Skip to main content

Characteristics of the Metastatic Phenotype

The Melanoma Experience

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1610 Accesses

Abstract

Malignant progression and tumor metastasis is a complex process enabled by various molecular changes occurring in a subpopulation of tumor cells. The metastatic phenotype is associated with the cellular capacity for uncontrolled growth, resistance to apoptosis, high invasive potential, and effective neoangiogenesis. Whereas the contribution of genetic alterations to the metastatic dissemination is not yet clear, because both primary and metastatic tumors often have similar patterns of genetic mutations, the majority of the changes contributing to the metastatic phenotype are controlled epige-netically. In melanoma, the progression toward malignant disease and acquisition of the metastatic phenotype involves loss of activator protein 2 and gain in expression of activating transcription factor 1/cyclic adenosine monophosphate-responsive element-binding protein family transcription factors. Together with upregulation of activating transcription factor 2, Snail, nuclear factor-?B and other transcription factors, this results in deregulation of the expression of cellular adhesion molecules, matrix-degrading enzymes, as well as other factors that enable a complex interaction of tumor cells with extracellular milieu and other cells during malignant progression and metastatic dissemination. Furthermore, because of the need to survive mechanical and immunological challenges, and changing nutritional environment during the dissemination process, metastatic cells are permanently selected for the superior survival capacity. As a result, metastatic cells are commonly characterized by their increased resistance to the chemotherapeutic treatment when compared to primary tumors. Here, we discuss some of the potential mechanisms contributing to drug resistance in melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hendrix MJ, Seftor RE, et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res 2002; 62:6658.

    Google Scholar 

  2. Eshel R, Neumark E, Sagi-Assif O, Witz IP. Receptors involved in microenvironment-driven molecular evolution of cancer cells. Semin Cancer Biol 2002; 12:139–147.

    Article  PubMed  CAS  Google Scholar 

  3. deBraud F, Khayat D, Kroon BB, Valdagni R, Bruzzi P, Cascinelli N. Malignant melanoma.CritRev Oncol Hematol 2003; 47:35–63.

    Article  Google Scholar 

  4. Fountain JW, Bale SJ, Housman DE and Dracopoli NC. Genetics of melanoma. Cancer Surv 1990; 9:645–671.

    PubMed  CAS  Google Scholar 

  5. Flores JF, Walker GJ, Glendening JM, et al. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res 1996; 56:5023–5032.

    PubMed  CAS  Google Scholar 

  6. Piccinin S, Doglioni C, Maestro R, et al.p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression. Clin Lab Med 1997; 20:667–690.

    Google Scholar 

  7. Halushka FG and Hodi FS. Molecular genetics of familial cutaneous melanoma. J Clin Oncol 1998; 16:670–682.

    Google Scholar 

  8. Monzon J, Liu L, Brill H, Goldstein AM, et al. CDKN2A mutations in multiple primary melanomas. N Engl J Med 1998; 338:879–887.

    Article  PubMed  CAS  Google Scholar 

  9. Gruis NA, van der Velden PA, Bergman W and Frants RR. Familial melanoma; CDKN2A and beyond. J Investig Dermatol Symp Proc 1999; 4:50–54.

    Article  PubMed  CAS  Google Scholar 

  10. Bishop DT, Demenais F, Goldstein AM, Bergman W, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 2002; 94:894–903.

    PubMed  CAS  Google Scholar 

  11. Ghiorzo P, Villaggio B, Sementa AR, et al. Expression and localization of mutant p16 proteins in melanocytic lesions from familial melanoma patients. Hum Pathol 2004; 35:25–33.

    Article  PubMed  CAS  Google Scholar 

  12. Talve L, Sauroja I, Collan Y, Punnonen K, EkforsT.Lossof expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int J Cancer 1997; 74:255–259.

    Article  PubMed  CAS  Google Scholar 

  13. Pollock PM, Welch J, Hayward NK. Evidence for three tumor suppressor loci on chromosome 9p involved in melanoma development. Cancer Res 2001; 61:1154–1161.

    PubMed  CAS  Google Scholar 

  14. Cachia AR, Indsto JO, McLaren KM, Mann GJ, Arends MJ. CDKN2A mutation and deletion status in thin and thick primary melanoma. Clin Cancer Res 2000; 6:3511–3515.

    PubMed  CAS  Google Scholar 

  15. Straume O, Sviland L and Akslen LA. Loss of nuclear p1 6 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin Cancer Res 2000; 6:1845–1853.

    PubMed  CAS  Google Scholar 

  16. Vuhahula E, Straume O and Akslen LA Frequent loss of p1 6 protein expression and high-proliferative activity (Ki-67) in malignant melanoma from black Africans. Anticancer Res 2000; 20:4857–4862.

    PubMed  CAS  Google Scholar 

  17. Pavey SJ, Cummings MC, Whiteman DC, et al. Loss of p16 expression is associated with histological features of melanoma invasion. Melanoma Res 2000; 12:539–547.

    Article  Google Scholar 

  18. Chang TG, Wang J, Chen LW, et al. Loss of expression of the p16 gene is frequent in malignant skin tumors. Biochem Biophys Res Commun 1997; 230:85–88.

    Article  PubMed  CAS  Google Scholar 

  19. Palmieri G, Cossu A, Ascierto PA, et al. Melanoma Cooperative Group. Definition of the role of chromosome 9p21 in sporadic melanoma through genetic analysis of primary tumours and their metas-tases, Br. J. Cancer 2000; 83:1707–1714.

    Article  PubMed  CAS  Google Scholar 

  20. Harris CC. p53: at the crossroads of molecular carcinogenesis and risk assessment. Science 1993; 262:1980–1981.

    Article  PubMed  CAS  Google Scholar 

  21. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10:1054–1072.

    Article  PubMed  CAS  Google Scholar 

  22. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88:323–31.

    Article  PubMed  CAS  Google Scholar 

  23. Volkenandt M, Schlegel U, Nanus DM and Albino AP. Mutational analysis of the human p53 gene in malignant melanoma. Pigment Cell Res 1991; 4:35–40.

    Article  PubMed  CAS  Google Scholar 

  24. Weiss J, Schwechheimer K, Cavenee WK, Herlyn M and Arden KC. Mutation and expression of the p53 gene in malignant melanoma cell lines. Int J Cancer 1993; 54(4):693–699.

    Article  PubMed  CAS  Google Scholar 

  25. Albino AP, Vidal MJ, McNutt NS, et a. Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res 1994; 4:35–45.

    Article  PubMed  CAS  Google Scholar 

  26. Lubbe J, Reichel M, Burg G, Kleihues P. Absence of p53 gene mutations in cutaneous melanoma. J Invest Dermatol 1994; 102:819–821.

    Article  PubMed  CAS  Google Scholar 

  27. Papp T, Jafari M, Schiffmann D. Lack of p53 mutations and loss of heterozygosity in non-cultured human melanocytic lesions. J Cancer Res Clin Oncol 1996; 122:541–548.

    Article  PubMed  CAS  Google Scholar 

  28. Sparrow LE, Soong R, Dawkins HJ, Iacopetta BJ, Heenan PJ. p53 gene mutation and expression in naevi and melanomas. Melanoma Res 1995; 5:93–100.

    Article  PubMed  CAS  Google Scholar 

  29. Hartmann A, Blaszyk H, Cunningham JS, et al. Overexpression and mutations of p53 in metastatic malignant melanomas. Int J Cancer 1996; 67:313–317.

    Article  PubMed  CAS  Google Scholar 

  30. M. Daniotti M, Oggionni T, Ranzani V, et al. BR AF alterations are associated with complex mutational profiles in malignant melanoma. Oncogene 2004; 23:5968–5977.

    Article  CAS  Google Scholar 

  31. Davies H, Bignell GR, Cox C, Stephens P, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417:949–954.

    Article  PubMed  CAS  Google Scholar 

  32. Brose MS, Volpe P, Feldman M, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 2002; 62:6997–7000.

    PubMed  CAS  Google Scholar 

  33. Cohen Y, Xing M, Mambo E, etal. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003; 95:625–627.

    PubMed  CAS  Google Scholar 

  34. Dong J, Phelps RG, Qiao R, et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 2003; 63:3883–3885.

    PubMed  CAS  Google Scholar 

  35. Gorden A, Osman I, Gai W, et al. Analysis of BRAF and N-RAS mutations in metastatic melanoma tissues. Cancer Res 2003; 63:3955–3957.

    PubMed  CAS  Google Scholar 

  36. Pollock PM, Pearson JV, Hayward NK. Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosomes Cancer 1996; 15:77–88.

    Article  PubMed  CAS  Google Scholar 

  37. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002; 418:934.

    Article  PubMed  CAS  Google Scholar 

  38. Weber A, Langhanki L, Sommerer F, Markwarth A, Wittekind C, Tannapfel A. Mutations of the BRAF gene in squamous cell carcinoma of the head and neck. Oncogene 2003; 22:4757–4759.

    Article  PubMed  CAS  Google Scholar 

  39. Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 2003; 63:4561–4567.

    PubMed  CAS  Google Scholar 

  40. Mercer KE, Pritchard CA. Raf proteins and cancer: B-Raf is identified as amutational target. Biochim Biophys Acta 2000; 1653:25–40.

    Google Scholar 

  41. Lenormand P, Sardet C, Pages G, L’allemain G, Brunet A, Pouyssegur J. Growth factors induce nuclear translocation of MAP kinase (p42MAPK and p44MAPK) but not their activator MAP kinase kinase (p45MAPKK) in fibroblasts. J Cell Biol 1993; 122:1079–1088.

    Article  PubMed  CAS  Google Scholar 

  42. Treisman R. Ternary complex factors: growth factor regulated transcriptional activators. Curr Opin Genet Dev 1994; 4:96–101.

    Article  PubMed  CAS  Google Scholar 

  43. Pages G, Lenormand P, L’Allemain G, Chambard JC, Meloche S, Pouyssegur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 1993; 90:8319–8323.

    Article  PubMed  CAS  Google Scholar 

  44. Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 2001; 3:950–957.

    Article  PubMed  CAS  Google Scholar 

  45. Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G, Herlyn M. Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer 1994; 56:853–857.

    Article  PubMed  CAS  Google Scholar 

  46. Lazar-Molnar E, Hegyesi H, Toth S, Falus A. Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 2000; 12:547–54.

    Article  PubMed  CAS  Google Scholar 

  47. Nesbit M, Nesbit HKE, Bennett J,etal. Basic fibroblast growth factor induces a transformed pheno type in normal human melanocytes. Oncogene 1999; 18:6469–6476.

    Article  PubMed  CAS  Google Scholar 

  48. Satyamoorthy K, Li G, Vaidya B, Patel D, Herlyn M. Insulin-like growth factor-1 induces survival and growth of biologically early melanoma cells through both the mitogen-activated protein kinase and ?-catenin pathways. Cancer Res 2001; 61:7318–7324.

    PubMed  CAS  Google Scholar 

  49. Albino AP, Nanus DM, Mentle IR, et al. Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 1989; 4:1363–1374.

    PubMed  CAS  Google Scholar 

  50. van’t Veer LJ, Burgering BM, Versteeg R, et al. N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol Cell Biol 1989; 9:3114–3116.

    Google Scholar 

  51. Jafari M, Papp T, Kirchner S, et al. Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J Cancer Res Clin Oncol 1995;121:23–30.

    Article  PubMed  CAS  Google Scholar 

  52. Omholt K, Karsberg S, Platz A, Kanter L, Ringborg U, Hanson J. Screening of N-ras codon 61 mutations in paired primary and metastatic cutaneous melanomas: mutations occur early and persist throughout tumor progression. Clin Cancer Res 2002; 8:3468–3474.

    PubMed  CAS  Google Scholar 

  53. Omholt K, Platz A, Kanter L, Ringborg U, Hansson J. NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res 2003; 9:6483–6488.

    PubMed  CAS  Google Scholar 

  54. Houben R, Becker JC, Kappel A, et al. Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. J Carcinog 2000; 3:6.

    Article  Google Scholar 

  55. Wu H, Goel V and Haluska FG. PTEN signaling pathways in melanoma. Oncogene 2003; 20:3113–3122.

    Article  CAS  Google Scholar 

  56. Rodolfo M, Daniotti M, Vallacchi V. Genetic progression of metastatic melanoma. Cancer Lett 2004; 214:133–147.

    Article  PubMed  CAS  Google Scholar 

  57. Dhawan P, Singh AB, Ellis DL, Richmond A. Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-?B and tumor progression. Cancer Res 2002; 62:7335–7342.

    PubMed  CAS  Google Scholar 

  58. Vleminckx K, Kemler R. Cadherins and tissue formation: integrating adhesion and signaling. Bioessays 1999; 21:211–220.

    Article  PubMed  CAS  Google Scholar 

  59. Guilford P. E-cadherin downregulation in cancer: fuel on the fire? Mol Med Today 1999; 5:172–177.

    Article  PubMed  CAS  Google Scholar 

  60. Timar J, Csuka O, Orosz Z, Jeney A, Kopper L. Molecular pathology of tumor metastasis. I. Predictive pathology. Pathol Oncol Res 2001; 7:217–230.

    Article  PubMed  CAS  Google Scholar 

  61. Shih IM, Elder DE, Hsu MY, Herlyn M. Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. Am J Pathol 1994; 145:837–845.

    PubMed  CAS  Google Scholar 

  62. Valyi-Nagy IT, Hirka G, Jensen PJ, Shih IM, Juhasz I, Herlyn M. Undifferentiated keratinocytes control growth, morphology, and antigen expression of normal melanocytes through cell-cell contact. Lab Invest. 1993; 69:152–159.

    PubMed  CAS  Google Scholar 

  63. Danen EH, de Vries TJ, Morandini R, Ghanem GG, Ruiter DJ, van Muijen GN. E-cadherin expression in human melanoma. Melanoma Res 1996; 6:127–131.

    Article  PubMed  CAS  Google Scholar 

  64. Hsu MY, Wheelock MJ, Johnson KR, Herlyn M. Shifts in cadherin profiles between human normal melanocytes and melanomas. J Investig Dermatol Symp Proc 1996; 1:188–194.

    PubMed  CAS  Google Scholar 

  65. Hsu MY, Meier FE, Nesbit M, et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol 2000; 156:1515–1525.

    PubMed  CAS  Google Scholar 

  66. Mortarini R, Anichini A. From adhesion to signalling: roles of integrins in the biology of human melanoma. Melanoma Res 1993; 3:87–97.

    Article  PubMed  CAS  Google Scholar 

  67. Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK. Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 2001; 276:24,661–24,666.

    Article  PubMed  CAS  Google Scholar 

  68. Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7:1267–1278.

    Article  PubMed  CAS  Google Scholar 

  69. Jean D, Gershenwald JE, Huang S, et al. Loss of AP-2 results in up-regulation of MCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. J Biol Chem 1998; 273:16,501–16,508.

    Article  PubMed  CAS  Google Scholar 

  70. Huang S, Jean D, Luca M, Tainsky MA, Bar-Eli M. Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. EMBO J 1998; 17:4358–4369.

    Article  PubMed  CAS  Google Scholar 

  71. Gershenwald JE, Sumner W, Calderone T, Wang Z, Huang S, Bar-Eli M. Dominant-negative transcription factor AP-2 augments SB-2 melanoma tumor growth in vivo. Oncogene 2001; 20:3363–3375.

    Article  PubMed  CAS  Google Scholar 

  72. Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest B A. E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci 1994; 107:983–992.

    PubMed  CAS  Google Scholar 

  73. Li G, S aty amoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res 2001; 61:3819–3825.

    PubMed  CAS  Google Scholar 

  74. Sandig M, Voura EB, Kalnins VI, Siu CH. Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motil Cytoskeleton 1997; 38:351–364.

    Article  PubMed  CAS  Google Scholar 

  75. Voura EB, Sandig M, Siu CH. Cell-cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 1998; 43:265–275.

    Article  PubMed  CAS  Google Scholar 

  76. Juliano RL, Varner JA. Adhesion molecules in cancer: the role of integrins. Curr Opin Cell Biol 1993; 5:812–818.

    Article  PubMed  CAS  Google Scholar 

  77. Danen EH, Van Muijen GN, RuiterD J. Role of integrins as signal transducing cell adhesion molecules in human cutaneous melanoma. Cancer Surv 1995; 24:43–65.

    PubMed  CAS  Google Scholar 

  78. Mortarini R, Anichini A. From adhesion to signalling: roles of integrins in the biology of human melanoma. Melanoma Res 1993; 3:87–97.

    Article  PubMed  CAS  Google Scholar 

  79. Seftor RE, Seftor EA, Hendrix MJ. Molecular role(s) for integrins in human melanoma invasion. Cancer Metastasis Rev 1999; 18:359–375.

    Article  PubMed  CAS  Google Scholar 

  80. Johnson JP. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev 1999; 18:345–357.

    Article  PubMed  CAS  Google Scholar 

  81. Albelda SM, Mette S A, Elder DE, Stewart R, Damjanovich L, Herlyn M, et al. Integrin distribution in malignant melanoma: association of the ? 3 subunit with tumor progression. Cancer Res 1990; 50:6757–6764.

    PubMed  CAS  Google Scholar 

  82. Danen EH, Jansen KF, Van Kraats AA, Cornelissen IM, Ruiter DJ, Van Muijen GN. Alpha v-integrins in human melanoma: gain of ? v ? 3 and loss of ? v ? 5 are related to tumor progression in situ but not to metastatic capacity of cell lines in nude mice. Int J Cancer 1995; 61:491–496.

    Article  PubMed  CAS  Google Scholar 

  83. Natali PG, Hamby CV, Felding-Habermann B, et al. Clinical significance of ?(v)?3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 1997; 57:1554–1160.

    PubMed  CAS  Google Scholar 

  84. Schadendorf D, Gawlik C, Haney U, Ostmeier H, Suter L, Czarnetzki BM. Tumour progression and metastatic behaviour in vivo correlates with integrin expression on melanocytic tumours. J Pathol 1993; 170:429–434.

    Article  PubMed  CAS  Google Scholar 

  85. Brooks PC, Stromblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v ? 3.Cell 1996; 85:683–693.

    Article  PubMed  CAS  Google Scholar 

  86. Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH. Involvement of integrin alpha(v)?(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 2001; 12:2699–2710.

    PubMed  CAS  Google Scholar 

  87. Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmuller G, Johnson JP. Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res 1987; 47:841–845.

    PubMed  CAS  Google Scholar 

  88. Shih IM, Wang TL, Westra WH. Diagnostic and biological implications of mel-CAM expression in mesenchymal neoplasms. Clin Cancer Res 1996; 2:569–75.

    PubMed  CAS  Google Scholar 

  89. Shih IM, Elder DE, Speicher D, Johnson JP, Herlyn M. Isolation and functional characterization of the A32 melanoma-associated antigen. Cancer Res 1994; 54:2514–20.

    PubMed  CAS  Google Scholar 

  90. Johnson JP, Bar-Eli M, Jansen B, Markhof E. Melanoma progression-associated glycoprotein MUC18/ MC AM mediates homotypic cell adhesion through interaction with a heterophilic ligand. Int J Cancer 1997; 73:769–774.

    Article  PubMed  CAS  Google Scholar 

  91. Shih LM, Hsu MY, Palazzo JP, Herlyn M. The cell-cell adhesion receptor Mel-CAM acts as a tumor suppressor in breast carcinoma. Am J Pathol 1997; 151:745–751.

    PubMed  CAS  Google Scholar 

  92. Luca M, Hunt B, Bucana CD, Johnson JP, Fidler IJ, Bar-Eli M. Direct correlation between MUC18 expression and metastatic potential of human melanoma cells. Melanoma Res 1993; 3:35–41.

    Article  PubMed  CAS  Google Scholar 

  93. Holzmann B, Brocker EB, Lehmann JM, et al. Tumor progression in human malignant melanoma: five stages defined by their antigenic phenotypes. Int J Cancer 1987; 39:466–471.

    Article  PubMed  CAS  Google Scholar 

  94. Kraus A, Masat L, Johnson JP. Analysis of the expression of intercellular adhesion molecule-1 and MUC 18 on benign and malignant melanocytic lesions using monoclonal antibodies directed against distinct epitopes and recognizing denatured, non-glycosylated antigen. Melanoma Res 1997; 7(Suppl 2):S75–S81.

    PubMed  CAS  Google Scholar 

  95. Shih IM, Elder DE, Hsu MY, Herlyn M. Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. Am J Pathol 1994; 145:837–845.

    PubMed  CAS  Google Scholar 

  96. Xie S, Luca M, Huang S, Gutman M, Reich R, Johnson JP, Bar-Eli M. Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res 1997; 57:2295–2303.

    PubMed  CAS  Google Scholar 

  97. Mills L, Tellez C, Huang S, et al. Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma. Cancer Res 2002; 62:5106–5114.

    PubMed  CAS  Google Scholar 

  98. Even-Ram S, Uziely B, Cohen P, et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 1998; 4:909–914.

    Article  PubMed  CAS  Google Scholar 

  99. Nierodzik ML, Chen K, Takeshita K, et al. Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood, 1998; 92:3694–3700.

    PubMed  CAS  Google Scholar 

  100. Henrikson KP, Salazar SL, Fenton JW II, Pentecost BT. Role of thrombin receptor in breast cancer invasiveness. Br J Cancer 1998; 79:401–416.

    Article  CAS  Google Scholar 

  101. Telez C, Bar-Eli M. Role and regulation of the thrombin receptor (PAR-1) in human melanoma. Oncogene 2003; 22:3130–3137.

    Article  CAS  Google Scholar 

  102. Wojtukiewicz MZ, Tang DG, Ben-Josef E, Renaud C, Walz DA, Honn KV. Solid tumor cells express functional “tethered ligand” thrombin receptor. Cancer Res 1995; 55:698–704.

    PubMed  CAS  Google Scholar 

  103. Kaufmann R, Schafberg H, Rudroff C, Nowak G. Thrombin receptor activation results in calcium signaling and protein kinase C-dependent stimulation of DNA synthesis in HEp-2g laryngeal carcinoma cells. Cancer 1997; 80:2068–2074.

    Article  PubMed  CAS  Google Scholar 

  104. Rudroff C, Schafberg H, Nowak G, Weinel R, Scheele J, Kaufmann R. Characterization of functional thrombin receptors in human pancreatic tumor cells (MIA PACA-2). Pancreas 1998; 16:189–194.

    Article  PubMed  CAS  Google Scholar 

  105. Liu Y, Gilcrease MZ, Henderson Y, Yuan XH, Clayman GL, Chen Z. Expression of protease-activated receptor 1 in oral squamous cell carcinoma. Cancer Lett 2001; 169:173–180.

    Article  PubMed  CAS  Google Scholar 

  106. Zacharski LR, Memoli VA, Morain WD, Schlaeppi JM, Rousseau SM. Cellular localization of enzymati-cally active thrombin in intact human tissues by hirudin binding. Thromb. Haemost 1995; 73:793–797.

    PubMed  CAS  Google Scholar 

  107. Ornstein DL and Zacharski LR. Treatment of cancer with anticoagulants: rationale in the treatment of melanoma. Int J Hematol 2001; 73:157–161.

    Article  PubMed  CAS  Google Scholar 

  108. Nierodzik ML, Chen K, Takeshita K, et al. Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood 1998; 92:3694–3700.

    PubMed  CAS  Google Scholar 

  109. Grand RJ, Turnell AS, Grabham PW. Cellular consequences of thrombin-receptor activation. Biochem J 1996; 313:353–368.

    PubMed  CAS  Google Scholar 

  110. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. Proteinase-activated receptors. Pharmacol Rev 2001; 53:245–282.

    PubMed  CAS  Google Scholar 

  111. Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the ?v?3 integrin, osteopontin, and thrombin. Am J Pathol 1996; 149:293–305.

    PubMed  CAS  Google Scholar 

  112. Even-Ram SC, Maoz M, Pokroy E, et al. Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the ? v? 5 integrin. J Biol Chem 2001; 276:10,952–10,962.

    Article  PubMed  CAS  Google Scholar 

  113. Zucker S, Conner C, DiMassmo BI, et al. Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physio logic regulation of angiogenesis.JBiolChem 1995; 270:23,730–23,738.

    CAS  Google Scholar 

  114. Yoshida E, Verrusio EN, Mihara H, Oh D, Kwaan HC. Enhancement of the expression of urokinase-type plasminogen activator from PC-3 human prostate cancer cells by thrombin. Cancer Res 1994; 54:3300–3304.

    PubMed  CAS  Google Scholar 

  115. Shimizu S, Gabazza EC, Hayashi T, Ido M, Adachi Y, Suzuki K. Thrombin stimulates the expression of PDGF in lung epithelial cells. Am J Physiol 2000; 279:L503–L510.

    CAS  Google Scholar 

  116. Ueno A, Murakami K, Yamanouchi K, Watanabe M, Kondo T. Thrombin stimulates production of interleukin-8 in human umbilical vein endothelial cells. Immunology 1996; 88:76–81.

    Article  PubMed  CAS  Google Scholar 

  117. Huang YQ, Li JJ, Hu L, Lee M, Karpatkin S. Thrombin induces increased expression and secretion of VEGF from human FS4 fibroblasts, DU145 prostate cells and CHRF megakaryocytes. Thromb Haemost 2001; 86:1094–1098.

    PubMed  CAS  Google Scholar 

  118. Cucina A, Borrelli V, Di Carlo A, et al. Thrombin induces production of growth factors from aortic smooth muscle cells. J Surg Res 1999: 82;61–66.

    Article  PubMed  CAS  Google Scholar 

  119. Duffy MJ: Proteases as prognostic markers in cancer. Clin Cancer Res 1996; 2:613–618.

    PubMed  CAS  Google Scholar 

  120. Meyer T, Hart IR: Mechanisms of tumour metastasis. Eur J Cancer 1998; 34:214–221.

    Article  PubMed  CAS  Google Scholar 

  121. Sloane BF, Moin K, Krepela E, et al. Cathepsin B and its endogenous inhibitors: the role in tumor malignancy. Cancer Metastasis Rev 1990; 9:333–352.

    Article  PubMed  CAS  Google Scholar 

  122. Gershenwald JE, Sumner W, Calderone T, Wang Z, Huang S, Bar-Eli M. Dominant-negative transcription factor AP-2 augments SB-2 melanoma tumor growth in vivo. Oncogene 2001; 20:3363–3375.

    Article  PubMed  CAS  Google Scholar 

  123. Silletti S, Paku S, Raz A. Tumor cell motility and metastasis. Autocrine motility factor as an example of ecto/exoenzyme cytokines. Pathol Oncol Res 1997;3:230–254.

    CAS  PubMed  Google Scholar 

  124. Ma PC, Maulik G, Christensen J, Salgia R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 2003; 22:309–325.

    Article  PubMed  CAS  Google Scholar 

  125. Patgens AJG, Lubsen NH, van Altena MC, Schoenmakers JGG, Ruiter DJ, de Waal RMW. Vascular permeability factor expression influences tumor angiogenesis in human melanoma lines xenografted to nude mice. Am J Pathol 1995; 146:197–209.

    Google Scholar 

  126. Oku T, Tjuvajev JG, Miyagawa T, et al. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res 1998; 58:4185–4192.

    PubMed  CAS  Google Scholar 

  127. Claffey KP, Brown LF, del Aguila LF, et al. Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastases. Cancer Res 1996; 56:172–181.

    PubMed  CAS  Google Scholar 

  128. Rofstad EK, Danielsen T. Hypoxia-induced angiogenesis and vascular endothelial growth factor secretion in human melanoma. Br J Cancer 1998; 77:897–902.

    PubMed  CAS  Google Scholar 

  129. Singh RK, Gutman M, Radinsky R, Bucana CD, Fidler IJ. Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res, 1994; 54:3242–3247.

    PubMed  CAS  Google Scholar 

  130. Luca M, Huang S, Gershenwald JE, Sing RK, Reich R, Bar-Eli M. Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastases. Am J Pathol 1997; 151:1105–1113.

    PubMed  CAS  Google Scholar 

  131. Kunz M, Hartmann A, Flory E, et al. Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma. Am J Pathol 1999; 155:753–763.

    PubMed  CAS  Google Scholar 

  132. Leyva A, Appel H, Kraal I, Pinedo HM. Differential metabolism of thymidine in human lymphoid and melanoma cells in vitro. Anticancer Res 1984; 4:173–178.

    PubMed  CAS  Google Scholar 

  133. Asgari MM, Haggerty JG, McNiff JM, Milstone LM, Schwartz PM. Expression and localization of thymidine phosphorylase/platelet-derived endothelial cell growth factor in skin and cutaneous tumors. J Cutan Pathol 1999; 26:287–294.

    Article  PubMed  CAS  Google Scholar 

  134. Halaban R, Kwon BS, Ghosh S, Delli Bovi P, Baird A. bFGF as an autocrine growth factor for human melanoma. Oncogene Res 1988; 3:177–186.

    PubMed  CAS  Google Scholar 

  135. Becker D, Meier CB, Herlyn M. Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J 1989; 8:3685–3691.

    PubMed  CAS  Google Scholar 

  136. Wang Y, Becker D. Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med 1997; 3:887–893.

    Article  PubMed  CAS  Google Scholar 

  137. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146:1029–1039.

    PubMed  CAS  Google Scholar 

  138. Ferrara N. Vascular endothelial growth factor. Eur J Cancer 1996; 32A:2413–2422.

    Article  PubMed  CAS  Google Scholar 

  139. Griffiths L, Stratford IJ. Platelet-derived endothelial cell growth factor thymidine phosphorylase in tumour growth and response to therapy. Br J Cancer 1997; 76:689–693.

    PubMed  CAS  Google Scholar 

  140. Slavin J. Fibroblast growth factors: at the heart of angiogenesis. Cell Biol Int 1995; 19:431–444.

    Article  PubMed  CAS  Google Scholar 

  141. Ellis LM, Fidler IJ. Angiogenesis and metastasis. Eur J Cancer 1996; 32:2451–2460.

    Article  Google Scholar 

  142. Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. EndocrRev 1997; 18:26–45.

    Article  CAS  Google Scholar 

  143. Koch AE, Polverini PJ, Kunkel SL, et al. Interleukin-8 as a macrophage derived mediator of angiogenesis. Science 1992; 258:1798–1801.

    Article  PubMed  CAS  Google Scholar 

  144. Bar-Eli M. Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology 1999; 67:12–18.

    Article  PubMed  CAS  Google Scholar 

  145. Schadendorf D, Moller A, Algermissen B, Worm M, Sticherling M, Czarnetzki BM. 1993.IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol 1993; 151:2667–2675.

    PubMed  CAS  Google Scholar 

  146. Smith DR, Polverini PJ, Kunkel SL, et al. Inhibition of interleukin 8 attenuates angiogenesis in bron-chogenic carcinoma. J Exp Med 1994; 179:1409–1415.

    Article  PubMed  CAS  Google Scholar 

  147. Westphal JR, Van’t Hullenaar R, Peek R, et al. Angiogenic balance in human melanoma: Expression of VEGF, bFGF, IL-8, PDGF, and angiostatin in relation to vascular density of xenografts in vivo. Int J Cancer 2000; 86:768–776.

    Article  PubMed  CAS  Google Scholar 

  148. Luca M, Huang S, Gershenwald JE, Singh RK, Reich R, Bar-Eli M. Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol 1997; 151:1105–1113.

    PubMed  CAS  Google Scholar 

  149. Yoshida S, Ono M, Shono T, et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor ?-dependent angiogenesis. Mol Cell Biol 1997; 17:4015–4023.

    PubMed  CAS  Google Scholar 

  150. Huang S, Mills L, Mian B, et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 2002; 161:125–134.

    PubMed  CAS  Google Scholar 

  151. Jean D, Bar-Eli M. Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. Mol Cell Biochem 2000; 212:19–28.

    Article  PubMed  CAS  Google Scholar 

  152. Nyormoi O, Bar-Eli M. Transcriptional regulation of metastasis-related genes in human melanoma. Clin Exp Metastasis 2003; 20:251–263.

    Article  PubMed  CAS  Google Scholar 

  153. Ronai Z, Yang YM, Fuchs SY, Adler V, Sardana M, Herlyn M. ATF2 confers radiation resistance to human melanoma cells. Oncogene 1998; 16:523–531.

    Article  PubMed  CAS  Google Scholar 

  154. Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2:84–89.

    Article  PubMed  CAS  Google Scholar 

  155. Huang S, DeGuzman A, Bucana CD, Fidler IJ. Level of interleukin-8 expression by metastatic human melanoma cells directly correlates with constitutive NF-?B activity. Cytokines Cell Mol Ther 2000; 6:9–17.

    Article  PubMed  CAS  Google Scholar 

  156. Cowley GP, Smith ME. Cadherin expression in melanocytic naevi and malignant melanomas. J Pathol 1996; 179:183–187.

    Article  PubMed  CAS  Google Scholar 

  157. Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CS, Fisher PB. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci USA 1996; 93:9160–9165.

    Article  PubMed  CAS  Google Scholar 

  158. Natali PG, Nicotra MR, Digiesi G, et al. Expression of gp185HER-2 in human cutaneous melanoma: implications for experimental immunotherapeutics. Int J Cancer 1994; 56:341–346.

    Article  PubMed  CAS  Google Scholar 

  159. Descheemaeker KA, Wyns S, Nelles L, Auwerx J, Ny T, Collen D. Interaction of AP-1-, AP-2-, and Sp1-like proteins with two distinct sites in the upstream regulatory region of the plasminogen activator inhibitor-1 gene mediates the phorbol 12-myristate 13-acetate response. J Biol Chem 1992; 267:15,086–15,091.

    PubMed  CAS  Google Scholar 

  160. van den Oord JJ, Vandeghinste N, De Ley M, De Wolf-Peeters C. Bcl-2 expression in human melano-cytes and melanocytic tumors. Am J Pathol 1994; 145:294–300.

    PubMed  Google Scholar 

  161. Gille J, Swerlick RA, Caughman SW. Transforming growth factor-?-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation. EMBO J 1997; 16:750–759.

    Article  PubMed  CAS  Google Scholar 

  162. Silins G, Grimmond S, Egerton M, Hayward N. Analysis of the promoter region of the human VEGF-related factor gene. Biochem Biophys Res Commun 1997; 230:413–418.

    Article  PubMed  CAS  Google Scholar 

  163. Werner H, Stannard B, Bach MA, LeRoith D, Roberts CT Jr. Cloning and characterization of the proximal promoterregion of the rat insulin-like growth factor I (IGF-I) receptor gene. Biochem Biophys Res Commun 1990; 169:1021–1027.

    Article  PubMed  CAS  Google Scholar 

  164. Xie S, Price JE, Luca M, Jean D, Ronai Z, Bar-Eli M. Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene 1997; 15:2069–2075.

    Article  PubMed  CAS  Google Scholar 

  165. Jean D, Harbison M, McConkey DJ, Ronai Z, Bar-Eli M. CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 1998; 273:24884–90.

    Article  PubMed  CAS  Google Scholar 

  166. Jean D, Tellez C, Huang S, et al. Inhibition of tumor growth and metastasis of human melanoma by intracellular anti-ATF-1 single chain Fv fragment. Oncogene 2000; 19:2721–2730.

    Article  PubMed  CAS  Google Scholar 

  167. Medrano EE, Farooqui JZ, Boissy RE, Boissy YL, Akadiri B, Nordlund JJ. Chronic growth stimulation of human adult melanocytes by inflammatory mediators in vitro: implications for nevus formation and initial steps in melanocyte oncogenesis. Proc Natl Acad Sci USA 1993; 90:1790–1794.

    Article  PubMed  CAS  Google Scholar 

  168. Recio JA, Merlino G. Hepatocyte growth factor/scatter factor induces feedback up-regulation of CD44v6 in melanoma cells through Egr-1. Cancer Res 2003; 63:1576–1582.

    PubMed  CAS  Google Scholar 

  169. Kim SJ, Wagner S, Liu F, O’Reilly MA, Robbins PD, Green MR. Retinoblastoma gene product activates expression of the human TGF-? 2 gene through transcription factor ATF-2. Nature 1992; 358:331–334.

    Article  PubMed  CAS  Google Scholar 

  170. Gupta S, Campbell D, Derijard B, Davis RJ. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 1995; 267:389–393.

    Article  PubMed  CAS  Google Scholar 

  171. Kaszubska W, Hooft van Huijsduijnen R, Ghersa P, et al. Cyclic AMP-independent ATF family members interact with NF-? B and function in the activation of the E-selectin promoter in response to cytokines. Mol Cell Biol 1993; 13:7180–7190.

    PubMed  CAS  Google Scholar 

  172. Shimizu M, Nomura Y, Suzuki H, et al. Activation of the rat cyclin A promoter by ATF2 and Jun family members and its suppression by ATF4. Exp Cell Res 1998; 239:93–103.

    Article  PubMed  CAS  Google Scholar 

  173. Tsai EY, Jain J, Pesavento PA, Rao A, Goldfeld AE. Tumor necrosis factor ? gene regulation in activated T cells involves ATF-2/Jun and NFATp. Mol Cell Biol 1996; 16:459–467.

    PubMed  CAS  Google Scholar 

  174. Ivanov VN, Ronai Z. Down-regulation of tumor necrosis factor ? expression by activating transcription factor 2 increases UVC-induced apoptosis of late-stagemelanomacells. J Biol Chem 1999; 274:14,079–14,089.

    Article  PubMed  CAS  Google Scholar 

  175. Bhoumik A, Ivanov V, Ronai Z. Activating transcription factor 2-derived peptides alter resistance of human tumor cell lines to ultraviolet irradiation and chemical treatment.Clin Cancer Res 2001; 7:331–342.

    PubMed  CAS  Google Scholar 

  176. Ivanov VN, Ronai Z. p38 protects human melanoma cells from UV-induced apoptosis through down-regulation of NF-?B activity and Fas expression. Oncogene 2000; 19:3003–3012.

    Article  PubMed  CAS  Google Scholar 

  177. Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK. Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J B iol Chem 2001; 276:24,661–24,666.

    Article  CAS  Google Scholar 

  178. Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2:84–89.

    Article  PubMed  CAS  Google Scholar 

  179. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesen-chymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2:76–83.

    Article  PubMed  CAS  Google Scholar 

  180. Arlt A, Schafer H. NF?B-dependent chemoresistance in solid tumors. Int J Clin Pharmacol Ther 2002; 40:336–47.

    PubMed  CAS  Google Scholar 

  181. Duffey DC, Chen Z, Dong G, et al. Expression of a dominant-negative mutant inhibitor-?B? of nuclear factor-?B in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer Res 1999; 59:3468–3874.

    PubMed  CAS  Google Scholar 

  182. McNulty SE, Tohidian NB, Meyskens FL Jr. RelA, p50 and inhibitor of ? B ? are elevated in human metastatic melanoma cells and respond aberrantly to ultraviolet light B. Pigment Cell Res 2001; 14:456–465.

    Article  PubMed  CAS  Google Scholar 

  183. Huang S, DeGuzman A, Bucana CD, Fidler IJ. Nuclear factor-?B activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice. Clin Cancer Res 2000; 6:2573–2581.

    PubMed  CAS  Google Scholar 

  184. Ivanov VN, Fodstad O, Ronai Z. Expression of ring finger-deleted TRAF2 sensitizes metastatic mela-nomacells to apoptosis via up-regulation of p38, TNF? and suppression of NF-?B activities. Oncogene 2001; 20:2243–2253.

    Article  PubMed  CAS  Google Scholar 

  185. Lev DC, Ruiz M, Mills L, McGary EC, Price JE, Bar-Eli M. Dacarbazine causes transcriptional up-regulation of interleukin 8 and vascular endothelial growth factor in melanoma cells: a possible escape mechanism from chemotherapy. Mol Cancer Ther 2003; 8:753–763.

    Google Scholar 

  186. Lev DC, Onn A, Melinkov VO, etal. Exposure of melanoma cells to dacarbazine results in enhanced tumor growth and metastasis in vivo. J Clin Oncol 2004; 22:2092–2100.

    Article  PubMed  CAS  Google Scholar 

  187. Mandic A, Viktorsson K, Heiden T, Hansson J, Shoshan MC. The MEK1 inhibitorPD98059 sensitizes C8161 melanoma cells to cisplatin-induced apoptosis. Melanoma Res 2001; 11:11–19.

    Article  PubMed  CAS  Google Scholar 

  188. Jansen B, Schlagbauer-Wadl H, Eichler HG, et al. Activated N-ras contributes to the chemoresistance of human melanoma in severe combined immunodeficiency (SCID) mice by blocking apoptosis. Cancer Res 1997; 57:362–365.

    PubMed  CAS  Google Scholar 

  189. Borner C, Schlagbauer Wadl H, et al. Mutated N-ras upregulates Bcl-2 in human melanoma in vitro and in SCID mice. Melanoma Res 1999; 9:530.

    Article  Google Scholar 

  190. Soengas MS, Capodieci P, Polsky D, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409:207–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Melnikova, V.O., Bar-Eli, M. (2006). Characteristics of the Metastatic Phenotype. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics