Skip to main content

Pressurized Ozonation

  • Chapter
Biosolids Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 6))

Abstract

Increasing populations and improving standards of living are placing increasing burdens on water resources. The preservation of our limited natural water supplies and, in the not too distant future, the necessity for direct recycling of water in some parts of the country will demand improved technology for the removal of contaminants from wastewater. The contaminants in wastewater are many and continually varying, and they are not well-characterized according to chemical species. Commonly the level of organic contamination is expressed by biochemical oxygen demand (BOD), chemical oxygen demand (COD), or total organic carbon (TOC). Ozone and oxygen are powerful oxidants, which can oxidize many contaminants in wastewater and sludge biosolids. Ozone is more powerful than oxygen, but it is an unstable material, which must be generated at the point of use. Ozone has been used for disinfecting drinking water in European countries for many years. It has also been used for treating some special industrial wastes, notably for removing cyanides and phenols. Since 1980, ozone started to be used for wastewater, industrial wastes, and sludge treatment on a large scale (1)–(6). Oxidative purification and disinfection with ozone as a tertiary wastewater treatment or sludge treatment has a number of inherent advantages which are as follows:

  1. a.

    Reduction in BOD and COD.

  2. b.

    Reduction of odor, color, turbidity, and surfactants.

  3. c.

    Pathogenic organisms are destroyed.

  4. d.

    The treatment products are beneficial.

  5. e.

    The effluent water has a high dissolved oxygen (DO) concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CEC, Applications and Current Status of Ozone for Municipal and Industrial Wastewater Treatment, California Energy Commission (CEC) Website, http://www.energy.ca.gov (2001).

  2. US Department of Energy, Pressurized Ozone/Ultrafiltration Membrane System, Office of Industrial Technologies Website: http://www.oit.doe.gov (2006).

  3. Y. G. Park, Effect of ozonation for reducing membrane-fouling in the UF membrane, Desalination Vol. 147, p. 43–48 (2002).

    Article  CAS  Google Scholar 

  4. L. K. Wang, Pretreatment and Ozonation of Cooling Tower Water, Part I, US Dept. of Commerce, National Technical Information Service, Springfield, VA, Technical Report No. PB84-192053, April, 1983.

    Google Scholar 

  5. L. K. Wang, Pretreatment and Ozonation of Cooling Tower Water, Part II, US Dept. of Commerce, National Technical Information Service, Springfield, VA, Technical Report No. PB84-192046, August, 1983.

    Google Scholar 

  6. L. K. Wang, New dawn in flotation treatment of industrial water and wastes. Proceeding of the 1990 Modern Engineering Technology Seminar, Taipei, Taiwan, ROC., December, 1990.

    Google Scholar 

  7. J. N. Chen, The Functional Increment of Ozonation Process and Application for Industrial Wastewater Treatment, Institute of Environmental Engineering, NSC, NSC 87-2211-E-009-027 140.113.2.117/Backup/87-Eng/College_Of_Engineering/Environmental_Engineering. doc (1987).

    Google Scholar 

  8. L. K. Wang, M. H. S. Wang, G. G. Peery, and R. C. M. Cheugn, General theories of chemical disinfection and sterilization of sludge, Part 1, Water and Sewage Works, 125(7), 30–32 (1978).

    CAS  Google Scholar 

  9. L. K. Wang, M. H. S. Wang, G. G. Peery, and R. C. M. Cheung, General theories of chemical disinfection and sterilization of sludge, Part 2, Water and Sewage Works, 125(8), 58–62 (1978).

    CAS  Google Scholar 

  10. L. K. Wang, M. H. S. Wang, G. G. Peery, and R. C. M. Cheung, General theories of chemical disinfection and sterilization of sludge, Part 3, Water and Sewage Works, 125(9), 99–104 (1978).

    CAS  Google Scholar 

  11. L. K. Wang, M. H. S. Wang, G. G. Peery, and R. C. M. Cheung, General theories of chemical disinfection and sterilization of sludge, Part 4, Water and Sewage Works, 125(10), 33–35 (1978).

    Google Scholar 

  12. L. K. Wang, Principles and Kinetics of Oxygenation-Ozonation Waste Treatment System, US Dept. of Commerce, National Technical Information Service, Springfield, VA, Technical Report No. PB83-127704, 1982.

    Google Scholar 

  13. N. Shammas and N. DeWitt, Flotation: a viable alternative to sedimentation in wastewater treatment, Water Environment Federation, 65th Annual Conference, Proc. Liquid Treatment Process Symposium, New Orleans, LA, September 20–24, 1992, pp. 223–232.

    Google Scholar 

  14. N. Shammas, Physicochemically-enhanced pollutants separation in wastewater treatment, Proc. International Conference: Rehabilitation and Development of Civil Engineering Infrastructure Systems—Upgrading of Water and Wastewater Treatment Facilities, organized by The American University of Beirut and University of Michigan, Beirut, Lebanon, June 9–11, 1997.

    Google Scholar 

  15. N. Shammas and M. Krofta, A compact flotation—filtration tertiary treatment unit for wastewater reuse, Water Reuse Symposium, AWWA, Dallas, Texas, February 27–March 2, pp. 97–109 (1994).

    Google Scholar 

  16. M. Krofta, D. Miskovic, N. Shammas, D. Burgess, and L. Lampman, An innovative multiple stage flotation—filtration low cost municipal wastewater treatment system, IAWQ 17th Biennial International Conference, Budapest, Hungary, July 24–30, 1994.

    Google Scholar 

  17. M. Krofta, D. Miskovic, N. Shammas, and D. Burgess, Pilot-scale applications of a primary—secondary flotation system on three municipal wastewaters, Specialist Conference on Flotation Processes in Water and Sludge Treatment, Orlando, Florida, April 26–28, 1994.

    Google Scholar 

  18. L. K. Wang, N. K. Shammas, W. A. Selke, and D. B. Aulenbach, Flotation thickening. In: Advanced Physicochemical Treatment Processes. L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.), Humana Press Inc., Totowa, NJ, 2004.

    Google Scholar 

  19. L. K. Wang and E. M. Fahey, Dissolved air Flotation. In: Physicochemical Treatment Processes. L. K. Wang, Y. T. Hung, and N. K. Shammas, (eds.), Humana Press Inc., Totowa, NJ, 2004.

    Google Scholar 

  20. S. A. Peterson, Oxyozosynthesis Sludge Treatment Process-A Case Study of International Wastewater Reclamation Technologies Inc. New Process, Internal Tech. Report, West New York Municipal Utility Authority, West New York, NJ, June, 1982.

    Google Scholar 

  21. US EPA, A Plain English Guide to the EPA Part 503 Biosolids Rule, EPA Office of Wastewater Management, Report No. EPA 832/R-93/003, Washington, DC, September, 1994.

    Google Scholar 

  22. L. K. Wang, Waste Treatment by Innovative Flotation-Filtration and Oxygenation-Ozonation Process, US Dept. of Commerce, National Technical Information Service, Technical Report No. PB85-174738-A, 1984.

    Google Scholar 

  23. R. G. Zabady and R. N. Edwards, Oxyozonation process for treatment of municipal and industrial wastewaters and sludges: pilot studies, 52nd Annual Conference of the Water Pollution Control Association of Pennsylvania, Pennsylvania State Univ., PA, August, 1980.

    Google Scholar 

  24. M. Krofta and L. K. Wang, Development of Innovative Sandfloat System for Water Purification and Pollution Control, US Dept. of Commerce, NTIS, Springfield, VA., Report No. PB83-107961, August 1982.

    Google Scholar 

  25. T. Asano, On-site wastewater reclamation and reuse systems in commercial buildings and apartment complexes. AWWA Water Resue Symposium II, Washington, DC, August, 1981.

    Google Scholar 

  26. M. Krofta and L. K. Wang, Treatment of Pittsfield Raw Water for Drinking Water Production by Innovative Process Systems, US Dept. of Commerce, NTIS, Springfield, VA., Report No. PB82-118795, February, 1981.

    Google Scholar 

  27. Ozonology Inc., Innovation in Ozone Generating Technologies-Air Cooled Ozone Generators, Website: http://www.ozonology.com (2004).

  28. O3 Water Systems, Commercial and Industrial Ozone Equipment, Website: http://www.o3water.com/Products/prozone.htm (2004).

  29. S. G. Singer, POU Ozonation Disinfection, Semper Pure Systems, Inc., http://www.pure1.com/P1/NArticles2.htm (2004).

  30. Editor, 2002 Buyer’s guide: ozonators, Environmental Protection, 13(3), 149 (2002).

    Google Scholar 

  31. T. E. Harr, Residual Chlorine in Wastewater Effluents Resulting from Disinfection, Technical Paper No. 38, NY State Dept. of Environ, Cons., March, 1975.

    Google Scholar 

  32. R. P. Ouellette, J. A. King, and P. N. Cheremisinoff, Electrotechnology, Vol. 1, Wastewater Treatment and Separation Methods, Ann Arbor Science Publishers Inc., Ann Arbor, MI, 1978.

    Google Scholar 

  33. Finnegan-Reztek, How does an Ozone Generator Work? Website: http://www.fin-tek.com/ozone/howdoesanozonegeneratorwork.asp (2004).

  34. R. Nathanson, Ozone: design parameters for using ozone on swimming pools, Water Quality Products, 8(4), 22, April (2003).

    Google Scholar 

  35. US EPA, Technologies for Upgrading Existing or Designing New Drinking Water Treatment Facilities, EPA/625-4-89/023, US Environmental Protection Agency, Washington, DC, 1989.

    Google Scholar 

  36. US Army, Engineering and Design-Design of Wastewater Treatment Facilities Major Systems, Engineering Manual No. 1110-2-501, US Army, Washington, DC, 1978.

    Google Scholar 

  37. GDT Corporation, High Efficiency Ozone Contacting System, GDT Water Process Corporation, Phoenix, Arizona, AZ, http://www.gdt-h2o.com (2003).

    Google Scholar 

  38. L. K. Wang, Gas Dissolving System and Method, US Patent No. 5049320, September, US Patent and Trademark Office, Washington, DC, 1991.

    Google Scholar 

  39. T. C. Manely and S. J. Niegawski, Ozone, Encyclopedia of Chemical Technology, 410 (1967).

    Google Scholar 

  40. L. K. Wang and D. C. Elmore, Computer-Aided Modeling of Water Vapor Pressure, Gas Absorption Coefficient and Oxygen Solubility, US Dept. of Commerce, NTIS, Springfield, VA., Tech. Report No. PB82-118787, October, 1981.

    Google Scholar 

  41. A. G. Hill, Ozone Absorption in a Pressurized Bubble Column, Tech. Paper presented at the AIChE National Meeting, Detroit, MI, August, 1981.

    Google Scholar 

  42. J. A. Roth and D. E. Sullivan, Solubility of ozone in water, Eng. Chem. Fundam. 20, 137–140 (1981).

    Article  CAS  Google Scholar 

  43. W. W. Smith and R. E. Bodkin, The influence of hydrogen ion concentration on-the bactericidal action of ozone and chlorine, J. Bacteriol. 47, 445 (1944).

    Google Scholar 

  44. R. H. Leiguarda, Bactericidal action of ozone, An. Asoc. Quim. Argent. 37, 165 and Wat. Poll. Abs. 22, 268 (1949).

    CAS  Google Scholar 

  45. M. T. B. Whitson, Symposium on the Sterilization of Water, (D) Other Processes with Special References to Ozone, J. Inst. Water Engrs. 4, 600 (1950).

    CAS  Google Scholar 

  46. H. Bernier, Ozone sterilization of the water supply of nice and coastal communities, Tech. Sanit. Munic., 45, 117 (1950) Wat. and Poll. Abs. 24, 243 (1951).

    Google Scholar 

  47. G. Bringman, Determination of the lethal activity of chlorine and ozone on E. coli, Z. Hyg. Infektionskronkh., 139, 130 (1954) and Wat. Poll. Abs. 28, 12, (1955).

    Article  Google Scholar 

  48. K. Wuhrmann and J. Meyrath, The bactericidal action of ozone solution, Schweiz, Z. Allgem. Pathol. Bakteriol., 18, 1060 (1955) and Wat. Poll. Abs. 29, 223 (1956).

    CAS  Google Scholar 

  49. V. A. Hann, Disinfection of drinking water with ozone, J. Am. Water Wks. Assoc. 48, 1316 (1956).

    CAS  Google Scholar 

  50. D. B. M. Scott and E. C. Lesher, Effect of ozone on survival and permeability of E. coli., J. Bacteriol. 85, 567 (1963).

    Article  CAS  Google Scholar 

  51. E. Christensen and A. C. Giese, Changes in absorption spectra of nucleic acids and their derivatives following exposure to ozone and ultraviolet radiation, Arch. Biochem. Biophys. 51, 208 (1954).

    Article  CAS  Google Scholar 

  52. E. S. Barron, The role of free radicals of oxygen in reactions produced by ionizing radiations, Radiation Res. 1, 109 (1954).

    Article  CAS  Google Scholar 

  53. R. G. E. Murray, Location of mucopeptide of selections of the cell wall of E. coli and other gram-negative bacteria, Can. J. Microbiol. 11, 547 (1965).

    Article  CAS  Google Scholar 

  54. D. K. Smith, Disinfection and Sterilization of Polluted Water with Ozone, Report AM-6704, Ontario Research Foundation (1969).

    Google Scholar 

  55. P. L. Boucher, Microstraining and ozonation of water and wastewater. Proceedings of the 22nd Indus. Waste Conference, Purude University Engr. Ext. Series 129, 771 (1967).

    Google Scholar 

  56. P. L. Boucher, Use of ozone in the reclamation of water from sewage effluent, J. Inst. Pub. Health Engrs. 67, 75 (1968).

    Google Scholar 

  57. D. T. Huibers, R. McNabney, and A. Halfon, Ozone Treatment of Secondary Effluents from Wastewater Treatment Plants, Robert A. Taft Water Res. Center, Report No. TWRC-4 (1969).

    Google Scholar 

  58. G. C. White, Disinfection of Wastewater and Water for Reuse, Van Nostrand Reinhold Co., NY, 1978.

    Google Scholar 

  59. R. S. Ramalho, Introduction to Wastewater Treatment Processes, Academic Press Inc., NY, 1977.

    Google Scholar 

  60. W. J. Weber, Physicochemical Processes for Water Quality Control, Wiley-Interscience, NY, 1972.

    Google Scholar 

  61. R. L. Sanks, Water Treatment Plant Design, Ann Arbor Science Publishers Inc., Ann Arbor, MI, 1979.

    Google Scholar 

  62. R. W. Legan, Alternative disinfection methods-a comparison of UV and ozone, Ind. Water Eng., 19(2), 12 (1982).

    CAS  Google Scholar 

  63. J. C. Morris, Aspects of the quantitative assessment of germicidal efficiency, in Chapter 1 Disinfection, Water and Wastewater, J. D. Johnson, (ed.), Ann Arbor Science, Ann Arbor, MI, 1975.

    Google Scholar 

  64. APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Wastewater, 15th ed., American Public Health Association, Washington, DC, 1980.

    Google Scholar 

  65. P. C. Singer and W. B. Zilli, Ozonation of ammonia in wastewater, Water Res., 9, 127 (1975).

    Article  CAS  Google Scholar 

  66. M. Teramota, Kinetics of the self-decomposition of ozone and the ozonation of cyanide ion and dyes in aqueous solutions, J. Chem. Eng. Japan, 14, 383 (1981).

    Google Scholar 

  67. M. Teramota, Overall rate of ozone oxidation of cyanide in bubble column, J. Chem. Eng. Japan, 14, 111 (1981).

    Google Scholar 

  68. P. S. Bailey, The reaction of ozone with organic compounds, Chem. Rev. 58, 925 (1958).

    Article  CAS  Google Scholar 

  69. E. H. Pryde, D. J. Moore, and J. C. Cowan, Hydrolytic, reductive and pyrolytic decomposition of selected ozonolysis products. water as an ozonization medium, J. Am. Oil. Chem. Soc. 45, 888 (1968).

    Article  CAS  Google Scholar 

  70. R. Criegee and G. Lohaus, Die ozonide ungesattigter cyclischer sulfone, Justus Liebig’s Annalen der Chemie, 583, 1 (1953).

    Article  CAS  Google Scholar 

  71. M. G. Sturrock, E. L. Cline, and K. J. Robinson, The Ozonation of phenanthrene with water as participating solvent, J. Organic Chem. 28, 2340 (1963).

    Article  CAS  Google Scholar 

  72. W. P. Keaveney, R. V. Rush, and J. J. Pappas, Glyoxal from ozonolysis of benzene, Ind. Eng. Chem. Product Res. Dev. 8, 89 (1969).

    Article  CAS  Google Scholar 

  73. H. R. Eisenhauer, The ozonation of phenolic wastes, J. Water Poll. Con. Fed. 40, 4887 (1968).

    Google Scholar 

  74. E. Bernatek and C. Frengen, Ozonolysis of phenols, I. Ozonolysis of phenol in ethyl acetate, Acta Chem. Scandinavica, 15, 471 (1961).

    CAS  Google Scholar 

  75. H. R. Eisenhauer, Increased rate and efficiency of phenolic waste ozonation, Jour. Water Poll. Con. Fed. 43, 201 (1971).

    Google Scholar 

  76. C. H. Ni and J. N. Chen, Degradation of chlorophenols by a new high-pressurized ozonation system, 15th World Congress and Medical Therapy Conference, IOA, London (2001).

    Google Scholar 

  77. L. B. Wingard, Jr. and R. K. Finn, Oxidation of catechol to cis, cis-muconic acid with ozone, Ind. Eng. Chem. Product Res. Dev. 8, 65 (1969).

    Article  CAS  Google Scholar 

  78. E. Bernatek, J. Moskeland, and K. Valen, Ozonolysis of phenols, II. Catechol, resorcinol and quinol, Acta Chem. Scandinavica, 15, 1454 (1961).

    CAS  Google Scholar 

  79. E. Bernatek and C. Frengen, Ozonolysis of phenols, III. 1-and 2-Naphthol, Acta Chem. Scandinavica, 15, 2421 (1962).

    Article  Google Scholar 

  80. P. S. Bailey, J. E. Batterbee, and A. G. Lane, Ozonation of benz (a) anthracene, J. Am. Chem. Soc. 90, 1027 (1968).

    Article  CAS  Google Scholar 

  81. E. J. Moriconi and L. Salce, Ozonation of polycyclic aromatics, Adv. Chem. Series, No. 77, American Chemical Society, Washington, DC, (1968).

    Google Scholar 

  82. J. B. Mudd, R. Leavitt, A. Ongun, and T. T. McManus, Reaction of ozone with amino acids and proteins, Atmos. Environ. 3, 669 (1969).

    Article  CAS  Google Scholar 

  83. H. M. White and P. S. Bailey, Ozonation of aromatic aldehydes, J. Org. Chem. 30, 3037 (1965).

    Article  CAS  Google Scholar 

  84. R. E. Erickson, D. Bokalik, C. Richards, M. Scanlon, and G. Huddleston, Mechanism of ozonation reactions II. Aldehydes, J. Org. Chem. 31, 461 (1966).

    Article  CAS  Google Scholar 

  85. A. A. Syrov and V. K. Tsyskovskii, Mechanisms of the action of ozone on aldehydes, J. Org. chem. USSR, 6, 1406 (1970).

    Google Scholar 

  86. C. C. Price and A. L. Tumolo, The course of ozonation of ethers, J. Am. Chem. Soc. 86, 4691 (1964).

    Article  CAS  Google Scholar 

  87. R. E. Erickson, R. T. Hansen, and J. Harkins, Mechanism of ozonation reactions, III. Ethers, J. Am. Chem. Soc. 90, 6777 (1968).

    Article  CAS  Google Scholar 

  88. M. C. Whiting, A. J. N. Bolt, and J. H. Parish, The reaction between ozone and saturated compounds, Adv. Chem. Series, No. 77, American Chemical Society, Washington, DC, (1968).

    Google Scholar 

  89. C. C. Schubert, S. J. Schubert, and R. N. Pease, The oxidation of lower paraffin hydrocarbons, II. Observations on the role of ozone in the slow combustion of isobutane, J. Am. Chem. Soc. 78, 2044 (1956).

    Article  CAS  Google Scholar 

  90. G. A. Hamilton, B. S. Ribner, and T. M. Hellman, The mechanism of alkane oxidation by ozone, Adv. Chem. Series, No. 77, American Chemical Society, Washington, DC, (1968).

    Google Scholar 

  91. J. E. Batterbee and P. S. Bailey, Ozonation of carbon-hydrogen bonds. Anthrone, J. Org. Chem. 32, 3899 (1967).

    Article  CAS  Google Scholar 

  92. P. Deslongchamps and C. Moreau, Ozonolysis of acetals. (1) Ester syntheses, (2) THP ether cleavage, (3) Selective oxidation of B-glycoside, (4) Oxidative removal of benzylidene and ehtylidene protecting groups, Can. J. Chem. 49, 2465 (1971).

    Article  CAS  Google Scholar 

  93. L. Mester, Role of formazan reaction in proving structure of ozone-oxidized carbohydrates, Adv. Chem. Series, No. 21, American Chemical Society, Washington, DC, (1959).

    Google Scholar 

  94. NTNU, Experimental Ozonation in a Pressurized Reactor, The Pulp and Paper Group, Chemical Engineering Department, NTNU, Norway, http://www.chemeng.ntnu.no (1997).

    Google Scholar 

  95. S. T. Moe and A. K. Holen, High-and low-pressure ozonation of cellulose model compounds: a comparison of carbohydrate reaction specificity, 10th International Symposium on Wood and Pulping Chemistry, Vol. 2, pp. 354–357, (1999).

    Google Scholar 

  96. C. Schuerck, Ozonization of cellulose and wood, J. Polymer Sci.: Part C, Polymer Symposia, 2, 79 (1963).

    Google Scholar 

  97. F. Dobinson, Ozonation of malonic acid in aqueous solution, Chem. Ind., 853 (1959).

    Google Scholar 

  98. W. H. Glaze, R. Rawley, and S. Lin, By-Products of Organic Compounds in the Presence of Ozone and UV Light, Tech. Paper presented at the 101 Meeting, Cincinnati, OH, November, 1976.

    Google Scholar 

  99. W. A. Guirguis, P. Srivastava, T. Moister, R. Prober, and Y. Hanna, Ozone Reactions with Organic Material in Sewage Non-Sorbuble by Activated Carbon, Tech. Paper presented at the IOI Meeting, Cincinnati, OH, November, 1976.

    Google Scholar 

  100. H. W. Prengle, Jr., C. E. Mauk, and J. E. Payne, Ozone-UV Oxidation of Pesticides in Aqueous Solution, Tech. Paper presented at the IOI Meeting, Cincinnati, OH, November, 1976.

    Google Scholar 

  101. Y. Richard, Organic Materials Produced Upon Ozonation of Water, Tech. Paper presented at the IOI Meeting, Cincinnati, OH, November, 1976.

    Google Scholar 

  102. M. Everard, C. Seeley, and C. Bond, Biosolids and sustainability, 2020 Vision Seminar, The Natural Step’s Website: http://www.naturalstep.org.uk. (2002).

  103. G. Ergler, Ozone Pilot Plant Design, O3 Water Systems, Inc. Website http://www.o3water.com/Articles/PilotPlantDesign.htm (2006).

  104. L. K. Wang, A Modified Standard Method for the Determination of Ozone Residual Concentration by Spectrophotometer, US Dept. of Commerce, National Technical Information Service, Springfield, VA, Technical Report No. PB84-204684, August, 1983.

    Google Scholar 

  105. L. K. Wang, The State-of-the-art Technologies for Water Treatment and Management, UNIDO Training Manual No. 8-8-95, United Nations Industrial Development Organization (UNIDO), Vienna, Austria, 1995.

    Google Scholar 

  106. IN USA Inc., Ozone Monitoring and Control Instrumentation, Needham, MA, http://www.inusacorp.com (2004).

  107. N. K. Shammas and L. K. Wang, Ozonation. In: Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas, (eds.), Humana Press Inc., Totowa, NJ, 2005.

    Google Scholar 

  108. L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis, (eds.). Handbook of Industrial and Hazardous Wastes Treatment. Marcel Dekker Inc./CRC Press, Boca Raton, FL. 1345 p., 2004.

    Google Scholar 

  109. L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis, (eds.). Waste Treatment in the Process Industries. CRC Press, Boca Raton, FL. 638 p., 2006.

    Google Scholar 

  110. L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis, (eds.). Hazardous Industrial Wastes Treatment. CRC Press, Boca Raton, FL. 388 p., 2006.

    Google Scholar 

  111. US DOE. Pressurized Ozone/Ultrafiltration Membrane System for Removing Total Dissolved Solids from Paper Mill Process Water. US Dept. of Energy, Office of Industrial Technologies. Washington, DC. http://www.recycle.com/linpac-nice3/documents/factsheet.pdf. (2006).

    Google Scholar 

  112. L. K. Wang, Advanced UV, Clarification and Ion Exchange Technologies. National Association of Professional Engineers, National Engineers Week Seminar, Feb. 15–17, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, L.K., Shamas, N.K. (2007). Pressurized Ozonation. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Biosolids Treatment Processes. Handbook of Environmental Engineering, vol 6. Humana Press. https://doi.org/10.1007/978-1-59259-996-7_8

Download citation

Publish with us

Policies and ethics