mitotic arrest to cytosolic accumulation of cytochrome C and caspase-3 activity during Taxol-induced apoptosis of human AML HL-60 cells. Leukemia 1998; 12:1930–1936.

    Article  PubMed  CAS  Google Scholar 

  178. Huang Y, Ray S, Reed JC, et al. Estrogen increases intracellular p26Bcl-2 to p21 Bax ratios and inhibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res Treat 1997; 42:73–81.

    Article  PubMed  CAS  Google Scholar 

  179. Perkins C, Kim CN, Fang G, et al. Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel-or etoposide-treated HL-60 cells. Cancer Res 1998; 58:4561–566.

    PubMed  CAS  Google Scholar 

  180. Perkins CL, Fang G, Kim CN, et al. The role of Apaf-1, caspase-9, and bid proteins in etoposide-or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res 2000; 60:1645–16453.

    PubMed  CAS  Google Scholar 

  181. Deveraux QL, Reed JC.IAP family proteins-suppressors of apoptosis. Genes Dev 1999; 13:239–252.

    PubMed  CAS  Google Scholar 

  182. O’Connor DS, Wall NR, Porter AC, etal. Ap34(cdc2) survival checkpoint in cancer. Cancer Cell 2002; 2:43–54.

    Article  PubMed  CAS  Google Scholar 

  183. Wall NR, O’Connor DS, Plescia J, et al. Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res 2003; 63:230–235.

    PubMed  CAS  Google Scholar 

  184. Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998; 396:580–584.

    Article  PubMed  CAS  Google Scholar 

  185. Zaffaroni N, Daidone MG. Survivin expression and resistance to anticancer treatments: perspectives for new therapeutic interventions. Drug Resist Updat 2002; 5:65–72.

    Article  PubMed  CAS  Google Scholar 

  186. Zaffaroni N, Pennati M, Colella G, et al. Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol Life Sci 2002; 59:1406–1412.

    Article  PubMed  CAS  Google Scholar 

  187. Tamm I, Kornblau SM, Segall H, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000; 6:1796–1803.

    PubMed  CAS  Google Scholar 

  188. Schimmer AD, Welsh K, Pinilla C, et al. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 2004; 5:25–35.

    Article  PubMed  CAS  Google Scholar 

  189. Richmond A. NF-? B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2002; 2:664–674.

    Article  PubMed  CAS  Google Scholar 

  190. Ghosh S, May MJ, Kopp EB. NF-?B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16:225–260.

    Article  PubMed  CAS  Google Scholar 

  191. Karin M, Yamamoto Y, Wang QM. The IKK NF-? B system: a treasure trove for drug development. Nat Rev Drug Discov 2004; 3:17–26.

    Article  PubMed  CAS  Google Scholar 

  192. Karin M, Cao Y, Greten FR, et al. NF-?B in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2:301–310.

    Article  PubMed  CAS  Google Scholar 

  193. Arlt A, Schafer H. NF?B-dependent chemoresistance in solid tumors. Int J Clin Pharmacol Ther 2002; 40:336–347.

    PubMed  CAS  Google Scholar 

  194. Patel NM, Nozaki S, Shortle NH, et al. Paclitaxel sensitivity of breast cancer cells with constitutively active NF-?B is enhanced by I?B? super-repressor and parthenolide. Oncogene 2000; 19:4159–169.

    Article  PubMed  CAS  Google Scholar 

  195. Huang Y, Fan W. I?B kinase activation is involved in regulation of paclitaxel-induced apoptosis in human tumor cell lines. Mol Pharmacol 2002; 61:105–13.

    Article  PubMed  CAS  Google Scholar 

  196. Huang Y, Johnson KR, Norris JS, et al. Nuclear factor-?B/I?B signaling pathway may contribute to the mediation of paclitaxel-induced apoptosis in solid tumor cells. Cancer Res 2000; 60:4426–1432.

    PubMed  CAS  Google Scholar 

  197. Dong QG, Sclabas GM, Fujioka S, et al. The function of multiple I?B: NF-?B complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 2002; 21:6510–6519.

    Article  PubMed  CAS  Google Scholar 

  198. Samanta AK, Huang HJ, Bast RC Jr, et al. Overexpression of MEKK3 confers resistance to apoptosis through activation of NF? B. J Biol Chem 2004; 279:7576–7583.

    Article  CAS  Google Scholar 

  199. Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 1999; 248:44–57.

    Article  PubMed  CAS  Google Scholar 

  200. Lin MT, Chang CC, Chen ST, et al. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by amechanism of NF-?B-dependentXIAPup-regulation. J BiolChem 2004; 279:24,015–24,023.

    CAS  Google Scholar 

  201. Sampath D, Winneker RC, Zhang Z. Cyr61, a member of the CCN family, is required for MCF-7 cell proliferation: regulation by 17β-estradiol and overexpression in human breast cancer. Endocrinology 2001; 142:2540–2548.

    Article  PubMed  CAS  Google Scholar 

  202. Xie D, Nakachi K, Wang H, et al. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res 2001; 61:8917–8923.

    PubMed  CAS  Google Scholar 

  203. Luker KE, Pica CM, Schreiber RD, etal. Overexpression of IRF9 confers resistance to antimicrotubule agents in breast cancer cells. Cancer Res 2001; 61:6540–6547.

    PubMed  CAS  Google Scholar 

  204. Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 2001; 7:584–590.

    Article  PubMed  CAS  Google Scholar 

  205. Jee SH, Shen SC, Chiu HC, et al. Overexpression of interleukin-6 in human basal cell carcinoma cell lines increases anti-apoptotic activity and tumorigenic potency. Oncogene 2001; 20:198–208.

    Article  PubMed  CAS  Google Scholar 

  206. Li A, Dubey S, Varney ML, et al. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 2003; 170:3369–3376.

    PubMed  CAS  Google Scholar 

  207. Penson RT, Kronish K, Duan Z, et al. Cytokines IL-1β, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFa in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. Int J Gynecol Cancer 2000; 10:33–41.

    Article  PubMed  Google Scholar 

  208. Duan Z, Feller AJ, Penson RT, et al. Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res 1999; 5:3445–3453.

    PubMed  CAS  Google Scholar 

  209. Lamendola DE, Duan Z, Yusuf RZ, et al. Molecular description of evolving paclitaxel resistance in the SKOV-3 human ovarian carcinoma cell line. Cancer Res 2003; 63:2200–2205.

    PubMed  CAS  Google Scholar 

  210. Duan Z, Lamendola DE, Penson RT, et al. Overexpression of IL-6 but not IL-8 increases paclitaxel resistance of u-2os human osteosarcoma cells. Cytokine 2002; 17:234–242.

    Article  PubMed  CAS  Google Scholar 

  211. Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis. Oncogene 2000; 19:2474–2788.

    Article  PubMed  CAS  Google Scholar 

  212. Lee LF, Schuerer-Maly CC, Lofquist AK, et al. Taxol-dependent transcriptional activation of IL-8 expression in a subset of human ovarian cancer. Cancer Res 1996; 56:1303–1308.

    PubMed  CAS  Google Scholar 

  213. Zhou H, Kuang J, Zhong L, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998; 20:189–193.

    Article  PubMed  CAS  Google Scholar 

  214. Sen S, Zhou H, White RA. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 1997; 14:2195–2200.

    Article  PubMed  CAS  Google Scholar 

  215. Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001; 2:21–32.

    Article  PubMed  CAS  Google Scholar 

  216. Giet R, Prigent C. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J Cell Sci 1999; 112(Pt 21):3591–3601.

    PubMed  CAS  Google Scholar 

  217. Anand S, Penrhyn-Lowe S, Venkitaraman AR. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 2003; 3:51–62.

    Article  PubMed  CAS  Google Scholar 

  218. Sudo T, Nitta M, Saya H, et al. Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res 2004; 64:2502–2508.

    Article  PubMed  CAS  Google Scholar 

  219. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ulrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER2/neu oncogene. Science 1987; 235:177–182.

    Article  PubMed  CAS  Google Scholar 

  220. Moscatello DK, Montgomery RB, Sundareshan P, et al. Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 1996; 13:85–96.

    PubMed  CAS  Google Scholar 

  221. Montgomery RB, Guzsman J, O’Rourke DM, et al. Expression of oncogenic epidermal growth factor receptor family kinases induces paclitaxel resistance and alters β-tubulin isotype expression. J Biol Chem 2000; 275:17, 358–17,363.

    Google Scholar 

  222. Yu D, Liu B, Tan M, et al. Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1-independent mechanisms. Oncogene 1996; 13:1359–1365.

    PubMed  CAS  Google Scholar 

  223. Lee S, Yang W, Lan KH, et al. Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Res 2002; 62:5703–5710.

    PubMed  CAS  Google Scholar 

  224. Arteaga CL. ErbB-targeted therapeutic approaches in human cancer. Exp Cell Res 2003; 284:122–130.

    Article  PubMed  CAS  Google Scholar 

  225. Sulis ML, Parsons R. PTEN: from pathology to biology. Trends Cell Biol 2003; 13:478–483.

    Article  PubMed  CAS  Google Scholar 

  226. Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 2001; 20:4995–5004.

    Article  PubMed  CAS  Google Scholar 

  227. Li Q, Verma IM. NF-?B regulation in the immune system. Nat Rev Immunol 2002; 2:725–734.

    Article  PubMed  CAS  Google Scholar 

  228. Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003; 3:46–54.

    Article  PubMed  CAS  Google Scholar 

  229. Nyman DW, Campbell KJ, Hersh E, et al. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patiens with advanced nonhematologic malignancies. J Clin Oncol 2005; 23:7785–7793.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Greenberger, L.M., Sampath, D. (2006). Resistance To Taxanes. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics