Skip to main content

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 4))

Abstract

Since the early 1970s, advanced oxidation processes (AOPs) have been used considerably to remove both low and high concentrations of organic compounds from diverse sources such as groundwater, municipal and industrial wastewater, sludge destruction, and volatile organic compound (VOC) control. These processes, although often having high capital and operating costs, are the only viable treatment methods for effluents containing refractory, toxic, and non-biodegradable materials. In the AOP, the organic compounds can be completely mineralized to carbon dioxide and water mostly by hydroxyl radicals, the second most powerful oxidizing agent generated in situ in the reaction environment. The rate constant values of oxidation of the organics with hydroxyl radicals range from 108 to 1011 M1s−1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Munter, Advanced oxidation processes-current status and prospects, Proc. Estonian Acad. Sci. Chem. 50, 59–80 (2001).

    CAS  Google Scholar 

  2. M Bhowmick and M. J. Semmens, Ultraviolet photooxidation for the destruction of VOCs in air, Wat. Res. 28, 2407–2415 (1994).

    Article  CAS  Google Scholar 

  3. M. B. Ray, Photodegradation of the volatile organic compounds in the gas phase: A review, Developments in Chem. Eng. Mineral Processing 8, 405–439 (2000).

    Google Scholar 

  4. J. H. Wang and M. B. Ray, Application of ultraviolet photooxidation to remove organic pollutants in the gas phase, Separation and Purification Technol. 19, 11–20 (2000).

    Article  Google Scholar 

  5. P. T. Buckley and J. W. Birks, Evaluation of visible-light photolysis of ozone-water cluster molecules as a source of atmospheric hydroxyl radical and hydrogen peroxide, Atmospheric Environment 29, 2409–2415 (1995).

    Article  CAS  Google Scholar 

  6. J. R. Bolton, J. E. Valladares, J. P. Zanin, et al., Figures-of-merit for advanced oxidation technologies: a comparison of homogeneous UV/H2O2, heterogeneous UV/TiO2 and electron beam processes, J. Adv. Oxid. Technol. 3, 174–181 (1998).

    CAS  Google Scholar 

  7. L. Chih-Hsiang and M. D. Gurol, Chemical oxidation by photolytic decomposition of hydrogen peroxide, Environ. Sci. Technol. 29, 3008–3014 (1995).

    Google Scholar 

  8. J. L. Graham, R. Striebich, C. L. Patterson, E. R. Krishnan, and R. C. Haught. MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation. Chemosphere 54, 1011–1016 (2004).

    Article  CAS  Google Scholar 

  9. M. Bideau, B. Claudel, L. Faure, and M. Rachimoellah, Photo-oxidation of formic acid by oxygen in the presence of titanium dioxide and dissolved copper ions: oxygen transfer and reaction kinetics, Chem. Eng. Comm. 93, 167–179 (1990).

    Article  CAS  Google Scholar 

  10. M. D. Driessen, T. M. Miller, and V. H. Grassian. Photocatalytic oxidation of trichloroethylene on zinc oxide: characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy, J. Molecular Catalysis A: Chemical 131, 149–156 (1998).

    Article  CAS  Google Scholar 

  11. J. P. Chen, M. Liu, L. Zhang, J. D. Zhang, and L. T. Jin. Application of nano TiO2 towards polluted water treatment combined with electro-photochemical method. Wat. Res. 37, 3815–3820 (2003).

    Article  CAS  Google Scholar 

  12. M. Goel, H. Hongqiang, A. S. Mujumdar, and M. B. Ray, Sonochemical decomposition of volatile and non-volatile organic compounds—a comparative study, Wat. Res. 38, 4247–4261 (2004).

    Article  CAS  Google Scholar 

  13. P. G. Blystone, M. D. Johnson, W. R. Haag, and P. F. Daley, Advanced Ultraviolet Flash Lamps Destruction of Organic Contaminants in Air, Chapter 18. American Chemical Society (1993).

    Google Scholar 

  14. A. Wekhof, Treatment of contaminated water, air and soil with UV flash lamps, Environmental Progress 10, 241–247 (1991).

    Article  CAS  Google Scholar 

  15. E. Villenave, and R. Lesclaux, Kinetics and atmospheric implications of peroxy radical cross reactions involving the CH3C(O)O2 radical, J. Geophysical Res. 103 (D19), 25,273–25,285 (1998).

    Article  Google Scholar 

  16. J. Z. Yu and H. A. Jeffries, Atmospheric photooxidation of alkylbenzenes—II. Evidence of formation of epoxide intermediates, Atmospheric Environment 31, 2281–2287 (1997).

    Article  CAS  Google Scholar 

  17. J. Z. Yu, H. A. Jeffries, and. K. G. Sexton, Atmospheric photooxidation of alkylbenzenes—I. Carbonyl product analyses, Atmospheric Environment 31, 2261–2280 (1997).

    Article  CAS  Google Scholar 

  18. D. Chen, L. Fengmei, and A. K. Ray, Effect of mass transfer and catalyst layer thickness on photocatalytic reaction, AIChE J. 46, 1034–1045 (2000).

    Article  CAS  Google Scholar 

  19. S. W. Zou. Photocatalytic treatment of wastewater contaminated with organic waste and heavy metal from semiconductor industry. M.Eng. dissertation, National University of Singapore, Singapore (2005).

    Google Scholar 

  20. A. E. Cassano, C. A. Martín, R. J. Brandi, and O. M. Alfano, Photoreactor analysis and design: fundamentals and applications, Ind. Eng. Chem. Res. 34, 2155–2201 (1995).

    Article  CAS  Google Scholar 

  21. Y. Quan, S. Pehkonen, and M. B. Ray, Evaluation of three different lamp emission models using novel application of potassium ferrioxalate actinometry, Ind. Eng. Chem. Res. 43, 948–955 (2004).

    Article  CAS  Google Scholar 

  22. T. Yokota and S. Suzuki, Estimation of light absorption rate in a tank type photoreactor with multiple lamps, J. Chem. Eng. Japan 28, 300–305 (1995).

    Article  CAS  Google Scholar 

  23. G. A. Loraine and W. H. Glaze, Destruction of vapor phase halogenated methanes by means of ultraviolet photolysis, 47th Purdue University Industrial Waste Conference Proceedings, pp. 309–316, 1992.

    Google Scholar 

  24. D. Spangenberg, U. Möller, and K. Kleinermanns, Photooxidation of exhaust pollutants, Chemosphere 33, 43–49 (1996).

    Article  CAS  Google Scholar 

  25. O. K. Scheible, Development of a rationally based design protocol for the ultraviolet light disinfection process, Journal WPCF 59, 25–31 (1987).

    CAS  Google Scholar 

  26. M. R. Nimlos, W. A. Jacoby, D. M. Blake, and T. A. Milne, Direct mass spectrometric studies of the destruction of hazardous wastes. 2. Gas-Phase Photocatalytic Oxidation of Trichloroethylene over TiO2: products and mechanisms, Environ. Sci. Technol. 27, 732–740 (1993).

    Article  CAS  Google Scholar 

  27. E. R. Blatchley III, Numerical modelling of UV intensity: application to collimated-beam reactors and continuous-flow systems, Wat. Res. 31, 2205–2218 (1997).

    Article  CAS  Google Scholar 

  28. A. R. Tymoschuk, O. M. Alfano, and A. E. Cassano, The multitubular photoreactor. 1. Radiation field for constant absorption reactors. Ind. Eng. Chem. Res. 32, 1328–1341 (1993).

    Article  CAS  Google Scholar 

  29. O. M. Alfano, M. Vicente, S. Esplugas, and A. E. Cassano, Radiation field inside a tubular multilamp reactor for water and wastewater treatment, Ind. Eng. Chem. Res. 29, 1270–1278 (1990).

    Article  CAS  Google Scholar 

  30. F. Chen, S. O. Pehkonen, and M. B. Ray, Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase, Wat. Res. 36, 4203–4214 (2002).

    Article  CAS  Google Scholar 

  31. M. Hossain and G. B. Raupp, Radiation field modeling in a photocatalytic monolith reactor, Chem. Eng. Sci. 53, 3771–3780 (1998).

    Article  CAS  Google Scholar 

  32. H. Ibrahim and H. de Lasa, Novel photocatalytic reactor for the destruction of airborne pollutants reaction kinetics and quantum yields, Ind. Eng. Chem. Res. 38, 3211–3217 (1999).

    Article  CAS  Google Scholar 

  33. Q. Yang, S. Pehkonen, and M. B. Ray, A light distribution model for an annular reactor with a cylindrical reflector, Ind. Eng. Chem. Res. 44, 3471–3479 (2005).

    Article  CAS  Google Scholar 

  34. U.S. Army Corps of Engineers, Engineering and Design: Ultraviolet/Chemical Oxidation, ETL 1110-1-161, Department of the Army, Washington, DC, March, 1996.

    Google Scholar 

  35. J. R. Bolton, K. G. Bircher, W. Tumas, and C. A. Tolman, Figures of merit for the technical development and application of advanced oxidation process. J. Adv. Oxid. Tech. 1, 13–17 (1996).

    CAS  Google Scholar 

  36. M. Romero, J. Blanco, B. Sa’nchez, et al., Solar photocatalytic degradation of water and air pollutants: challenges and perspectives, Solar Energy 66, 169–182 (1999).

    Article  CAS  Google Scholar 

  37. M. D. Driessen, T. M. Miller, and V. H. Grassian, Photocatalytic oxidation of trichloroethylene on zinc oxide: characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy, Journal of Molecular Catalysis A: Chemical 131, 149–156 (1998).

    Article  CAS  Google Scholar 

  38. A. K. Ray and A. A. C. M. Beenackers, A novel photocatalytic reactor for water purification, AIChE Journal 44, 477–483 (1998).

    Article  CAS  Google Scholar 

  39. A. K. Ray, Design, modeling and experimentation of a new large-scale photocatalytic reactor for water treatment, Chem. Eng. Sci. 54, 3113–3125 (1999).

    Article  CAS  Google Scholar 

  40. A. K. Ray and A. A. C. M. Beenackers, Development of a new photocatalytic reactor for purification, Catalysis Today 40, 73–83 (1998).

    Article  CAS  Google Scholar 

  41. T. K. Sengupta, M. F. Kabir, and A. K. Ray, A Taylor vortex photocatalytic reactor for water purification, Ind. Eng. Chem. Res. 40, 5268–5281 (2001).

    Article  Google Scholar 

  42. A. Bhattacharyya, S. Kawi, and M. B. Ray, Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents, Catalysis Today 98, 431–439 (2004).

    Article  CAS  Google Scholar 

  43. M. Krofta and L. K. Wang. Flotation Engineering, Technical Manual No. Lenox/1-06-2000/368, Lenox Institute of Water Technology, Lenox, MA, USA, Jan, 2000.

    Google Scholar 

  44. L. K. Wang. New Technologies for Water and Wastewater Treatment. NYS AWWA-NYWEA Joint Tiff Symposium. Liverpool, NY. Nov. 15-17, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ray, M.B., Chen, J.P., Wang, L.K., Pehkonen, S.O. (2006). Advanced Oxidation Processes. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Advanced Physicochemical Treatment Processes. Handbook of Environmental Engineering, vol 4. Humana Press. https://doi.org/10.1007/978-1-59745-029-4_14

Download citation

Publish with us

Policies and ethics